u-boot/drivers/spi/mxc_spi.c
Simon Glass 1e94b46f73 common: Drop linux/printk.h from common header
This old patch was marked as deferred. Bring it back to life, to continue
towards the removal of common.h

Move this out of the common header and include it only where needed.

Signed-off-by: Simon Glass <sjg@chromium.org>
2023-09-24 09:54:57 -04:00

684 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2008, Guennadi Liakhovetski <lg@denx.de>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <log.h>
#include <malloc.h>
#include <spi.h>
#include <asm/global_data.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/clock.h>
#include <asm/mach-imx/spi.h>
#include <linux/printk.h>
DECLARE_GLOBAL_DATA_PTR;
/* MX35 and older is CSPI */
#if defined(CONFIG_MX31)
#define MXC_CSPI
struct cspi_regs {
u32 rxdata;
u32 txdata;
u32 ctrl;
u32 intr;
u32 dma;
u32 stat;
u32 period;
u32 test;
};
#define MXC_CSPICTRL_EN BIT(0)
#define MXC_CSPICTRL_MODE BIT(1)
#define MXC_CSPICTRL_XCH BIT(2)
#define MXC_CSPICTRL_SMC BIT(3)
#define MXC_CSPICTRL_POL BIT(4)
#define MXC_CSPICTRL_PHA BIT(5)
#define MXC_CSPICTRL_SSCTL BIT(6)
#define MXC_CSPICTRL_SSPOL BIT(7)
#define MXC_CSPICTRL_DATARATE(x) (((x) & 0x7) << 16)
#define MXC_CSPICTRL_RXOVF BIT(6)
#define MXC_CSPIPERIOD_32KHZ BIT(15)
#define MAX_SPI_BYTES 4
#define MXC_CSPICTRL_CHIPSELECT(x) (((x) & 0x3) << 24)
#define MXC_CSPICTRL_BITCOUNT(x) (((x) & 0x1f) << 8)
#define MXC_CSPICTRL_TC BIT(8)
#define MXC_CSPICTRL_MAXBITS 0x1f
#else /* MX51 and newer is ECSPI */
#define MXC_ECSPI
struct cspi_regs {
u32 rxdata;
u32 txdata;
u32 ctrl;
u32 cfg;
u32 intr;
u32 dma;
u32 stat;
u32 period;
};
#define MXC_CSPICTRL_EN BIT(0)
#define MXC_CSPICTRL_MODE BIT(1)
#define MXC_CSPICTRL_XCH BIT(2)
#define MXC_CSPICTRL_MODE_MASK (0xf << 4)
#define MXC_CSPICTRL_CHIPSELECT(x) (((x) & 0x3) << 12)
#define MXC_CSPICTRL_BITCOUNT(x) (((x) & 0xfff) << 20)
#define MXC_CSPICTRL_PREDIV(x) (((x) & 0xF) << 12)
#define MXC_CSPICTRL_POSTDIV(x) (((x) & 0xF) << 8)
#define MXC_CSPICTRL_SELCHAN(x) (((x) & 0x3) << 18)
#define MXC_CSPICTRL_MAXBITS 0xfff
#define MXC_CSPICTRL_TC BIT(7)
#define MXC_CSPICTRL_RXOVF BIT(6)
#define MXC_CSPIPERIOD_32KHZ BIT(15)
#define MAX_SPI_BYTES 32
/* Bit position inside CTRL register to be associated with SS */
#define MXC_CSPICTRL_CHAN 18
/* Bit position inside CON register to be associated with SS */
#define MXC_CSPICON_PHA 0 /* SCLK phase control */
#define MXC_CSPICON_POL 4 /* SCLK polarity */
#define MXC_CSPICON_SSPOL 12 /* SS polarity */
#define MXC_CSPICON_CTL 20 /* inactive state of SCLK */
#endif
__weak int board_spi_cs_gpio(unsigned bus, unsigned cs)
{
return -1;
}
#define OUT MXC_GPIO_DIRECTION_OUT
