mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-25 11:25:17 +00:00
a430fa06a4
NAND flavors, like serial and parallel, have a lot in common and would benefit to share code. Let's move raw (parallel) NAND specific code in a raw/ subdirectory, to ease the addition of a core file in nand/ and the introduction of a spi/ subdirectory specific to SPI NANDs. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
518 lines
14 KiB
C
518 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2010
|
|
* Vipin Kumar, ST Microelectronics, vipin.kumar@st.com.
|
|
*
|
|
* (C) Copyright 2012
|
|
* Amit Virdi, ST Microelectronics, amit.virdi@st.com.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <nand.h>
|
|
#include <asm/io.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/err.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/fsmc_nand.h>
|
|
#include <asm/arch/hardware.h>
|
|
|
|
static u32 fsmc_version;
|
|
static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *)
|
|
CONFIG_SYS_FSMC_BASE;
|
|
|
|
/*
|
|
* ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of
|
|
* data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can
|
|
* correct 1 bit in 512 bytes
|
|
*/
|
|
|
|
static struct nand_ecclayout fsmc_ecc4_lp_layout = {
|
|
.eccbytes = 104,
|
|
.eccpos = { 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14,
|
|
18, 19, 20, 21, 22, 23, 24,
|
|
25, 26, 27, 28, 29, 30,
|
|
34, 35, 36, 37, 38, 39, 40,
|
|
41, 42, 43, 44, 45, 46,
|
|
50, 51, 52, 53, 54, 55, 56,
|
|
57, 58, 59, 60, 61, 62,
|
|
66, 67, 68, 69, 70, 71, 72,
|
|
73, 74, 75, 76, 77, 78,
|
|
82, 83, 84, 85, 86, 87, 88,
|
|
89, 90, 91, 92, 93, 94,
|
|
98, 99, 100, 101, 102, 103, 104,
|
|
105, 106, 107, 108, 109, 110,
|
|
114, 115, 116, 117, 118, 119, 120,
|
|
121, 122, 123, 124, 125, 126
|
|
},
|
|
.oobfree = {
|
|
{.offset = 15, .length = 3},
|
|
{.offset = 31, .length = 3},
|
|
{.offset = 47, .length = 3},
|
|
{.offset = 63, .length = 3},
|
|
{.offset = 79, .length = 3},
|
|
{.offset = 95, .length = 3},
|
|
{.offset = 111, .length = 3},
|
|
{.offset = 127, .length = 1}
|
|
}
|
|
};
|
|
|
|
/*
|
|
* ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
|
|
* of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
|
|
* bytes are free for use.
|
|
*/
|
|
static struct nand_ecclayout fsmc_ecc4_224_layout = {
|
|
.eccbytes = 104,
|
|
.eccpos = { 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14,
|
|
18, 19, 20, 21, 22, 23, 24,
|
|
25, 26, 27, 28, 29, 30,
|
|
34, 35, 36, 37, 38, 39, 40,
|
|
41, 42, 43, 44, 45, 46,
|
|
50, 51, 52, 53, 54, 55, 56,
|
|
57, 58, 59, 60, 61, 62,
|
|
66, 67, 68, 69, 70, 71, 72,
|
|
73, 74, 75, 76, 77, 78,
|
|
82, 83, 84, 85, 86, 87, 88,
|
|
89, 90, 91, 92, 93, 94,
|
|
98, 99, 100, 101, 102, 103, 104,
|
|
105, 106, 107, 108, 109, 110,
|
|
114, 115, 116, 117, 118, 119, 120,
|
|
121, 122, 123, 124, 125, 126
|
|
},
|
|
.oobfree = {
|
|
{.offset = 15, .length = 3},
|
|
{.offset = 31, .length = 3},
|
|
{.offset = 47, .length = 3},
|
|
{.offset = 63, .length = 3},
|
|
{.offset = 79, .length = 3},
|
|
{.offset = 95, .length = 3},
|
|
{.offset = 111, .length = 3},
|
|
{.offset = 127, .length = 97}
|
|
}
|
|
};
|
|
|
|
/*
|
|
* ECC placement definitions in oobfree type format
|
|
