mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-17 16:53:06 +00:00
248fe9f302
On versal platform, enable apb linear mode for apb read and write execute operations amd disable it when using dma reads. This is done by xilinx_pm_request() secure calls when CONFIG_ZYNQMP_FIRMWARE is enabled, else we use direct raw reads and writes in case of mini U-Boot. Signed-off-by: T Karthik Reddy <t.karthik.reddy@xilinx.com> Signed-off-by: Ashok Reddy Soma <ashok.reddy.soma@xilinx.com> Link: https://lore.kernel.org/r/20220512100535.16364-5-ashok.reddy.soma@xilinx.com Signed-off-by: Michal Simek <michal.simek@amd.com>
947 lines
24 KiB
C
947 lines
24 KiB
C
/*
|
|
* Copyright (C) 2012 Altera Corporation <www.altera.com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* - Neither the name of the Altera Corporation nor the
|
|
* names of its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <log.h>
|
|
#include <asm/io.h>
|
|
#include <dma.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <wait_bit.h>
|
|
#include <spi.h>
|
|
#include <spi-mem.h>
|
|
#include <malloc.h>
|
|
#include "cadence_qspi.h"
|
|
|
|
__weak void cadence_qspi_apb_enable_linear_mode(bool enable)
|
|
{
|
|
return;
|
|
}
|
|
|
|
void cadence_qspi_apb_controller_enable(void *reg_base)
|
|
{
|
|
unsigned int reg;
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
reg |= CQSPI_REG_CONFIG_ENABLE;
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
}
|
|
|
|
void cadence_qspi_apb_controller_disable(void *reg_base)
|
|
{
|
|
unsigned int reg;
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
reg &= ~CQSPI_REG_CONFIG_ENABLE;
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
}
|
|
|
|
void cadence_qspi_apb_dac_mode_enable(void *reg_base)
|
|
{
|
|
unsigned int reg;
|
|
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
reg |= CQSPI_REG_CONFIG_DIRECT;
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
}
|
|
|
|
static unsigned int cadence_qspi_calc_dummy(const struct spi_mem_op *op,
|
|
bool dtr)
|
|
{
|
|
unsigned int dummy_clk;
|
|
|
|
if (!op->dummy.nbytes || !op->dummy.buswidth)
|
|
return 0;
|
|
|
|
dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
|
|
if (dtr)
|
|
dummy_clk /= 2;
|
|
|
|
return dummy_clk;
|
|
}
|
|
|
|
static u32 cadence_qspi_calc_rdreg(struct cadence_spi_plat *plat)
|
|
{
|
|
u32 rdreg = 0;
|
|
|
|
rdreg |= plat->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
|
|
rdreg |= plat->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
|
|
rdreg |= plat->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
|
|
|
|
return rdreg;
|
|
}
|
|
|
|
static int cadence_qspi_buswidth_to_inst_type(u8 buswidth)
|
|
{
|
|
switch (buswidth) {
|
|
case 0:
|
|
case 1:
|
|
return CQSPI_INST_TYPE_SINGLE;
|
|
|
|
case 2:
|
|
return CQSPI_INST_TYPE_DUAL;
|
|
|
|
case 4:
|
|
return CQSPI_INST_TYPE_QUAD;
|
|
|
|
case 8:
|
|
return CQSPI_INST_TYPE_OCTAL;
|
|
|
|
default:
|
|
return -ENOTSUPP;
|
|
}
|
|
}
|
|
|
|
static int cadence_qspi_set_protocol(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
int ret;
|
|
|
|
plat->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;
|
|
|
|
ret = cadence_qspi_buswidth_to_inst_type(op->cmd.buswidth);
|
|
if (ret < 0)
|
|
return ret;
|
|
plat->inst_width = ret;
|
|
|
|
ret = cadence_qspi_buswidth_to_inst_type(op->addr.buswidth);
|
|
if (ret < 0)
|
|
return ret;
|
|
plat->addr_width = ret;
|
|
|
|
ret = cadence_qspi_buswidth_to_inst_type(op->data.buswidth);
|
|
if (ret < 0)
|
|
return ret;
|
|