#define reg_read readl
#define reg_write(a, v) writel(v, a)
#if !defined(CFG_SYS_SPI_MXC_WAIT)
#define CFG_SYS_SPI_MXC_WAIT (CONFIG_SYS_HZ/100) /* 10 ms */
#endif
#define MAX_CS_COUNT 4
struct mxc_spi_slave {
struct spi_slave slave;
unsigned long base;
u32 ctrl_reg;
#if defined(MXC_ECSPI)
u32 cfg_reg;
#endif
int gpio;
int ss_pol;
unsigned int max_hz;
unsigned int mode;
struct gpio_desc ss;
struct gpio_desc cs_gpios[MAX_CS_COUNT];
struct udevice *dev;
};
static inline struct mxc_spi_slave *to_mxc_spi_slave(struct spi_slave *slave)
{
return container_of(slave, struct mxc_spi_slave, slave);
}
static void mxc_spi_cs_activate(struct mxc_spi_slave *mxcs)
{
#if CONFIG_IS_ENABLED(DM_SPI)
struct udevice *dev = mxcs->dev;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
u32 cs = slave_plat->cs;
if (!dm_gpio_is_valid(&mxcs->cs_gpios[cs]))
return;
dm_gpio_set_value(&mxcs->cs_gpios[cs], 1);
#else
if (mxcs->gpio > 0)
gpio_set_value(mxcs->gpio, mxcs->ss_pol);
#endif
}
static void mxc_spi_cs_deactivate(struct mxc_spi_slave *mxcs)
{
#if CONFIG_IS_ENABLED(DM_SPI)
struct udevice *dev = mxcs->dev;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
u32 cs = slave_plat->cs;
if (!dm_gpio_is_valid(&mxcs->cs_gpios[cs]))
return;
dm_gpio_set_value(&mxcs->cs_gpios[cs], 0);
#else
if (mxcs->gpio > 0)
gpio_set_value(mxcs->gpio, !(mxcs->ss_pol));
#endif
}
u32 get_cspi_div(u32 div)
{
int i;
for (i = 0; i < 8; i++) {
if (div <= (4 << i))
return i;
}
return i;
}
#ifdef MXC_CSPI
static s32 spi_cfg_mxc(struct mxc_spi_slave *mxcs, unsigned int cs)
{
unsigned int ctrl_reg;
u32 clk_src;
u32 div;
unsigned int max_hz = mxcs->max_hz;
unsigned int mode = mxcs->mode;
clk_src = mxc_get_clock(MXC_CSPI_CLK);
div = DIV_ROUND_UP(clk_src, max_hz);
div = get_cspi_div(div);
debug("clk %d Hz, div %d, real clk %d Hz\n",
max_hz, div, clk_src / (4 << div));
ctrl_reg = MXC_CSPICTRL_CHIPSELECT(cs) |
MXC_CSPICTRL_BITCOUNT(MXC_CSPICTRL_MAXBITS) |
MXC_CSPICTRL_DATARATE(div) |
MXC_CSPICTRL_EN |
MXC_CSPICTRL_MODE;
if (mode & SPI_CPHA)
ctrl_reg |= MXC_CSPICTRL_PHA;
if (mode & SPI_CPOL)
ctrl_reg |= MXC_CSPICTRL_POL;
if (mode & SPI_CS_HIGH)
ctrl_reg |= MXC_CSPICTRL_SSPOL;
mxcs->ctrl_reg = ctrl_reg;
return 0;
}
#endif
#ifdef MXC_ECSPI
static s32 spi_cfg_mxc(struct mxc_spi_slave *mxcs, unsigned int cs)
{
u32 clk_src = mxc_get_clock(MXC_CSPI_CLK);
s32 reg_ctrl, reg_config;
u32 ss_pol = 0, sclkpol = 0, sclkpha = 0, sclkctl = 0;
u32 pre_div = 0, post_div = 0;
struct cspi_regs *regs = (struct cspi_regs *)mxcs->base;
unsigned int max_hz = mxcs->max_hz;
unsigned int mode = mxcs->mode;
/*
* Reset SPI and set all CSs to master mode, if toggling
* between slave and master mode we might see a glitch