* There are 13 bytes of ecc for every 512 byte block and it has to be read
|
|
* consecutively and immediately after the 512 byte data block for hardware to
|
|
* generate the error bit offsets in 512 byte data
|
|
* Managing the ecc bytes in the following way makes it easier for software to
|
|
* read ecc bytes consecutive to data bytes. This way is similar to
|
|
* oobfree structure maintained already in u-boot nand driver
|
|
*/
|
|
static struct fsmc_eccplace fsmc_eccpl_lp = {
|
|
.eccplace = {
|
|
{.offset = 2, .length = 13},
|
|
{.offset = 18, .length = 13},
|
|
{.offset = 34, .length = 13},
|
|
{.offset = 50, .length = 13},
|
|
{.offset = 66, .length = 13},
|
|
{.offset = 82, .length = 13},
|
|
{.offset = 98, .length = 13},
|
|
{.offset = 114, .length = 13}
|
|
}
|
|
};
|
|
|
|
static struct nand_ecclayout fsmc_ecc4_sp_layout = {
|
|
.eccbytes = 13,
|
|
.eccpos = { 0, 1, 2, 3, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14
|
|
},
|
|
.oobfree = {
|
|
{.offset = 15, .length = 1},
|
|
}
|
|
};
|
|
|
|
static struct fsmc_eccplace fsmc_eccpl_sp = {
|
|
.eccplace = {
|
|
{.offset = 0, .length = 4},
|
|
{.offset = 6, .length = 9}
|
|
}
|
|
};
|
|
|
|
static struct nand_ecclayout fsmc_ecc1_layout = {
|
|
.eccbytes = 24,
|
|
.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
|
|
66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
|
|
.oobfree = {
|
|
{.offset = 8, .length = 8},
|
|
{.offset = 24, .length = 8},
|
|
{.offset = 40, .length = 8},
|
|
{.offset = 56, .length = 8},
|
|
{.offset = 72, .length = 8},
|
|
{.offset = 88, .length = 8},
|
|
{.offset = 104, .length = 8},
|
|
{.offset = 120, .length = 8}
|
|
}
|
|
};
|
|
|
|
/* Count the number of 0's in buff upto a max of max_bits */
|
|
static int count_written_bits(uint8_t *buff, int size, int max_bits)
|
|
{
|
|
int k, written_bits = 0;
|
|
|
|
for (k = 0; k < size; k++) {
|
|
written_bits += hweight8(~buff[k]);
|
|
if (written_bits > max_bits)
|
|
break;
|
|
}
|
|
|
|
return written_bits;
|
|
}
|
|
|
|
static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
ulong IO_ADDR_W;
|
|
|
|
if (ctrl & NAND_CTRL_CHANGE) {
|
|
IO_ADDR_W = (ulong)this->IO_ADDR_W;
|
|
|
|
IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE);
|
|
if (ctrl & NAND_CLE)
|
|
IO_ADDR_W |= CONFIG_SYS_NAND_CLE;
|
|
if (ctrl & NAND_ALE)
|
|
IO_ADDR_W |= CONFIG_SYS_NAND_ALE;
|
|
|
|
if (ctrl & NAND_NCE) {
|
|
writel(readl(&fsmc_regs_p->pc) |
|
|
FSMC_ENABLE, &fsmc_regs_p->pc);
|
|
} else {
|
|
writel(readl(&fsmc_regs_p->pc) &
|
|
~FSMC_ENABLE, &fsmc_regs_p->pc);
|
|
}
|
|
this->IO_ADDR_W = (void *)IO_ADDR_W;
|
|
}
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
writeb(cmd, this->IO_ADDR_W);
|
|
}
|
|
|
|
static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
/* The calculated ecc is actually the correction index in data */
|
|
u32 err_idx[8];
|
|
u32 num_err, i;
|
|
u32 ecc1, ecc2, ecc3, ecc4;
|
|
|
|
num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF;
|
|
|
|
if (likely(num_err == 0))
|
|
return 0;
|
|
|
|
if (unlikely(num_err > 8)) {
|
|
/*
|
|
* This is a temporary erase check. A newly erased page read
|
|
* would result in an ecc error because the oob data is also
|
|
* erased to FF and the calculated ecc for an FF data is not
|
|
* FF..FF.