plat->data_width = ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return 1 if idle, otherwise return 0 (busy). */
|
|
static unsigned int cadence_qspi_wait_idle(void *reg_base)
|
|
{
|
|
unsigned int start, count = 0;
|
|
/* timeout in unit of ms */
|
|
unsigned int timeout = 5000;
|
|
|
|
start = get_timer(0);
|
|
for ( ; get_timer(start) < timeout ; ) {
|
|
if (CQSPI_REG_IS_IDLE(reg_base))
|
|
count++;
|
|
else
|
|
count = 0;
|
|
/*
|
|
* Ensure the QSPI controller is in true idle state after
|
|
* reading back the same idle status consecutively
|
|
*/
|
|
if (count >= CQSPI_POLL_IDLE_RETRY)
|
|
return 1;
|
|
}
|
|
|
|
/* Timeout, still in busy mode. */
|
|
printf("QSPI: QSPI is still busy after poll for %d times.\n",
|
|
CQSPI_REG_RETRY);
|
|
return 0;
|
|
}
|
|
|
|
void cadence_qspi_apb_readdata_capture(void *reg_base,
|
|
unsigned int bypass, unsigned int delay)
|
|
{
|
|
unsigned int reg;
|
|
cadence_qspi_apb_controller_disable(reg_base);
|
|
|
|
reg = readl(reg_base + CQSPI_REG_RD_DATA_CAPTURE);
|
|
|
|
if (bypass)
|
|
reg |= CQSPI_REG_RD_DATA_CAPTURE_BYPASS;
|
|
else
|
|
reg &= ~CQSPI_REG_RD_DATA_CAPTURE_BYPASS;
|
|
|
|
reg &= ~(CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK
|
|
<< CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB);
|
|
|
|
reg |= (delay & CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK)
|
|
<< CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB;
|
|
|
|
writel(reg, reg_base + CQSPI_REG_RD_DATA_CAPTURE);
|
|
|
|
cadence_qspi_apb_controller_enable(reg_base);
|
|
}
|
|
|
|
void cadence_qspi_apb_config_baudrate_div(void *reg_base,
|
|
unsigned int ref_clk_hz, unsigned int sclk_hz)
|
|
{
|
|
unsigned int reg;
|
|
unsigned int div;
|
|
|
|
cadence_qspi_apb_controller_disable(reg_base);
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
|
|
|
|
/*
|
|
* The baud_div field in the config reg is 4 bits, and the ref clock is
|
|
* divided by 2 * (baud_div + 1). Round up the divider to ensure the
|
|
* SPI clock rate is less than or equal to the requested clock rate.
|
|
*/
|
|
div = DIV_ROUND_UP(ref_clk_hz, sclk_hz * 2) - 1;
|
|
|
|
/* ensure the baud rate doesn't exceed the max value */
|
|
if (div > CQSPI_REG_CONFIG_BAUD_MASK)
|
|
div = CQSPI_REG_CONFIG_BAUD_MASK;
|
|
|
|
debug("%s: ref_clk %dHz sclk %dHz Div 0x%x, actual %dHz\n", __func__,
|
|
ref_clk_hz, sclk_hz, div, ref_clk_hz / (2 * (div + 1)));
|
|
|
|
reg |= (div << CQSPI_REG_CONFIG_BAUD_LSB);
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
|
|
cadence_qspi_apb_controller_enable(reg_base);
|
|
}
|
|
|
|
void cadence_qspi_apb_set_clk_mode(void *reg_base, uint mode)
|
|
{
|
|
unsigned int reg;
|
|
|
|
cadence_qspi_apb_controller_disable(reg_base);
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
reg &= ~(CQSPI_REG_CONFIG_CLK_POL | CQSPI_REG_CONFIG_CLK_PHA);
|
|
|
|
if (mode & SPI_CPOL)
|
|
reg |= CQSPI_REG_CONFIG_CLK_POL;
|
|
if (mode & SPI_CPHA)
|
|
reg |= CQSPI_REG_CONFIG_CLK_PHA;
|
|
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
|
|
cadence_qspi_apb_controller_enable(reg_base);
|
|
}
|
|
|
|
void cadence_qspi_apb_chipselect(void *reg_base,
|
|
unsigned int chip_select, unsigned int decoder_enable)
|
|
{
|
|
unsigned int reg;
|
|
|
|
cadence_qspi_apb_controller_disable(reg_base);
|
|
|
|
debug("%s : chipselect %d decode %d\n", __func__, chip_select,
|
|
decoder_enable);
|
|
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
/* docoder */
|
|
if (decoder_enable) {
|
|
reg |= CQSPI_REG_CONFIG_DECODE;
|
|
} else {
|
|
reg &= ~CQSPI_REG_CONFIG_DECODE;
|
|
/* Convert CS if without decoder.
