u-boot/cpu/mpc8xxx/ddr/ctrl_regs.c
Dave Liu 22cca7e1cd fsl-ddr: make the self refresh idle threshold configurable
Some 85xx processors have the advanced power management feature,
such as wake up ARP, that needs enable the automatic self refresh.

If the DDR controller pass the SR_IT (self refresh idle threshold)
idle cycles, it will automatically enter self refresh. However,
anytime one transaction is issued to the DDR controller, it will
reset the counter and exit self refresh state.

Signed-off-by: Dave Liu <daveliu@freescale.com>
Acked-by: Andy Fleming <afleming@freescale.com>
2009-01-23 17:03:14 -06:00

1055 lines
31 KiB
C

/*
* Copyright 2008 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
/*
* Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
* Based on code from spd_sdram.c
* Author: James Yang [at freescale.com]
*/
#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
extern unsigned int picos_to_mclk(unsigned int picos);
/*
* Determine Rtt value.
*
* This should likely be either board or controller specific.
*
* Rtt(nominal):
* 0 = Rtt disabled
* 1 = 75 ohm
* 2 = 150 ohm
* 3 = 50 ohm
*
* FIXME: Apparently 8641 needs a value of 2
* FIXME: Old code seys if 667 MHz or higher, use 3 on 8572
*
* FIXME: There was some effort down this line earlier:
*
* unsigned int i;
* for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL/2; i++) {
* if (popts->dimmslot[i].num_valid_cs
* && (popts->cs_local_opts[2*i].odt_rd_cfg
* || popts->cs_local_opts[2*i].odt_wr_cfg)) {
* rtt = 2;
* break;
* }
* }
*/
static inline int fsl_ddr_get_rtt(void)
{
int rtt;
#if defined(CONFIG_FSL_DDR1)
rtt = 0;
#elif defined(CONFIG_FSL_DDR2)
rtt = 3;
#else
#error "Need Rtt value for DDR3"
#endif
return rtt;
}
/* Chip Select Configuration (CSn_CONFIG) */
static void set_csn_config(int i, fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const dimm_params_t *dimm_params)
{
unsigned int cs_n_en = 0; /* Chip Select enable */
unsigned int intlv_en = 0; /* Memory controller interleave enable */
unsigned int intlv_ctl = 0; /* Interleaving control */
unsigned int ap_n_en = 0; /* Chip select n auto-precharge enable */
unsigned int odt_rd_cfg = 0; /* ODT for reads configuration */
unsigned int odt_wr_cfg = 0; /* ODT for writes configuration */
unsigned int ba_bits_cs_n = 0; /* Num of bank bits for SDRAM on CSn */
unsigned int row_bits_cs_n = 0; /* Num of row bits for SDRAM on CSn */
unsigned int col_bits_cs_n = 0; /* Num of ocl bits for SDRAM on CSn */
/* Compute CS_CONFIG only for existing ranks of each DIMM. */
if ((((i&1) == 0)
&& (dimm_params[i/2].n_ranks == 1))
|| (dimm_params[i/2].n_ranks == 2)) {
unsigned int n_banks_per_sdram_device;
cs_n_en = 1;
if (i == 0) {
/* These fields only available in CS0_CONFIG */
intlv_en = popts->memctl_interleaving;
intlv_ctl = popts->memctl_interleaving_mode;
}
ap_n_en = popts->cs_local_opts[i].auto_precharge;
odt_rd_cfg = popts->cs_local_opts[i].odt_rd_cfg;
odt_wr_cfg = popts->cs_local_opts[i].odt_wr_cfg;
n_banks_per_sdram_device
= dimm_params[i/2].n_banks_per_sdram_device;
ba_bits_cs_n = __ilog2(n_banks_per_sdram_device) - 2;
row_bits_cs_n = dimm_params[i/2].n_row_addr - 12;
col_bits_cs_n = dimm_params[i/2].n_col_addr - 8;
}
ddr->cs[i].config = (0
| ((cs_n_en & 0x1) << 31)
| ((intlv_en & 0x3) << 29)
| ((intlv_ctl & 0xf) << 24)
| ((ap_n_en & 0x1) << 23)
/* XXX: some implementation only have 1 bit starting at left */
| ((odt_rd_cfg & 0x7) << 20)
/* XXX: Some implementation only have 1 bit starting at left */
| ((odt_wr_cfg & 0x7) << 16)
| ((ba_bits_cs_n & 0x3) << 14)
| ((row_bits_cs_n & 0x7) << 8)
| ((col_bits_cs_n & 0x7) << 0)
);
debug("FSLDDR: cs[%d]_config = 0x%08x\n", i,ddr->cs[i].config);
}
/* Chip Select Configuration 2 (CSn_CONFIG_2) */
/* FIXME: 8572 */
static void set_csn_config_2(int i, fsl_ddr_cfg_regs_t *ddr)
{
unsigned int pasr_cfg = 0; /* Partial array self refresh config */
ddr->cs[i].config_2 = ((pasr_cfg & 7) << 24);
debug("FSLDDR: cs[%d]_config_2 = 0x%08x\n", i, ddr->cs[i].config_2);
}
/* -3E = 667 CL5, -25 = CL6 800, -25E = CL5 800 */
#if defined(CONFIG_FSL_DDR2)
/*
* DDR SDRAM Timing Configuration 0 (TIMING_CFG_0)
*
* Avoid writing for DDR I. The new PQ38 DDR controller
* dreams up non-zero default values to be backwards compatible.