* on the clock line
*/
reg_ctrl = MXC_CSPICTRL_MODE_MASK;
reg_write(&regs->ctrl, reg_ctrl);
reg_ctrl |= MXC_CSPICTRL_EN;
reg_write(&regs->ctrl, reg_ctrl);
if (clk_src > max_hz) {
pre_div = (clk_src - 1) / max_hz;
/* fls(1) = 1, fls(0x80000000) = 32, fls(16) = 5 */
post_div = fls(pre_div);
if (post_div > 4) {
post_div -= 4;
if (post_div >= 16) {
printf("Error: no divider for the freq: %d\n",
max_hz);
return -1;
}
pre_div >>= post_div;
} else {
post_div = 0;
}
}
debug("pre_div = %d, post_div=%d\n", pre_div, post_div);
reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_SELCHAN(3)) |
MXC_CSPICTRL_SELCHAN(cs);
reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_PREDIV(0x0F)) |
MXC_CSPICTRL_PREDIV(pre_div);
reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_POSTDIV(0x0F)) |
MXC_CSPICTRL_POSTDIV(post_div);
if (mode & SPI_CS_HIGH)
ss_pol = 1;
if (mode & SPI_CPOL) {
sclkpol = 1;
sclkctl = 1;
}
if (mode & SPI_CPHA)
sclkpha = 1;
reg_config = reg_read(&regs->cfg);
/*
* Configuration register setup
* The MX51 supports different setup for each SS
*/
reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_SSPOL))) |
(ss_pol << (cs + MXC_CSPICON_SSPOL));
reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_POL))) |
(sclkpol << (cs + MXC_CSPICON_POL));
reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_CTL))) |
(sclkctl << (cs + MXC_CSPICON_CTL));
reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_PHA))) |
(sclkpha << (cs + MXC_CSPICON_PHA));
debug("reg_ctrl = 0x%x\n", reg_ctrl);
reg_write(&regs->ctrl, reg_ctrl);
debug("reg_config = 0x%x\n", reg_config);
reg_write(&regs->cfg, reg_config);
/* save config register and control register */
mxcs->ctrl_reg = reg_ctrl;
mxcs->cfg_reg = reg_config;
/* clear interrupt reg */
reg_write(&regs->intr, 0);
reg_write(&regs->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF);
return 0;
}
#endif
int spi_xchg_single(struct mxc_spi_slave *mxcs, unsigned int bitlen,
const u8 *dout, u8 *din, unsigned long flags)
{
int nbytes = DIV_ROUND_UP(bitlen, 8);
u32 data, cnt, i;
struct cspi_regs *regs = (struct cspi_regs *)mxcs->base;
u32 ts;
int status;
debug("%s: bitlen %d dout 0x%lx din 0x%lx\n",
__func__, bitlen, (ulong)dout, (ulong)din);
mxcs->ctrl_reg = (mxcs->ctrl_reg &
~MXC_CSPICTRL_BITCOUNT(MXC_CSPICTRL_MAXBITS)) |
MXC_CSPICTRL_BITCOUNT(bitlen - 1);
reg_write(&regs->ctrl, mxcs->ctrl_reg | MXC_CSPICTRL_EN);
#ifdef MXC_ECSPI
reg_write(&regs->cfg, mxcs->cfg_reg);
#endif
/* Clear interrupt register */
reg_write(&regs->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF);
/*
* The SPI controller works only with words,
* check if less than a word is sent.