|
|
* CS0 to 4b'1110
|
|
* CS1 to 4b'1101
|
|
* CS2 to 4b'1011
|
|
* CS3 to 4b'0111
|
|
*/
|
|
chip_select = 0xF & ~(1 << chip_select);
|
|
}
|
|
|
|
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
|
|
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
|
|
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
|
|
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
|
|
cadence_qspi_apb_controller_enable(reg_base);
|
|
}
|
|
|
|
void cadence_qspi_apb_delay(void *reg_base,
|
|
unsigned int ref_clk, unsigned int sclk_hz,
|
|
unsigned int tshsl_ns, unsigned int tsd2d_ns,
|
|
unsigned int tchsh_ns, unsigned int tslch_ns)
|
|
{
|
|
unsigned int ref_clk_ns;
|
|
unsigned int sclk_ns;
|
|
unsigned int tshsl, tchsh, tslch, tsd2d;
|
|
unsigned int reg;
|
|
|
|
cadence_qspi_apb_controller_disable(reg_base);
|
|
|
|
/* Convert to ns. */
|
|
ref_clk_ns = DIV_ROUND_UP(1000000000, ref_clk);
|
|
|
|
/* Convert to ns. */
|
|
sclk_ns = DIV_ROUND_UP(1000000000, sclk_hz);
|
|
|
|
/* The controller adds additional delay to that programmed in the reg */
|
|
if (tshsl_ns >= sclk_ns + ref_clk_ns)
|
|
tshsl_ns -= sclk_ns + ref_clk_ns;
|
|
if (tchsh_ns >= sclk_ns + 3 * ref_clk_ns)
|
|
tchsh_ns -= sclk_ns + 3 * ref_clk_ns;
|
|
tshsl = DIV_ROUND_UP(tshsl_ns, ref_clk_ns);
|
|
tchsh = DIV_ROUND_UP(tchsh_ns, ref_clk_ns);
|
|
tslch = DIV_ROUND_UP(tslch_ns, ref_clk_ns);
|
|
tsd2d = DIV_ROUND_UP(tsd2d_ns, ref_clk_ns);
|
|
|
|
reg = ((tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
|
|
<< CQSPI_REG_DELAY_TSHSL_LSB);
|
|
reg |= ((tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
|
|
<< CQSPI_REG_DELAY_TCHSH_LSB);
|
|
reg |= ((tslch & CQSPI_REG_DELAY_TSLCH_MASK)
|
|
<< CQSPI_REG_DELAY_TSLCH_LSB);
|
|
reg |= ((tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
|
|
<< CQSPI_REG_DELAY_TSD2D_LSB);
|
|
writel(reg, reg_base + CQSPI_REG_DELAY);
|
|
|
|
cadence_qspi_apb_controller_enable(reg_base);
|
|
}
|
|
|
|
void cadence_qspi_apb_controller_init(struct cadence_spi_plat *plat)
|
|
{
|
|
unsigned reg;
|
|
|
|
cadence_qspi_apb_controller_disable(plat->regbase);
|
|
|
|
/* Configure the device size and address bytes */
|
|
reg = readl(plat->regbase + CQSPI_REG_SIZE);
|
|
/* Clear the previous value */
|
|
reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
|
|
reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
|
|
reg |= (plat->page_size << CQSPI_REG_SIZE_PAGE_LSB);
|
|
reg |= (plat->block_size << CQSPI_REG_SIZE_BLOCK_LSB);
|
|
writel(reg, plat->regbase + CQSPI_REG_SIZE);
|
|
|
|
/* Configure the remap address register, no remap */
|
|
writel(0, plat->regbase + CQSPI_REG_REMAP);
|
|
|
|
/* Indirect mode configurations */
|
|
writel(plat->fifo_depth / 2, plat->regbase + CQSPI_REG_SRAMPARTITION);
|
|
|
|
/* Disable all interrupts */
|
|
writel(0, plat->regbase + CQSPI_REG_IRQMASK);
|
|
|
|
cadence_qspi_apb_controller_enable(plat->regbase);
|
|
}
|
|
|
|
int cadence_qspi_apb_exec_flash_cmd(void *reg_base, unsigned int reg)
|
|
{
|
|
unsigned int retry = CQSPI_REG_RETRY;
|
|
|
|
/* Write the CMDCTRL without start execution. */
|
|
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
|
|
/* Start execute */
|
|
reg |= CQSPI_REG_CMDCTRL_EXECUTE;
|
|
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
|
|
|
|
while (retry--) {
|
|
reg = readl(reg_base + CQSPI_REG_CMDCTRL);
|
|