*/
static void set_timing_cfg_0(fsl_ddr_cfg_regs_t *ddr)
{
unsigned char trwt_mclk = 0; /* Read-to-write turnaround */
unsigned char twrt_mclk = 0; /* Write-to-read turnaround */
/* 7.5 ns on -3E; 0 means WL - CL + BL/2 + 1 */
unsigned char trrt_mclk = 0; /* Read-to-read turnaround */
unsigned char twwt_mclk = 0; /* Write-to-write turnaround */
/* Active powerdown exit timing (tXARD and tXARDS). */
unsigned char act_pd_exit_mclk;
/* Precharge powerdown exit timing (tXP). */
unsigned char pre_pd_exit_mclk;
/* Precharge powerdown exit timing (tAXPD). */
unsigned char taxpd_mclk;
/* Mode register set cycle time (tMRD). */
unsigned char tmrd_mclk;
/* (tXARD and tXARDS). Empirical? */
act_pd_exit_mclk = 2;
/* XXX: tXARD = 2, tXARDS = 7 - AL. * Empirical? */
pre_pd_exit_mclk = 6;
/* FIXME: tXP = 2 on Micron 667 MHz DIMM */
taxpd_mclk = 8;
tmrd_mclk = 2;
ddr->timing_cfg_0 = (0
| ((trwt_mclk & 0x3) << 30) /* RWT */
| ((twrt_mclk & 0x3) << 28) /* WRT */
| ((trrt_mclk & 0x3) << 26) /* RRT */
| ((twwt_mclk & 0x3) << 24) /* WWT */
| ((act_pd_exit_mclk & 0x7) << 20) /* ACT_PD_EXIT */
| ((pre_pd_exit_mclk & 0xF) << 16) /* PRE_PD_EXIT */
| ((taxpd_mclk & 0xf) << 8) /* ODT_PD_EXIT */
| ((tmrd_mclk & 0xf) << 0) /* MRS_CYC */
);
debug("FSLDDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
}
#endif /* defined(CONFIG_FSL_DDR2) */
/* DDR SDRAM Timing Configuration 3 (TIMING_CFG_3) */
static void set_timing_cfg_3(fsl_ddr_cfg_regs_t *ddr,
const common_timing_params_t *common_dimm)
{
/* Extended Activate to precharge interval (tRAS) */
unsigned int ext_acttopre = 0;
unsigned int ext_refrec; /* Extended refresh recovery time (tRFC) */
unsigned int ext_caslat = 0; /* Extended MCAS latency from READ cmd */
unsigned int cntl_adj = 0; /* Control Adjust */
/* If the tRAS > 19 MCLK, we use the ext mode */
if (picos_to_mclk(common_dimm->tRAS_ps) > 0x13)
ext_acttopre = 1;
ext_refrec = (picos_to_mclk(common_dimm->tRFC_ps) - 8) >> 4;
ddr->timing_cfg_3 = (0
| ((ext_acttopre & 0x1) << 24)
| ((ext_refrec & 0xF) << 16)
| ((ext_caslat & 0x1) << 12)
| ((cntl_adj & 0x7) << 0)
);
debug("FSLDDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3);
}
/* DDR SDRAM Timing Configuration 1 (TIMING_CFG_1) */
static void set_timing_cfg_1(fsl_ddr_cfg_regs_t *ddr,
const common_timing_params_t *common_dimm,
unsigned int cas_latency)
{
/* Precharge-to-activate interval (tRP) */
unsigned char pretoact_mclk;
/* Activate to precharge interval (tRAS) */
unsigned char acttopre_mclk;
/* Activate to read/write interval (tRCD) */
unsigned char acttorw_mclk;
/* CASLAT */
unsigned char caslat_ctrl;
/* Refresh recovery time (tRFC) ; trfc_low */
unsigned char refrec_ctrl;
/* Last data to precharge minimum interval (tWR) */
unsigned char wrrec_mclk;
/* Activate-to-activate interval (tRRD) */
unsigned char acttoact_mclk;
/* Last write data pair to read command issue interval (tWTR) */
unsigned char wrtord_mclk;
pretoact_mclk = picos_to_mclk(common_dimm->tRP_ps);
acttopre_mclk = picos_to_mclk(common_dimm->tRAS_ps);
acttorw_mclk = picos_to_mclk(common_dimm->tRCD_ps);
/*
* Translate CAS Latency to a DDR controller field value:
*
* CAS Lat DDR I DDR II Ctrl
* Clocks SPD Bit SPD Bit Value
* ------- ------- ------- -----
* 1.0 0 0001
* 1.5 1 0010
* 2.0 2 2 0011
* 2.5 3 0100
* 3.0 4 3 0101
* 3.5 5 0110
* 4.0 4 0111
* 4.5 1000
* 5.0 5 1001
*/
#if defined(CONFIG_FSL_DDR1)
caslat_ctrl = (cas_latency + 1) & 0x07;
#elif defined(CONFIG_FSL_DDR2)
caslat_ctrl = 2 * cas_latency - 1;
#else
#error "Need CAS Latency help for DDR3 in fsl_ddr_sdram.c"
#endif
refrec_ctrl = picos_to_mclk(common_dimm->tRFC_ps) - 8;
wrrec_mclk = picos_to_mclk(common_dimm->tWR_ps);
acttoact_mclk = picos_to_mclk(common_dimm->tRRD_ps);
wrtord_mclk = picos_to_mclk(common_dimm->tWTR_ps);