|
|
* This is a workaround to skip performing correction in case
|
|
* data is FF..FF
|
|
*
|
|
* Logic:
|
|
* For every page, each bit written as 0 is counted until these
|
|
* number of bits are greater than 8 (the maximum correction
|
|
* capability of FSMC for each 512 + 13 bytes)
|
|
*/
|
|
|
|
int bits_ecc = count_written_bits(read_ecc, 13, 8);
|
|
int bits_data = count_written_bits(dat, 512, 8);
|
|
|
|
if ((bits_ecc + bits_data) <= 8) {
|
|
if (bits_data)
|
|
memset(dat, 0xff, 512);
|
|
return bits_data + bits_ecc;
|
|
}
|
|
|
|
return -EBADMSG;
|
|
}
|
|
|
|
ecc1 = readl(&fsmc_regs_p->ecc1);
|
|
ecc2 = readl(&fsmc_regs_p->ecc2);
|
|
ecc3 = readl(&fsmc_regs_p->ecc3);
|
|
ecc4 = readl(&fsmc_regs_p->sts);
|
|
|
|
err_idx[0] = (ecc1 >> 0) & 0x1FFF;
|
|
err_idx[1] = (ecc1 >> 13) & 0x1FFF;
|
|
err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
|
|
err_idx[3] = (ecc2 >> 7) & 0x1FFF;
|
|
err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
|
|
err_idx[5] = (ecc3 >> 1) & 0x1FFF;
|
|
err_idx[6] = (ecc3 >> 14) & 0x1FFF;
|
|
err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
|
|
|
|
i = 0;
|
|
while (i < num_err) {
|
|
err_idx[i] ^= 3;
|
|
|
|
if (err_idx[i] < 512 * 8)
|
|
__change_bit(err_idx[i], dat);
|
|
|
|
i++;
|
|
}
|
|
|
|
return num_err;
|
|
}
|
|
|
|
static int fsmc_read_hwecc(struct mtd_info *mtd,
|
|
const u_char *data, u_char *ecc)
|
|
{
|
|
u_int ecc_tmp;
|
|
int timeout = CONFIG_SYS_HZ;
|
|
ulong start;
|
|
|
|
switch (fsmc_version) {
|
|
case FSMC_VER8:
|
|
start = get_timer(0);
|
|
while (get_timer(start) < timeout) {
|
|
/*
|
|
* Busy waiting for ecc computation
|
|
* to finish for 512 bytes
|
|
*/
|
|
if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY)
|
|
break;
|
|
}
|
|
|
|
ecc_tmp = readl(&fsmc_regs_p->ecc1);
|
|
ecc[0] = (u_char) (ecc_tmp >> 0);
|
|
ecc[1] = (u_char) (ecc_tmp >> 8);
|
|
ecc[2] = (u_char) (ecc_tmp >> 16);
|
|
ecc[3] = (u_char) (ecc_tmp >> 24);
|
|
|
|
ecc_tmp = readl(&fsmc_regs_p->ecc2);
|
|
ecc[4] = (u_char) (ecc_tmp >> 0);
|
|
ecc[5] = (u_char) (ecc_tmp >> 8);
|
|
ecc[6] = (u_char) (ecc_tmp >> 16);
|
|
ecc[7] = (u_char) (ecc_tmp >> 24);
|
|
|
|
ecc_tmp = readl(&fsmc_regs_p->ecc3);
|
|
ecc[8] = (u_char) (ecc_tmp >> 0);
|
|
ecc[9] = (u_char) (ecc_tmp >> 8);
|
|
ecc[10] = (u_char) (ecc_tmp >> 16);
|
|
ecc[11] = (u_char) (ecc_tmp >> 24);
|
|
|
|
ecc_tmp = readl(&fsmc_regs_p->sts);
|
|
ecc[12] = (u_char) (ecc_tmp >> 16);
|
|
break;
|
|
|
|
default:
|
|
ecc_tmp = readl(&fsmc_regs_p->ecc1);
|
|
ecc[0] = (u_char) (ecc_tmp >> 0);
|
|
ecc[1] = (u_char) (ecc_tmp >> 8);
|
|
ecc[2] = (u_char) (ecc_tmp >> 16);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256,
|
|