if ((reg & CQSPI_REG_CMDCTRL_INPROGRESS) == 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
if (!retry) {
|
|
printf("QSPI: flash command execution timeout\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Polling QSPI idle status. */
|
|
if (!cadence_qspi_wait_idle(reg_base))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_qspi_setup_opcode_ext(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op,
|
|
unsigned int shift)
|
|
{
|
|
unsigned int reg;
|
|
u8 ext;
|
|
|
|
if (op->cmd.nbytes != 2)
|
|
return -EINVAL;
|
|
|
|
/* Opcode extension is the LSB. */
|
|
ext = op->cmd.opcode & 0xff;
|
|
|
|
reg = readl(plat->regbase + CQSPI_REG_OP_EXT_LOWER);
|
|
reg &= ~(0xff << shift);
|
|
reg |= ext << shift;
|
|
writel(reg, plat->regbase + CQSPI_REG_OP_EXT_LOWER);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_qspi_enable_dtr(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op,
|
|
unsigned int shift,
|
|
bool enable)
|
|
{
|
|
unsigned int reg;
|
|
int ret;
|
|
|
|
reg = readl(plat->regbase + CQSPI_REG_CONFIG);
|
|
|
|
if (enable) {
|
|
reg |= CQSPI_REG_CONFIG_DTR_PROTO;
|
|
reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
|
|
|
|
/* Set up command opcode extension. */
|
|
ret = cadence_qspi_setup_opcode_ext(plat, op, shift);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
|
|
reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
|
|
}
|
|
|
|
writel(reg, plat->regbase + CQSPI_REG_CONFIG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cadence_qspi_apb_command_read_setup(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
int ret;
|
|
unsigned int reg;
|
|
|
|
ret = cadence_qspi_set_protocol(plat, op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_qspi_enable_dtr(plat, op, CQSPI_REG_OP_EXT_STIG_LSB,
|
|
plat->dtr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reg = cadence_qspi_calc_rdreg(plat);
|
|
writel(reg, plat->regbase + CQSPI_REG_RD_INSTR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* For command RDID, RDSR. */
|
|
int cadence_qspi_apb_command_read(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
void *reg_base = plat->regbase;
|
|
unsigned int reg;
|
|
unsigned int read_len;
|
|
int status;
|
|
unsigned int rxlen = op->data.nbytes;
|
|
void *rxbuf = op->data.buf.in;
|
|
unsigned int dummy_clk;
|
|
u8 opcode;
|
|
|
|
if (rxlen > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
|
|
printf("QSPI: Invalid input arguments rxlen %u\n", rxlen);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (plat->dtr)
|
|
opcode = op->cmd.opcode >> 8;
|
|
else
|
|
opcode = op->cmd.opcode;
|
|
|
|
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
|
|
|
|
/* Set up dummy cycles. */
|
|
dummy_clk = cadence_qspi_calc_dummy(op, plat->dtr);
|
|
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
|
|
return -ENOTSUPP;
|
|
|
|
if (dummy_clk)
|
|
reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
|
|
<< CQSPI_REG_CMDCTRL_DUMMY_LSB;
|
|
|
|
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
|
|
|
|
/* 0 means 1 byte. */
|
|
reg |= (((rxlen - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
|
|
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
|
|
status = cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
|
|
if (status != 0)
|
|
return status;
|
|
|
|
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
|
|
|