ddr->timing_cfg_1 = (0
| ((pretoact_mclk & 0x0F) << 28)
| ((acttopre_mclk & 0x0F) << 24)
| ((acttorw_mclk & 0xF) << 20)
| ((caslat_ctrl & 0xF) << 16)
| ((refrec_ctrl & 0xF) << 12)
| ((wrrec_mclk & 0x0F) << 8)
| ((acttoact_mclk & 0x07) << 4)
| ((wrtord_mclk & 0x07) << 0)
);
debug("FSLDDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
}
/* DDR SDRAM Timing Configuration 2 (TIMING_CFG_2) */
static void set_timing_cfg_2(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm,
unsigned int cas_latency,
unsigned int additive_latency)
{
/* Additive latency */
unsigned char add_lat_mclk;
/* CAS-to-preamble override */
unsigned short cpo;
/* Write latency */
unsigned char wr_lat;
/* Read to precharge (tRTP) */
unsigned char rd_to_pre;
/* Write command to write data strobe timing adjustment */
unsigned char wr_data_delay;
/* Minimum CKE pulse width (tCKE) */
unsigned char cke_pls;
/* Window for four activates (tFAW) */
unsigned short four_act;
/* FIXME add check that this must be less than acttorw_mclk */
add_lat_mclk = additive_latency;
cpo = popts->cpo_override;
#if defined(CONFIG_FSL_DDR1)
/*
* This is a lie. It should really be 1, but if it is
* set to 1, bits overlap into the old controller's
* otherwise unused ACSM field. If we leave it 0, then
* the HW will magically treat it as 1 for DDR 1. Oh Yea.
*/
wr_lat = 0;
#elif defined(CONFIG_FSL_DDR2)
wr_lat = cas_latency + additive_latency - 1;
#else
#error "Fix WR_LAT for DDR3"
#endif
rd_to_pre = picos_to_mclk(common_dimm->tRTP_ps);
wr_data_delay = popts->write_data_delay;
cke_pls = picos_to_mclk(popts->tCKE_clock_pulse_width_ps);
four_act = picos_to_mclk(popts->tFAW_window_four_activates_ps);
ddr->timing_cfg_2 = (0
| ((add_lat_mclk & 0xf) << 28)
| ((cpo & 0x1f) << 23)
| ((wr_lat & 0xf) << 19)
| ((rd_to_pre & 0x7) << 13)
| ((wr_data_delay & 0x7) << 10)
| ((cke_pls & 0x7) << 6)
| ((four_act & 0x3f) << 0)
);
debug("FSLDDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
}
/* DDR SDRAM control configuration (DDR_SDRAM_CFG) */
static void set_ddr_sdram_cfg(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm)
{
unsigned int mem_en; /* DDR SDRAM interface logic enable */
unsigned int sren; /* Self refresh enable (during sleep) */
unsigned int ecc_en; /* ECC enable. */
unsigned int rd_en; /* Registered DIMM enable */
unsigned int sdram_type; /* Type of SDRAM */
unsigned int dyn_pwr; /* Dynamic power management mode */
unsigned int dbw; /* DRAM dta bus width */
unsigned int eight_be = 0; /* 8-beat burst enable, DDR2 is zero */
unsigned int ncap = 0; /* Non-concurrent auto-precharge */
unsigned int threeT_en; /* Enable 3T timing */
unsigned int twoT_en; /* Enable 2T timing */
unsigned int ba_intlv_ctl; /* Bank (CS) interleaving control */
unsigned int x32_en = 0; /* x32 enable */
unsigned int pchb8 = 0; /* precharge bit 8 enable */
unsigned int hse; /* Global half strength override */
unsigned int mem_halt = 0; /* memory controller halt */
unsigned int bi = 0; /* Bypass initialization */
mem_en = 1;
sren = popts->self_refresh_in_sleep;
if (common_dimm->all_DIMMs_ECC_capable) {
/* Allow setting of ECC only if all DIMMs are ECC. */
ecc_en = popts->ECC_mode;
} else {
ecc_en = 0;
}
rd_en = (common_dimm->all_DIMMs_registered
&& !common_dimm->all_DIMMs_unbuffered);
sdram_type = CONFIG_FSL_SDRAM_TYPE;
dyn_pwr = popts->dynamic_power;
dbw = popts->data_bus_width;
/* DDR3 must use 8-beat bursts when using 32-bit bus mode */
if ((sdram_type == SDRAM_TYPE_DDR3) && (dbw == 0x1))
eight_be = 1;
threeT_en = popts->threeT_en;
twoT_en = popts->twoT_en;
ba_intlv_ctl = popts->ba_intlv_ctl;
hse = popts->half_strength_driver_enable;
ddr->ddr_sdram_cfg = (0
| ((mem_en & 0x1) << 31)
| ((sren & 0x1) << 30)
| ((ecc_en & 0x1) << 29)