* Access to the FIFO is only 32 bit
*/
if (bitlen % 32) {
data = 0;
cnt = (bitlen % 32) / 8;
if (dout) {
for (i = 0; i < cnt; i++) {
data = (data << 8) | (*dout++ & 0xFF);
}
}
debug("Sending SPI 0x%x\n", data);
reg_write(&regs->txdata, data);
nbytes -= cnt;
}
data = 0;
while (nbytes > 0) {
data = 0;
if (dout) {
/* Buffer is not 32-bit aligned */
if ((unsigned long)dout & 0x03) {
data = 0;
for (i = 0; i < 4; i++)
data = (data << 8) | (*dout++ & 0xFF);
} else {
data = *(u32 *)dout;
data = cpu_to_be32(data);
dout += 4;
}
}
debug("Sending SPI 0x%x\n", data);
reg_write(&regs->txdata, data);
nbytes -= 4;
}
/* FIFO is written, now starts the transfer setting the XCH bit */
reg_write(&regs->ctrl, mxcs->ctrl_reg |
MXC_CSPICTRL_EN | MXC_CSPICTRL_XCH);
ts = get_timer(0);
status = reg_read(&regs->stat);
/* Wait until the TC (Transfer completed) bit is set */
while ((status & MXC_CSPICTRL_TC) == 0) {
if (get_timer(ts) > CFG_SYS_SPI_MXC_WAIT) {
printf("spi_xchg_single: Timeout!\n");
return -1;
}
status = reg_read(&regs->stat);
}
/* Transfer completed, clear any pending request */
reg_write(&regs->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF);
nbytes = DIV_ROUND_UP(bitlen, 8);
if (bitlen % 32) {
data = reg_read(&regs->rxdata);
cnt = (bitlen % 32) / 8;
data = cpu_to_be32(data) >> ((sizeof(data) - cnt) * 8);
debug("SPI Rx unaligned: 0x%x\n", data);
if (din) {
memcpy(din, &data, cnt);
din += cnt;
}
nbytes -= cnt;
}
while (nbytes > 0) {
u32 tmp;
tmp = reg_read(&regs->rxdata);
data = cpu_to_be32(tmp);
debug("SPI Rx: 0x%x 0x%x\n", tmp, data);
cnt = min_t(u32, nbytes, sizeof(data));
if (din) {
memcpy(din, &data, cnt);
din += cnt;
}
nbytes -= cnt;
}
return 0;
}
static int mxc_spi_xfer_internal(struct mxc_spi_slave *mxcs,
unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{
int n_bytes = DIV_ROUND_UP(bitlen, 8);
int n_bits;
int ret;
u32 blk_size;
u8 *p_outbuf = (u8 *)dout;
u8 *p_inbuf = (u8 *)din;
if (!mxcs)
return -EINVAL;
if (flags & SPI_XFER_BEGIN)
mxc_spi_cs_activate(mxcs);
while (n_bytes > 0) {
if (n_bytes < MAX_SPI_BYTES)
blk_size = n_bytes;
else
blk_size = MAX_SPI_BYTES;
n_bits = blk_size * 8;
ret = spi_xchg_single(mxcs, n_bits, p_outbuf, p_inbuf, 0);
if (ret)
return ret;
if (dout)
p_outbuf += blk_size;
if (din)
p_inbuf += blk_size;
n_bytes -= blk_size;
}
if (flags & SPI_XFER_END) {
mxc_spi_cs_deactivate(mxcs);
}
return 0;
}
static int mxc_spi_claim_bus_internal(struct mxc_spi_slave *mxcs, int cs)
{
struct cspi_regs *regs = (struct cspi_regs *)mxcs->base;
int ret;
reg_write(&regs->rxdata, 1);
udelay(1);
ret = spi_cfg_mxc(mxcs, cs);
if (ret) {
printf("mxc_spi: cannot setup SPI controller\n");
return ret;
}
reg_write(&regs->period, MXC_CSPIPERIOD_32KHZ);
reg_write(&regs->intr, 0);
return 0;
}
#if !CONFIG_IS_ENABLED(DM_SPI)
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{
struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
return mxc_spi_xfer_internal(mxcs, bitlen, dout, din, flags);
}
/*
* Some SPI devices require active chip-select over multiple
* transactions, we achieve this using a GPIO. Still, the SPI
* controller has to be configured to use one of its own chipselects.
* To use this feature you have to implement board_spi_cs_gpio() to assign
* a gpio value for each cs (-1 if cs doesn't need to use gpio).
* You must use some unused on this SPI controller cs between 0 and 3.