|
/* Put the read value into rx_buf */
|
|
read_len = (rxlen > 4) ? 4 : rxlen;
|
|
memcpy(rxbuf, ®, read_len);
|
|
rxbuf += read_len;
|
|
|
|
if (rxlen > 4) {
|
|
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
|
|
|
|
read_len = rxlen - read_len;
|
|
memcpy(rxbuf, ®, read_len);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int cadence_qspi_apb_command_write_setup(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
int ret;
|
|
unsigned int reg;
|
|
|
|
ret = cadence_qspi_set_protocol(plat, op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_qspi_enable_dtr(plat, op, CQSPI_REG_OP_EXT_STIG_LSB,
|
|
plat->dtr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reg = cadence_qspi_calc_rdreg(plat);
|
|
writel(reg, plat->regbase + CQSPI_REG_RD_INSTR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */
|
|
int cadence_qspi_apb_command_write(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
unsigned int reg = 0;
|
|
unsigned int wr_data;
|
|
unsigned int wr_len;
|
|
unsigned int txlen = op->data.nbytes;
|
|
const void *txbuf = op->data.buf.out;
|
|
void *reg_base = plat->regbase;
|
|
u32 addr;
|
|
u8 opcode;
|
|
|
|
/* Reorder address to SPI bus order if only transferring address */
|
|
if (!txlen) {
|
|
addr = cpu_to_be32(op->addr.val);
|
|
if (op->addr.nbytes == 3)
|
|
addr >>= 8;
|
|
txbuf = &addr;
|
|
txlen = op->addr.nbytes;
|
|
}
|
|
|
|
if (txlen > CQSPI_STIG_DATA_LEN_MAX) {
|
|
printf("QSPI: Invalid input arguments txlen %u\n", txlen);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (plat->dtr)
|
|
opcode = op->cmd.opcode >> 8;
|
|
else
|
|
opcode = op->cmd.opcode;
|
|
|
|
reg |= opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
|
|
|
|
if (txlen) {
|
|
/* writing data = yes */
|
|
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
|
|
reg |= ((txlen - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
|
|
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
|
|
|
|
wr_len = txlen > 4 ? 4 : txlen;
|
|
memcpy(&wr_data, txbuf, wr_len);
|
|
writel(wr_data, reg_base +
|
|
CQSPI_REG_CMDWRITEDATALOWER);
|
|
|
|
if (txlen > 4) {
|
|
txbuf += wr_len;
|
|
wr_len = txlen - wr_len;
|
|
memcpy(&wr_data, txbuf, wr_len);
|
|
writel(wr_data, reg_base +
|
|
CQSPI_REG_CMDWRITEDATAUPPER);
|
|
}
|
|
}
|
|
|
|
/* Execute the command */
|
|
return cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
|
|
}
|
|
|
|
/* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */
|
|
int cadence_qspi_apb_read_setup(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
unsigned int reg;
|
|
unsigned int rd_reg;
|
|
unsigned int dummy_clk;
|
|
unsigned int dummy_bytes = op->dummy.nbytes;
|
|
int ret;
|
|
u8 opcode;
|
|
|
|
ret = cadence_qspi_set_protocol(plat, op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_qspi_enable_dtr(plat, op, CQSPI_REG_OP_EXT_READ_LSB,
|
|
plat->dtr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Setup the indirect trigger address */
|
|
writel(plat->trigger_address,
|
|
plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
|
|
|
|
/* Configure the opcode */
|
|
if (plat->dtr)
|
|
opcode = op->cmd.opcode >> 8;
|
|
else
|
|
opcode = op->cmd.opcode;
|
|
|
|
rd_reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
|
|
rd_reg |= cadence_qspi_calc_rdreg(plat);
|
|
|
|
writel(op->addr.val, plat->regbase + CQSPI_REG_INDIRECTRDSTARTADDR);