| ((rd_en & 0x1) << 28)
| ((sdram_type & 0x7) << 24)
| ((dyn_pwr & 0x1) << 21)
| ((dbw & 0x3) << 19)
| ((eight_be & 0x1) << 18)
| ((ncap & 0x1) << 17)
| ((threeT_en & 0x1) << 16)
| ((twoT_en & 0x1) << 15)
| ((ba_intlv_ctl & 0x7F) << 8)
| ((x32_en & 0x1) << 5)
| ((pchb8 & 0x1) << 4)
| ((hse & 0x1) << 3)
| ((mem_halt & 0x1) << 1)
| ((bi & 0x1) << 0)
);
debug("FSLDDR: ddr_sdram_cfg = 0x%08x\n", ddr->ddr_sdram_cfg);
}
/* DDR SDRAM control configuration 2 (DDR_SDRAM_CFG_2) */
static void set_ddr_sdram_cfg_2(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts)
{
unsigned int frc_sr = 0; /* Force self refresh */
unsigned int sr_ie = 0; /* Self-refresh interrupt enable */
unsigned int dll_rst_dis; /* DLL reset disable */
unsigned int dqs_cfg; /* DQS configuration */
unsigned int odt_cfg; /* ODT configuration */
unsigned int num_pr; /* Number of posted refreshes */
unsigned int obc_cfg; /* On-The-Fly Burst Chop Cfg */
unsigned int ap_en; /* Address Parity Enable */
unsigned int d_init; /* DRAM data initialization */
unsigned int rcw_en = 0; /* Register Control Word Enable */
unsigned int md_en = 0; /* Mirrored DIMM Enable */
dll_rst_dis = 1; /* Make this configurable */
dqs_cfg = popts->DQS_config;
if (popts->cs_local_opts[0].odt_rd_cfg
|| popts->cs_local_opts[0].odt_wr_cfg) {
/* FIXME */
odt_cfg = 2;
} else {
odt_cfg = 0;
}
num_pr = 1; /* Make this configurable */
/*
* 8572 manual says
* {TIMING_CFG_1[PRETOACT]
* + [DDR_SDRAM_CFG_2[NUM_PR]
* * ({EXT_REFREC || REFREC} + 8 + 2)]}
* << DDR_SDRAM_INTERVAL[REFINT]
*/
obc_cfg = 0; /* Make this configurable? */
ap_en = 0; /* Make this configurable? */
#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
/* Use the DDR controller to auto initialize memory. */
d_init = 1;
ddr->ddr_data_init = CONFIG_MEM_INIT_VALUE;
debug("DDR: ddr_data_init = 0x%08x\n", ddr->ddr_data_init);
#else
/* Memory will be initialized via DMA, or not at all. */
d_init = 0;
#endif
ddr->ddr_sdram_cfg_2 = (0
| ((frc_sr & 0x1) << 31)
| ((sr_ie & 0x1) << 30)
| ((dll_rst_dis & 0x1) << 29)
| ((dqs_cfg & 0x3) << 26)
| ((odt_cfg & 0x3) << 21)
| ((num_pr & 0xf) << 12)
| ((obc_cfg & 0x1) << 6)
| ((ap_en & 0x1) << 5)
| ((d_init & 0x1) << 4)
| ((rcw_en & 0x1) << 2)
| ((md_en & 0x1) << 0)
);
debug("FSLDDR: ddr_sdram_cfg_2 = 0x%08x\n", ddr->ddr_sdram_cfg_2);
}
/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
static void set_ddr_sdram_mode_2(fsl_ddr_cfg_regs_t *ddr)
{
unsigned short esdmode2 = 0; /* Extended SDRAM mode 2 */
unsigned short esdmode3 = 0; /* Extended SDRAM mode 3 */
ddr->ddr_sdram_mode_2 = (0
| ((esdmode2 & 0xFFFF) << 16)
| ((esdmode3 & 0xFFFF) << 0)
);
debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);
}
/* DDR SDRAM Interval Configuration (DDR_SDRAM_INTERVAL) */
static void set_ddr_sdram_interval(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm)
{
unsigned int refint; /* Refresh interval */
unsigned int bstopre; /* Precharge interval */
refint = picos_to_mclk(common_dimm->refresh_rate_ps);
bstopre = popts->bstopre;
/* refint field used 0x3FFF in earlier controllers */
ddr->ddr_sdram_interval = (0
| ((refint & 0xFFFF) << 16)
| ((bstopre & 0x3FFF) << 0)
);
debug("FSLDDR: ddr_sdram_interval = 0x%08x\n", ddr->ddr_sdram_interval);
}
/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
static void set_ddr_sdram_mode(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts,
const common_timing_params_t *common_dimm,
unsigned int cas_latency,
unsigned int additive_latency)
{
unsigned short esdmode; /* Extended SDRAM mode */
unsigned short sdmode; /* SDRAM mode */
/*
* FIXME: This ought to be pre-calculated in a
* technology-specific routine,
* e.g. compute_DDR2_mode_register(), and then the
* sdmode and esdmode passed in as part of common_dimm.