&fsmc_regs_p->pc);
|
|
writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN,
|
|
&fsmc_regs_p->pc);
|
|
writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN,
|
|
&fsmc_regs_p->pc);
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_page_hwecc
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller expects OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* This routine is needed for fsmc verison 8 as reading from NAND chip has to be
|
|
* performed in a strict sequence as follows:
|
|
* data(512 byte) -> ecc(13 byte)
|
|
* After this read, fsmc hardware generates and reports error data bits(upto a
|
|
* max of 8 bits)
|
|
*/
|
|
static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct fsmc_eccplace *fsmc_eccpl;
|
|
int i, j, s, stat, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_calc = chip->buffers->ecccalc;
|
|
uint8_t *ecc_code = chip->buffers->ecccode;
|
|
int off, len, group = 0;
|
|
uint8_t oob[13] __attribute__ ((aligned (2)));
|
|
|
|
/* Differentiate between small and large page ecc place definitions */
|
|
if (mtd->writesize == 512)
|
|
fsmc_eccpl = &fsmc_eccpl_sp;
|
|
else
|
|
fsmc_eccpl = &fsmc_eccpl_lp;
|
|
|
|
for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
chip->read_buf(mtd, p, eccsize);
|
|
|
|
for (j = 0; j < eccbytes;) {
|
|
off = fsmc_eccpl->eccplace[group].offset;
|
|
len = fsmc_eccpl->eccplace[group].length;
|
|
group++;
|
|
|
|
/*
|
|
* length is intentionally kept a higher multiple of 2
|
|
* to read at least 13 bytes even in case of 16 bit NAND
|
|
* devices
|
|
*/
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
len = roundup(len, 2);
|
|
chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
|
|
chip->read_buf(mtd, oob + j, len);
|
|
j += len;
|
|
}
|
|
|
|
memcpy(&ecc_code[i], oob, 13);
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
stat = chip->ecc.correct(mtd, p, &ecc_code[i],
|
|
&ecc_calc[i]);
|
|
if (stat < 0)
|
|
mtd->ecc_stats.failed++;
|
|
else
|
|
mtd->ecc_stats.corrected += stat;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_SPL_BUILD
|
|
/*
|
|
* fsmc_nand_switch_ecc - switch the ECC operation between different engines
|
|
*
|
|
* @eccstrength - the number of bits that could be corrected
|
|
* (1 - HW, 4 - SW BCH4)
|
|
*/
|
|
int fsmc_nand_switch_ecc(uint32_t eccstrength)
|
|
{
|
|
struct nand_chip *nand;
|
|
struct mtd_info *mtd;
|
|
int err;
|
|
|
|
/*
|
|
* This functions is only called on SPEAr600 platforms, supporting
|
|
* 1 bit HW ECC. The BCH8 HW ECC (FSMC_VER8) from the ST-Ericsson
|
|
* Nomadik SoC is currently supporting this fsmc_nand_switch_ecc()
|
|
* function, as it doesn't need to switch to a different ECC layout.