|
|
|
|
if (dummy_bytes) {
|
|
/* Convert to clock cycles. */
|
|
dummy_clk = cadence_qspi_calc_dummy(op, plat->dtr);
|
|
|
|
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
|
|
return -ENOTSUPP;
|
|
|
|
if (dummy_clk)
|
|
rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
|
|
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
|
|
}
|
|
|
|
writel(rd_reg, plat->regbase + CQSPI_REG_RD_INSTR);
|
|
|
|
/* set device size */
|
|
reg = readl(plat->regbase + CQSPI_REG_SIZE);
|
|
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
|
|
reg |= (op->addr.nbytes - 1);
|
|
writel(reg, plat->regbase + CQSPI_REG_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static u32 cadence_qspi_get_rd_sram_level(struct cadence_spi_plat *plat)
|
|
{
|
|
u32 reg = readl(plat->regbase + CQSPI_REG_SDRAMLEVEL);
|
|
reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
|
|
return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
|
|
}
|
|
|
|
static int cadence_qspi_wait_for_data(struct cadence_spi_plat *plat)
|
|
{
|
|
unsigned int timeout = 10000;
|
|
u32 reg;
|
|
|
|
while (timeout--) {
|
|
reg = cadence_qspi_get_rd_sram_level(plat);
|
|
if (reg)
|
|
return reg;
|
|
udelay(1);
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int
|
|
cadence_qspi_apb_indirect_read_execute(struct cadence_spi_plat *plat,
|
|
unsigned int n_rx, u8 *rxbuf)
|
|
{
|
|
unsigned int remaining = n_rx;
|
|
unsigned int bytes_to_read = 0;
|
|
int ret;
|
|
|
|
writel(n_rx, plat->regbase + CQSPI_REG_INDIRECTRDBYTES);
|
|
|
|
/* Start the indirect read transfer */
|
|
writel(CQSPI_REG_INDIRECTRD_START,
|
|
plat->regbase + CQSPI_REG_INDIRECTRD);
|
|
|
|
while (remaining > 0) {
|
|
ret = cadence_qspi_wait_for_data(plat);
|
|
if (ret < 0) {
|
|
printf("Indirect write timed out (%i)\n", ret);
|
|
goto failrd;
|
|
}
|
|
|
|
bytes_to_read = ret;
|
|
|
|
while (bytes_to_read != 0) {
|
|
bytes_to_read *= plat->fifo_width;
|
|
bytes_to_read = bytes_to_read > remaining ?
|
|
remaining : bytes_to_read;
|
|
/*
|
|
* Handle non-4-byte aligned access to avoid
|
|
* data abort.
|
|
*/
|
|
if (((uintptr_t)rxbuf % 4) || (bytes_to_read % 4))
|
|
readsb(plat->ahbbase, rxbuf, bytes_to_read);
|
|
else
|
|
readsl(plat->ahbbase, rxbuf,
|
|
bytes_to_read >> 2);
|
|
rxbuf += bytes_to_read;
|
|
remaining -= bytes_to_read;
|
|
bytes_to_read = cadence_qspi_get_rd_sram_level(plat);
|
|
}
|
|
}
|
|
|
|
/* Check indirect done status */
|
|
ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTRD,
|
|
CQSPI_REG_INDIRECTRD_DONE, 1, 10, 0);
|
|
if (ret) {
|
|
printf("Indirect read completion error (%i)\n", ret);
|
|
goto failrd;
|
|
}
|
|
|
|
/* Clear indirect completion status */
|
|
writel(CQSPI_REG_INDIRECTRD_DONE,
|
|
plat->regbase + CQSPI_REG_INDIRECTRD);
|
|
|
|
/* Check indirect done status */
|
|
ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTRD,
|
|
CQSPI_REG_INDIRECTRD_DONE, 0, 10, 0);
|
|
if (ret) {
|
|
printf("Indirect read clear completion error (%i)\n", ret);
|
|
goto failrd;
|
|
}
|
|
|
|
return 0;
|
|
|
|
failrd:
|
|
/* Cancel the indirect read */
|
|
writel(CQSPI_REG_INDIRECTRD_CANCEL,
|
|
plat->regbase + CQSPI_REG_INDIRECTRD);
|
|
return ret;
|
|
}
|
|
|
|
int cadence_qspi_apb_read_execute(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
u64 from = op->addr.val;
|
|
void *buf = op->data.buf.in;
|
|