*/
/* Extended Mode Register */
unsigned int mrs = 0; /* Mode Register Set */
unsigned int outputs = 0; /* 0=Enabled, 1=Disabled */
unsigned int rdqs_en = 0; /* RDQS Enable: 0=no, 1=yes */
unsigned int dqs_en = 0; /* DQS# Enable: 0=enable, 1=disable */
unsigned int ocd = 0; /* 0x0=OCD not supported,
0x7=OCD default state */
unsigned int rtt;
unsigned int al; /* Posted CAS# additive latency (AL) */
unsigned int ods = 0; /* Output Drive Strength:
0 = Full strength (18ohm)
1 = Reduced strength (4ohm) */
unsigned int dll_en = 0; /* DLL Enable 0=Enable (Normal),
1=Disable (Test/Debug) */
/* Mode Register (MR) */
unsigned int mr; /* Mode Register Definition */
unsigned int pd; /* Power-Down Mode */
unsigned int wr; /* Write Recovery */
unsigned int dll_res; /* DLL Reset */
unsigned int mode; /* Normal=0 or Test=1 */
unsigned int caslat = 0;/* CAS# latency */
/* BT: Burst Type (0=Sequential, 1=Interleaved) */
unsigned int bt;
unsigned int bl; /* BL: Burst Length */
#if defined(CONFIG_FSL_DDR2)
const unsigned int mclk_ps = get_memory_clk_period_ps();
#endif
rtt = fsl_ddr_get_rtt();
al = additive_latency;
esdmode = (0
| ((mrs & 0x3) << 14)
| ((outputs & 0x1) << 12)
| ((rdqs_en & 0x1) << 11)
| ((dqs_en & 0x1) << 10)
| ((ocd & 0x7) << 7)
| ((rtt & 0x2) << 5) /* rtt field is split */
| ((al & 0x7) << 3)
| ((rtt & 0x1) << 2) /* rtt field is split */
| ((ods & 0x1) << 1)
| ((dll_en & 0x1) << 0)
);
mr = 0; /* FIXME: CHECKME */
/*
* 0 = Fast Exit (Normal)
* 1 = Slow Exit (Low Power)
*/
pd = 0;
#if defined(CONFIG_FSL_DDR1)
wr = 0; /* Historical */
#elif defined(CONFIG_FSL_DDR2)
wr = (common_dimm->tWR_ps + mclk_ps - 1) / mclk_ps - 1;
#else
#error "Write tWR_auto for DDR3"
#endif
dll_res = 0;
mode = 0;
#if defined(CONFIG_FSL_DDR1)
if (1 <= cas_latency && cas_latency <= 4) {
unsigned char mode_caslat_table[4] = {
0x5, /* 1.5 clocks */
0x2, /* 2.0 clocks */
0x6, /* 2.5 clocks */
0x3 /* 3.0 clocks */
};
caslat = mode_caslat_table[cas_latency - 1];
} else {
printf("Warning: unknown cas_latency %d\n", cas_latency);
}
#elif defined(CONFIG_FSL_DDR2)
caslat = cas_latency;
#else
#error "Fix the mode CAS Latency for DDR3"
#endif
bt = 0;
switch (popts->burst_length) {
case 4:
bl = 2;
break;
case 8:
bl = 3;
break;
default:
printf("Error: invalid burst length of %u specified. "
" Defaulting to 4 beats.\n",
popts->burst_length);
bl = 2;
break;
}
sdmode = (0
| ((mr & 0x3) << 14)
| ((pd & 0x1) << 12)
| ((wr & 0x7) << 9)
| ((dll_res & 0x1) << 8)
| ((mode & 0x1) << 7)
| ((caslat & 0x7) << 4)
| ((bt & 0x1) << 3)
| ((bl & 0x7) << 0)
);
ddr->ddr_sdram_mode = (0
| ((esdmode & 0xFFFF) << 16)
| ((sdmode & 0xFFFF) << 0)
);
debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
}
/* DDR SDRAM Data Initialization (DDR_DATA_INIT) */
static void set_ddr_data_init(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int init_value; /* Initialization value */
init_value = 0xDEADBEEF;
ddr->ddr_data_init = init_value;
}
/*
* DDR SDRAM Clock Control (DDR_SDRAM_CLK_CNTL)
* The old controller on the 8540/60 doesn't have this register.
* Hope it's OK to set it (to 0) anyway.