*/
static int setup_cs_gpio(struct mxc_spi_slave *mxcs,
unsigned int bus, unsigned int cs)
{
int ret;
mxcs->gpio = board_spi_cs_gpio(bus, cs);
if (mxcs->gpio == -1)
return 0;
gpio_request(mxcs->gpio, "spi-cs");
ret = gpio_direction_output(mxcs->gpio, !(mxcs->ss_pol));
if (ret) {
printf("mxc_spi: cannot setup gpio %d\n", mxcs->gpio);
return -EINVAL;
}
return 0;
}
static unsigned long spi_bases[] = {
MXC_SPI_BASE_ADDRESSES
};
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct mxc_spi_slave *mxcs;
int ret;
if (bus >= ARRAY_SIZE(spi_bases))
return NULL;
if (max_hz == 0) {
printf("Error: desired clock is 0\n");
return NULL;
}
mxcs = spi_alloc_slave(struct mxc_spi_slave, bus, cs);
if (!mxcs) {
puts("mxc_spi: SPI Slave not allocated !\n");
return NULL;
}
mxcs->ss_pol = (mode & SPI_CS_HIGH) ? 1 : 0;
ret = setup_cs_gpio(mxcs, bus, cs);
if (ret < 0) {
free(mxcs);
return NULL;
}
mxcs->base = spi_bases[bus];
mxcs->max_hz = max_hz;
mxcs->mode = mode;
return &mxcs->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
free(mxcs);
}
int spi_claim_bus(struct spi_slave *slave)
{
struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
return mxc_spi_claim_bus_internal(mxcs, slave->cs);
}
void spi_release_bus(struct spi_slave *slave)
{
/* TODO: Shut the controller down */
}
#else
static int mxc_spi_probe(struct udevice *bus)
{
struct mxc_spi_slave *mxcs = dev_get_plat(bus);
int ret;
int i;
ret = gpio_request_list_by_name(bus, "cs-gpios", mxcs->cs_gpios,
ARRAY_SIZE(mxcs->cs_gpios), 0);
if (ret < 0) {
pr_err("Can't get %s gpios! Error: %d", bus->name, ret);
return ret;
}
for (i = 0; i < ARRAY_SIZE(mxcs->cs_gpios); i++) {
if (!dm_gpio_is_valid(&mxcs->cs_gpios[i]))
continue;
ret = dm_gpio_set_dir_flags(&mxcs->cs_gpios[i],
GPIOD_IS_OUT | GPIOD_ACTIVE_LOW);
if (ret) {
dev_err(bus, "Setting cs %d error\n", i);
return ret;
}
}
mxcs->base = dev_read_addr(bus);
if (mxcs->base == FDT_ADDR_T_NONE)
return -ENODEV;
#if CONFIG_IS_ENABLED(CLK)
struct clk clk;
ret = clk_get_by_index(bus, 0, &clk);
if (ret)
return ret;
clk_enable(&clk);
mxcs->max_hz = clk_get_rate(&clk);
#else
int node = dev_of_offset(bus);
const void *blob = gd->fdt_blob;
mxcs->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
20000000);
#endif
return 0;
}
static int mxc_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct mxc_spi_slave *mxcs = dev_get_plat(dev->parent);
return mxc_spi_xfer_internal(mxcs, bitlen, dout, din, flags);
}
static int mxc_spi_claim_bus(struct udevice *dev)
{
struct mxc_spi_slave *mxcs = dev_get_plat(dev->parent);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
mxcs->dev = dev;
return mxc_spi_claim_bus_internal(mxcs, slave_plat->cs);
}
static int mxc_spi_release_bus(struct udevice *dev)
{
return 0;
}
static int mxc_spi_set_speed(struct udevice *bus, uint speed)
{
struct mxc_spi_slave *mxcs = dev_get_plat(bus);
mxcs->max_hz = speed;
return 0;
}
static int mxc_spi_set_mode(struct udevice *bus, uint mode)
{
struct mxc_spi_slave *mxcs = dev_get_plat(bus);
mxcs->mode = mode;
mxcs->ss_pol = (mode & SPI_CS_HIGH) ? 1 : 0;
return 0;
}
static const struct dm_spi_ops mxc_spi_ops = {
.claim_bus = mxc_spi_claim_bus,
.release_bus = mxc_spi_release_bus,
.xfer = mxc_spi_xfer,
.set_speed = mxc_spi_set_speed,
.set_mode = mxc_spi_set_mode,
};
static const struct udevice_id mxc_spi_ids[] = {
{ .compatible = "fsl,imx51-ecspi" },
{ }
};
U_BOOT_DRIVER(mxc_spi) = {
.name = "mxc_spi",
.id = UCLASS_SPI,
.of_match = mxc_spi_ids,
.ops = &mxc_spi_ops,
.plat_auto = sizeof(struct mxc_spi_slave),
.probe = mxc_spi_probe,
};
#endif