size_t len = op->data.nbytes;
|
|
|
|
if (CONFIG_IS_ENABLED(ARCH_VERSAL))
|
|
cadence_qspi_apb_enable_linear_mode(true);
|
|
|
|
if (plat->use_dac_mode && (from + len < plat->ahbsize)) {
|
|
if (len < 256 ||
|
|
dma_memcpy(buf, plat->ahbbase + from, len) < 0) {
|
|
memcpy_fromio(buf, plat->ahbbase + from, len);
|
|
}
|
|
if (!cadence_qspi_wait_idle(plat->regbase))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
return cadence_qspi_apb_indirect_read_execute(plat, len, buf);
|
|
}
|
|
|
|
/* Opcode + Address (3/4 bytes) */
|
|
int cadence_qspi_apb_write_setup(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
unsigned int reg;
|
|
int ret;
|
|
u8 opcode;
|
|
|
|
ret = cadence_qspi_set_protocol(plat, op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_qspi_enable_dtr(plat, op, CQSPI_REG_OP_EXT_WRITE_LSB,
|
|
plat->dtr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Setup the indirect trigger address */
|
|
writel(plat->trigger_address,
|
|
plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
|
|
|
|
/* Configure the opcode */
|
|
if (plat->dtr)
|
|
opcode = op->cmd.opcode >> 8;
|
|
else
|
|
opcode = op->cmd.opcode;
|
|
|
|
reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
|
|
reg |= plat->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
|
|
reg |= plat->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
|
|
writel(reg, plat->regbase + CQSPI_REG_WR_INSTR);
|
|
|
|
reg = cadence_qspi_calc_rdreg(plat);
|
|
writel(reg, plat->regbase + CQSPI_REG_RD_INSTR);
|
|
|
|
writel(op->addr.val, plat->regbase + CQSPI_REG_INDIRECTWRSTARTADDR);
|
|
|
|
if (plat->dtr) {
|
|
/*
|
|
* Some flashes like the cypress Semper flash expect a 4-byte
|
|
* dummy address with the Read SR command in DTR mode, but this
|
|
* controller does not support sending address with the Read SR
|
|
* command. So, disable write completion polling on the
|
|
* controller's side. spi-nor will take care of polling the
|
|
* status register.
|
|
*/
|
|
reg = readl(plat->regbase + CQSPI_REG_WR_COMPLETION_CTRL);
|
|
reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
|
|
writel(reg, plat->regbase + CQSPI_REG_WR_COMPLETION_CTRL);
|
|
}
|
|
|
|
reg = readl(plat->regbase + CQSPI_REG_SIZE);
|
|
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
|
|
reg |= (op->addr.nbytes - 1);
|
|
writel(reg, plat->regbase + CQSPI_REG_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cadence_qspi_apb_indirect_write_execute(struct cadence_spi_plat *plat,
|
|
unsigned int n_tx, const u8 *txbuf)
|
|
{
|
|
unsigned int page_size = plat->page_size;
|
|
unsigned int remaining = n_tx;
|
|
const u8 *bb_txbuf = txbuf;
|
|
void *bounce_buf = NULL;
|
|
unsigned int write_bytes;
|
|
int ret;
|
|
|
|
/*
|
|
* Use bounce buffer for non 32 bit aligned txbuf to avoid data
|
|
* aborts
|
|
*/
|
|
if ((uintptr_t)txbuf % 4) {
|
|
bounce_buf = malloc(n_tx);
|
|
if (!bounce_buf)
|
|
return -ENOMEM;
|
|
memcpy(bounce_buf, txbuf, n_tx);
|
|
bb_txbuf = bounce_buf;
|
|
}
|
|
|
|
/* Configure the indirect read transfer bytes */
|
|
writel(n_tx, plat->regbase + CQSPI_REG_INDIRECTWRBYTES);
|
|
|
|
/* Start the indirect write transfer */
|
|
writel(CQSPI_REG_INDIRECTWR_START,
|
|
plat->regbase + CQSPI_REG_INDIRECTWR);
|
|
|
|
/*
|
|
* Some delay is required for the above bit to be internally
|
|
* synchronized by the QSPI module.