*/
static void set_ddr_sdram_clk_cntl(fsl_ddr_cfg_regs_t *ddr,
const memctl_options_t *popts)
{
unsigned int clk_adjust; /* Clock adjust */
clk_adjust = popts->clk_adjust;
ddr->ddr_sdram_clk_cntl = (clk_adjust & 0xF) << 23;
}
/* DDR Initialization Address (DDR_INIT_ADDR) */
static void set_ddr_init_addr(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int init_addr = 0; /* Initialization address */
ddr->ddr_init_addr = init_addr;
}
/* DDR Initialization Address (DDR_INIT_EXT_ADDR) */
static void set_ddr_init_ext_addr(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int uia = 0; /* Use initialization address */
unsigned int init_ext_addr = 0; /* Initialization address */
ddr->ddr_init_ext_addr = (0
| ((uia & 0x1) << 31)
| (init_ext_addr & 0xF)
);
}
/* DDR SDRAM Timing Configuration 4 (TIMING_CFG_4) */
static void set_timing_cfg_4(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int rwt = 0; /* Read-to-write turnaround for same CS */
unsigned int wrt = 0; /* Write-to-read turnaround for same CS */
unsigned int rrt = 0; /* Read-to-read turnaround for same CS */
unsigned int wwt = 0; /* Write-to-write turnaround for same CS */
unsigned int dll_lock = 0; /* DDR SDRAM DLL Lock Time */
ddr->timing_cfg_4 = (0
| ((rwt & 0xf) << 28)
| ((wrt & 0xf) << 24)
| ((rrt & 0xf) << 20)
| ((wwt & 0xf) << 16)
| (dll_lock & 0x3)
);
debug("FSLDDR: timing_cfg_4 = 0x%08x\n", ddr->timing_cfg_4);
}
/* DDR SDRAM Timing Configuration 5 (TIMING_CFG_5) */
static void set_timing_cfg_5(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int rodt_on = 0; /* Read to ODT on */
unsigned int rodt_off = 0; /* Read to ODT off */
unsigned int wodt_on = 0; /* Write to ODT on */
unsigned int wodt_off = 0; /* Write to ODT off */
ddr->timing_cfg_5 = (0
| ((rodt_on & 0x1f) << 24)
| ((rodt_off & 0x7) << 20)
| ((wodt_on & 0x1f) << 12)
| ((wodt_off & 0x7) << 8)
);
debug("FSLDDR: timing_cfg_5 = 0x%08x\n", ddr->timing_cfg_5);
}
/* DDR ZQ Calibration Control (DDR_ZQ_CNTL) */
static void set_ddr_zq_cntl(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int zq_en = 0; /* ZQ Calibration Enable */
unsigned int zqinit = 0;/* POR ZQ Calibration Time (tZQinit) */
/* Normal Operation Full Calibration Time (tZQoper) */
unsigned int zqoper = 0;
/* Normal Operation Short Calibration Time (tZQCS) */
unsigned int zqcs = 0;
ddr->ddr_zq_cntl = (0
| ((zq_en & 0x1) << 31)
| ((zqinit & 0xF) << 24)
| ((zqoper & 0xF) << 16)
| ((zqcs & 0xF) << 8)
);
}
/* DDR Write Leveling Control (DDR_WRLVL_CNTL) */
static void set_ddr_wrlvl_cntl(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int wrlvl_en = 0; /* Write Leveling Enable */
/*
* First DQS pulse rising edge after margining mode
* is programmed (tWL_MRD)
*/
unsigned int wrlvl_mrd = 0;
/* ODT delay after margining mode is programmed (tWL_ODTEN) */
unsigned int wrlvl_odten = 0;
/* DQS/DQS_ delay after margining mode is programmed (tWL_DQSEN) */
unsigned int wrlvl_dqsen = 0;
/* WRLVL_SMPL: Write leveling sample time */
unsigned int wrlvl_smpl = 0;
/* WRLVL_WLR: Write leveling repeition time */
unsigned int wrlvl_wlr = 0;
/* WRLVL_START: Write leveling start time */
unsigned int wrlvl_start = 0;
ddr->ddr_wrlvl_cntl = (0
| ((wrlvl_en & 0x1) << 31)
| ((wrlvl_mrd & 0x7) << 24)
| ((wrlvl_odten & 0x7) << 20)
| ((wrlvl_dqsen & 0x7) << 16)
| ((wrlvl_smpl & 0xf) << 12)
| ((wrlvl_wlr & 0x7) << 8)
| ((wrlvl_start & 0x1F) << 0)
);
}
/* DDR Self Refresh Counter (DDR_SR_CNTR) */
static void set_ddr_sr_cntr(fsl_ddr_cfg_regs_t *ddr, unsigned int sr_it)
{
/* Self Refresh Idle Threshold */
ddr->ddr_sr_cntr = (sr_it & 0xF) << 16;
}
/* DDR Pre-Drive Conditioning Control (DDR_PD_CNTL) */
static void set_ddr_pd_cntl(fsl_ddr_cfg_regs_t *ddr)
{
/* Termination value during pre-drive conditioning */