|
|
*/
|
|
mtd = get_nand_dev_by_index(nand_curr_device);
|
|
nand = mtd_to_nand(mtd);
|
|
|
|
/* Setup the ecc configurations again */
|
|
if (eccstrength == 1) {
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.bytes = 3;
|
|
nand->ecc.strength = 1;
|
|
nand->ecc.layout = &fsmc_ecc1_layout;
|
|
nand->ecc.calculate = fsmc_read_hwecc;
|
|
nand->ecc.correct = nand_correct_data;
|
|
} else if (eccstrength == 4) {
|
|
/*
|
|
* .calculate .correct and .bytes will be set in
|
|
* nand_scan_tail()
|
|
*/
|
|
nand->ecc.mode = NAND_ECC_SOFT_BCH;
|
|
nand->ecc.strength = 4;
|
|
nand->ecc.layout = NULL;
|
|
} else {
|
|
printf("Error: ECC strength %d not supported!\n", eccstrength);
|
|
}
|
|
|
|
/* Update NAND handling after ECC mode switch */
|
|
err = nand_scan_tail(mtd);
|
|
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_SPL_BUILD */
|
|
|
|
int fsmc_nand_init(struct nand_chip *nand)
|
|
{
|
|
static int chip_nr;
|
|
struct mtd_info *mtd;
|
|
u32 peripid2 = readl(&fsmc_regs_p->peripid2);
|
|
|
|
fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) &
|
|
FSMC_REVISION_MSK;
|
|
|
|
writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl);
|
|
|
|
#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
|
|
writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
|
|
&fsmc_regs_p->pc);
|
|
#elif defined(CONFIG_SYS_FSMC_NAND_8BIT)
|
|
writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
|
|
&fsmc_regs_p->pc);
|
|
#else
|
|
#error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT
|
|
#endif
|
|
writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1,
|
|
&fsmc_regs_p->pc);
|
|
writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
|
|
&fsmc_regs_p->comm);
|
|
writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
|
|
&fsmc_regs_p->attrib);
|
|
|
|
nand->options = 0;
|
|
#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
|
|
nand->options |= NAND_BUSWIDTH_16;
|
|
#endif
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.size = 512;
|
|
nand->ecc.calculate = fsmc_read_hwecc;
|
|
nand->ecc.hwctl = fsmc_enable_hwecc;
|
|
nand->cmd_ctrl = fsmc_nand_hwcontrol;
|
|
nand->IO_ADDR_R = nand->IO_ADDR_W =
|
|
(void __iomem *)CONFIG_SYS_NAND_BASE;
|
|
nand->badblockbits = 7;
|
|
|
|
mtd = nand_to_mtd(nand);
|
|
|
|
switch (fsmc_version) {
|
|
case FSMC_VER8:
|
|
nand->ecc.bytes = 13;
|
|
nand->ecc.strength = 8;
|
|
nand->ecc.correct = fsmc_bch8_correct_data;
|
|
nand->ecc.read_page = fsmc_read_page_hwecc;
|
|
if (mtd->writesize == 512)
|
|
nand->ecc.layout = &fsmc_ecc4_sp_layout;
|
|
else {
|
|
if (mtd->oobsize == 224)
|
|
nand->ecc.layout = &fsmc_ecc4_224_layout;
|
|
else
|
|
nand->ecc.layout = &fsmc_ecc4_lp_layout;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
nand->ecc.bytes = 3;
|
|
nand->ecc.strength = 1;
|
|
nand->ecc.layout = &fsmc_ecc1_layout;
|
|
nand->ecc.correct = nand_correct_data;
|
|
break;
|
|
}
|
|
|
|
/* Detect NAND chips */
|
|
if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
|
|
return -ENXIO;
|
|
|
|
if (nand_scan_tail(mtd))
|
|
return -ENXIO;
|
|
|
|
if (nand_register(chip_nr++, mtd))
|
|
return -ENXIO;
|
|
|
|
return 0;
|
|
}
|