|
|
*/
|
|
ndelay(plat->wr_delay);
|
|
|
|
while (remaining > 0) {
|
|
write_bytes = remaining > page_size ? page_size : remaining;
|
|
writesl(plat->ahbbase, bb_txbuf, write_bytes >> 2);
|
|
if (write_bytes % 4)
|
|
writesb(plat->ahbbase,
|
|
bb_txbuf + rounddown(write_bytes, 4),
|
|
write_bytes % 4);
|
|
|
|
ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_SDRAMLEVEL,
|
|
CQSPI_REG_SDRAMLEVEL_WR_MASK <<
|
|
CQSPI_REG_SDRAMLEVEL_WR_LSB, 0, 10, 0);
|
|
if (ret) {
|
|
printf("Indirect write timed out (%i)\n", ret);
|
|
goto failwr;
|
|
}
|
|
|
|
bb_txbuf += write_bytes;
|
|
remaining -= write_bytes;
|
|
}
|
|
|
|
/* Check indirect done status */
|
|
ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTWR,
|
|
CQSPI_REG_INDIRECTWR_DONE, 1, 10, 0);
|
|
if (ret) {
|
|
printf("Indirect write completion error (%i)\n", ret);
|
|
goto failwr;
|
|
}
|
|
|
|
/* Clear indirect completion status */
|
|
writel(CQSPI_REG_INDIRECTWR_DONE,
|
|
plat->regbase + CQSPI_REG_INDIRECTWR);
|
|
|
|
/* Check indirect done status */
|
|
ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTWR,
|
|
CQSPI_REG_INDIRECTWR_DONE, 0, 10, 0);
|
|
if (ret) {
|
|
printf("Indirect write clear completion error (%i)\n", ret);
|
|
goto failwr;
|
|
}
|
|
|
|
if (bounce_buf)
|
|
free(bounce_buf);
|
|
return 0;
|
|
|
|
failwr:
|
|
/* Cancel the indirect write */
|
|
writel(CQSPI_REG_INDIRECTWR_CANCEL,
|
|
plat->regbase + CQSPI_REG_INDIRECTWR);
|
|
if (bounce_buf)
|
|
free(bounce_buf);
|
|
return ret;
|
|
}
|
|
|
|
int cadence_qspi_apb_write_execute(struct cadence_spi_plat *plat,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
u32 to = op->addr.val;
|
|
const void *buf = op->data.buf.out;
|
|
size_t len = op->data.nbytes;
|
|
|
|
if (CONFIG_IS_ENABLED(ARCH_VERSAL))
|
|
cadence_qspi_apb_enable_linear_mode(true);
|
|
|
|
/*
|
|
* Some flashes like the Cypress Semper flash expect a dummy 4-byte
|
|
* address (all 0s) with the read status register command in DTR mode.
|
|
* But this controller does not support sending dummy address bytes to
|
|
* the flash when it is polling the write completion register in DTR
|
|
* mode. So, we can not use direct mode when in DTR mode for writing
|
|
* data.
|
|
*/
|
|
if (!plat->dtr && plat->use_dac_mode && (to + len < plat->ahbsize)) {
|
|
memcpy_toio(plat->ahbbase + to, buf, len);
|
|
if (!cadence_qspi_wait_idle(plat->regbase))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
return cadence_qspi_apb_indirect_write_execute(plat, len, buf);
|
|
}
|
|
|
|
void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy)
|
|
{
|
|
unsigned int reg;
|
|
|
|
/* enter XiP mode immediately and enable direct mode */
|
|
reg = readl(reg_base + CQSPI_REG_CONFIG);
|
|
reg |= CQSPI_REG_CONFIG_ENABLE;
|
|
reg |= CQSPI_REG_CONFIG_DIRECT;
|
|
reg |= CQSPI_REG_CONFIG_XIP_IMM;
|
|
writel(reg, reg_base + CQSPI_REG_CONFIG);
|
|
|
|
/* keep the XiP mode */
|
|
writel(xip_dummy, reg_base + CQSPI_REG_MODE_BIT);
|
|
|
|
/* Enable mode bit at devrd */
|
|
reg = readl(reg_base + CQSPI_REG_RD_INSTR);
|
|
reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
|
|
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
|
|
}
|