unsigned int tvpd = 0;
unsigned int pd_en = 0; /* Pre-Drive Conditioning Enable */
unsigned int pdar = 0; /* Pre-Drive After Read */
unsigned int pdaw = 0; /* Pre-Drive After Write */
unsigned int pd_on = 0; /* Pre-Drive Conditioning On */
unsigned int pd_off = 0; /* Pre-Drive Conditioning Off */
ddr->ddr_pd_cntl = (0
| ((pd_en & 0x1) << 31)
| ((tvpd & 0x7) << 28)
| ((pdar & 0x7F) << 20)
| ((pdaw & 0x7F) << 12)
| ((pd_on & 0x1F) << 6)
| ((pd_off & 0x1F) << 0)
);
}
/* DDR SDRAM Register Control Word 1 (DDR_SDRAM_RCW_1) */
static void set_ddr_sdram_rcw_1(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int rcw0 = 0; /* RCW0: Register Control Word 0 */
unsigned int rcw1 = 0; /* RCW1: Register Control Word 1 */
unsigned int rcw2 = 0; /* RCW2: Register Control Word 2 */
unsigned int rcw3 = 0; /* RCW3: Register Control Word 3 */
unsigned int rcw4 = 0; /* RCW4: Register Control Word 4 */
unsigned int rcw5 = 0; /* RCW5: Register Control Word 5 */
unsigned int rcw6 = 0; /* RCW6: Register Control Word 6 */
unsigned int rcw7 = 0; /* RCW7: Register Control Word 7 */
ddr->ddr_sdram_rcw_1 = (0
| ((rcw0 & 0xF) << 28)
| ((rcw1 & 0xF) << 24)
| ((rcw2 & 0xF) << 20)
| ((rcw3 & 0xF) << 16)
| ((rcw4 & 0xF) << 12)
| ((rcw5 & 0xF) << 8)
| ((rcw6 & 0xF) << 4)
| ((rcw7 & 0xF) << 0)
);
}
/* DDR SDRAM Register Control Word 2 (DDR_SDRAM_RCW_2) */
static void set_ddr_sdram_rcw_2(fsl_ddr_cfg_regs_t *ddr)
{
unsigned int rcw8 = 0; /* RCW0: Register Control Word 8 */
unsigned int rcw9 = 0; /* RCW1: Register Control Word 9 */
unsigned int rcw10 = 0; /* RCW2: Register Control Word 10 */
unsigned int rcw11 = 0; /* RCW3: Register Control Word 11 */
unsigned int rcw12 = 0; /* RCW4: Register Control Word 12 */
unsigned int rcw13 = 0; /* RCW5: Register Control Word 13 */
unsigned int rcw14 = 0; /* RCW6: Register Control Word 14 */
unsigned int rcw15 = 0; /* RCW7: Register Control Word 15 */
ddr->ddr_sdram_rcw_2 = (0
| ((rcw8 & 0xF) << 28)
| ((rcw9 & 0xF) << 24)
| ((rcw10 & 0xF) << 20)
| ((rcw11 & 0xF) << 16)
| ((rcw12 & 0xF) << 12)
| ((rcw13 & 0xF) << 8)
| ((rcw14 & 0xF) << 4)
| ((rcw15 & 0xF) << 0)
);
}
unsigned int
check_fsl_memctl_config_regs(const fsl_ddr_cfg_regs_t *ddr)
{
unsigned int res = 0;
/*
* Check that DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] are
* not set at the same time.
*/
if (ddr->ddr_sdram_cfg & 0x10000000
&& ddr->ddr_sdram_cfg & 0x00008000) {
printf("Error: DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] "
" should not be set at the same time.\n");
res++;
}
return res;
}
unsigned int
compute_fsl_memctl_config_regs(const memctl_options_t *popts,
fsl_ddr_cfg_regs_t *ddr,
const common_timing_params_t *common_dimm,
const dimm_params_t *dimm_params,
unsigned int dbw_cap_adj)
{
unsigned int i;
unsigned int cas_latency;
unsigned int additive_latency;
unsigned int sr_it;
memset(ddr, 0, sizeof(fsl_ddr_cfg_regs_t));
if (common_dimm == NULL) {
printf("Error: subset DIMM params struct null pointer\n");
return 1;
}
/*
* Process overrides first.
*
* FIXME: somehow add dereated caslat to this
*/
cas_latency = (popts->cas_latency_override)
? popts->cas_latency_override_value
: common_dimm->lowest_common_SPD_caslat;
additive_latency = (popts->additive_latency_override)
? popts->additive_latency_override_value
: common_dimm->additive_latency;
sr_it = (popts->auto_self_refresh_en)
? popts->sr_it
: 0;
/* Chip Select Memory Bounds (CSn_BNDS) */
for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
phys_size_t sa = 0;
phys_size_t ea = 0;
if (popts->ba_intlv_ctl && (i > 0) &&
((popts->ba_intlv_ctl & 0x60) != FSL_DDR_CS2_CS3 )) {
/* Don't set up boundaries for other CS
* other than CS0, if bank interleaving
* is enabled and not CS2+CS3 interleaved.
*/
break;
}
if (dimm_params[i/2].n_ranks == 0) {
debug("Skipping setup of CS%u "
"because n_ranks on DIMM %u is 0\n", i, i/2);
continue;
}
if (popts->memctl_interleaving && popts->ba_intlv_ctl) {
/*
* This works superbank 2CS
* There are 2 memory controllers configured
* identically, memory is interleaved between them,
* and each controller uses rank interleaving within
* itself. Therefore the starting and ending address
* on each controller is twice the amount present on
* each controller.
*/
unsigned long long rank_density
= dimm_params[0].capacity;
ea = (2 * (rank_density >> dbw_cap_adj)) - 1;
}
else if (!popts->memctl_interleaving && popts->ba_intlv_ctl) {
/*
* If memory interleaving between controllers is NOT
* enabled, the starting address for each memory
* controller is distinct. However, because rank
* interleaving is enabled, the starting and ending
* addresses of the total memory on that memory
* controller needs to be programmed into its
* respective CS0_BNDS.
*/
unsigned long long rank_density
= dimm_params[i/2].rank_density;
switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
case FSL_DDR_CS0_CS1_CS2_CS3:
/* CS0+CS1+CS2+CS3 interleaving, only CS0_CNDS
* needs to be set.
*/
sa = common_dimm->base_address;
ea = sa + (4 * (rank_density >> dbw_cap_adj))-1;
break;
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
/* CS0+CS1 and CS2+CS3 interleaving, CS0_CNDS
* and CS2_CNDS need to be set.
*/
if (!(i&1)) {
sa = dimm_params[i/2].base_address;
ea = sa + (i * (rank_density >>
dbw_cap_adj)) - 1;
}
break;
case FSL_DDR_CS0_CS1:
/* CS0+CS1 interleaving, CS0_CNDS needs
* to be set
*/
sa = common_dimm->base_address;
ea = sa + (2 * (rank_density >> dbw_cap_adj))-1;
break;
case FSL_DDR_CS2_CS3:
/* CS2+CS3 interleaving*/
if (i == 2) {
sa = dimm_params[i/2].base_address;
ea = sa + (2 * (rank_density >>
dbw_cap_adj)) - 1;
}
break;
default: /* No bank(chip-select) interleaving */
break;
}
}
else if (popts->memctl_interleaving && !popts->ba_intlv_ctl) {
/*
* Only the rank on CS0 of each memory controller may
* be used if memory controller interleaving is used
* without rank interleaving within each memory
* controller. However, the ending address programmed
* into each CS0 must be the sum of the amount of
* memory in the two CS0 ranks.
*/
if (i == 0) {
unsigned long long rank_density
= dimm_params[0].rank_density;
ea = (2 * (rank_density >> dbw_cap_adj)) - 1;
}
}
else if (!popts->memctl_interleaving && !popts->ba_intlv_ctl) {
/*
* No rank interleaving and no memory controller
* interleaving.
*/
unsigned long long rank_density
= dimm_params[i/2].rank_density;
sa = dimm_params[i/2].base_address;
ea = sa + (rank_density >> dbw_cap_adj) - 1;
if (i&1) {
if ((dimm_params[i/2].n_ranks == 1)) {
/* Odd chip select, single-rank dimm */
sa = 0;
ea = 0;
} else {
/* Odd chip select, dual-rank DIMM */
sa += rank_density >> dbw_cap_adj;
ea += rank_density >> dbw_cap_adj;
}
}
}
sa >>= 24;
ea >>= 24;
ddr->cs[i].bnds = (0
| ((sa & 0xFFF) << 16) /* starting address MSB */
| ((ea & 0xFFF) << 0) /* ending address MSB */
);
debug("FSLDDR: cs[%d]_bnds = 0x%08x\n", i, ddr->cs[i].bnds);
set_csn_config(i, ddr, popts, dimm_params);
set_csn_config_2(i, ddr);
}
#if defined(CONFIG_FSL_DDR2)
set_timing_cfg_0(ddr);
#endif
set_timing_cfg_3(ddr, common_dimm);
set_timing_cfg_1(ddr, common_dimm, cas_latency);
set_timing_cfg_2(ddr, popts, common_dimm,
cas_latency, additive_latency);
set_ddr_sdram_cfg(ddr, popts, common_dimm);
set_ddr_sdram_cfg_2(ddr, popts);
set_ddr_sdram_mode(ddr, popts, common_dimm,
cas_latency, additive_latency);
set_ddr_sdram_mode_2(ddr);
set_ddr_sdram_interval(ddr, popts, common_dimm);
set_ddr_data_init(ddr);
set_ddr_sdram_clk_cntl(ddr, popts);
set_ddr_init_addr(ddr);
set_ddr_init_ext_addr(ddr);
set_timing_cfg_4(ddr);
set_timing_cfg_5(ddr);
set_ddr_zq_cntl(ddr);
set_ddr_wrlvl_cntl(ddr);
set_ddr_pd_cntl(ddr);
set_ddr_sr_cntr(ddr, sr_it);
set_ddr_sdram_rcw_1(ddr);
set_ddr_sdram_rcw_2(ddr);
return check_fsl_memctl_config_regs(ddr);
}