u-boot/arch/arm/cpu/tegra20-common/warmboot_avp.c
Allen Martin d9e73a87a9 tegra20: move tegra20 SoC code to arch/arm/cpu/tegra20-common
In preparation for splitting out the armv4t code from tegra20, move
the tegra20 SoC code to arch/arm/cpu/tegra20-common.  This code will
be compiled armv4t for the arm7tdmi and armv7 for the cortex A9.

Signed-off-by: Allen Martin <amartin@nvidia.com>
Acked-by: Stephen Warren <swarren@wwwdotorg.org>
Tested-by: Thierry Reding <thierry.reding@avionic-design.de>
Signed-off-by: Tom Warren <twarren@nvidia.com>
2012-09-01 14:58:21 +02:00

250 lines
7.4 KiB
C

/*
* (C) Copyright 2010 - 2011
* NVIDIA Corporation <www.nvidia.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/ap20.h>
#include <asm/arch/clk_rst.h>
#include <asm/arch/clock.h>
#include <asm/arch/flow.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/pmc.h>
#include <asm/arch/tegra20.h>
#include <asm/arch/warmboot.h>
#include "warmboot_avp.h"
#define DEBUG_RESET_CORESIGHT
void wb_start(void)
{
struct pmux_tri_ctlr *pmt = (struct pmux_tri_ctlr *)NV_PA_APB_MISC_BASE;
struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA20_PMC_BASE;
struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
union osc_ctrl_reg osc_ctrl;
union pllx_base_reg pllx_base;
union pllx_misc_reg pllx_misc;
union scratch3_reg scratch3;
u32 reg;
/* enable JTAG & TBE */
writel(CONFIG_CTL_TBE | CONFIG_CTL_JTAG, &pmt->pmt_cfg_ctl);
/* Are we running where we're supposed to be? */
asm volatile (
"adr %0, wb_start;" /* reg: wb_start address */
: "=r"(reg) /* output */
/* no input, no clobber list */
);
if (reg != AP20_WB_RUN_ADDRESS)
goto do_reset;
/* Are we running with AVP? */
if (readl(NV_PA_PG_UP_BASE + PG_UP_TAG_0) != PG_UP_TAG_AVP)
goto do_reset;
#ifdef DEBUG_RESET_CORESIGHT
/* Assert CoreSight reset */
reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
reg |= SWR_CSITE_RST;
writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
#endif
/* TODO: Set the drive strength - maybe make this a board parameter? */
osc_ctrl.word = readl(&clkrst->crc_osc_ctrl);
osc_ctrl.xofs = 4;
osc_ctrl.xoe = 1;
writel(osc_ctrl.word, &clkrst->crc_osc_ctrl);
/* Power up the CPU complex if necessary */
if (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) {
reg = PWRGATE_TOGGLE_PARTID_CPU | PWRGATE_TOGGLE_START;
writel(reg, &pmc->pmc_pwrgate_toggle);
while (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU))
;
}
/* Remove the I/O clamps from the CPU power partition. */
reg = readl(&pmc->pmc_remove_clamping);
reg |= CPU_CLMP;
writel(reg, &pmc->pmc_remove_clamping);
reg = EVENT_ZERO_VAL_20 | EVENT_MSEC | EVENT_MODE_STOP;
writel(reg, &flow->halt_cop_events);
/* Assert CPU complex reset */
reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
reg |= CPU_RST;
writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
/* Hold both CPUs in reset */
reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_CPURESET1 | CPU_CMPLX_DERESET0 |
CPU_CMPLX_DERESET1 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DBGRESET1;
writel(reg, &clkrst->crc_cpu_cmplx_set);
/* Halt CPU1 at the flow controller for uni-processor configurations */
writel(EVENT_MODE_STOP, &flow->halt_cpu1_events);
/*
* Set the CPU reset vector. SCRATCH41 contains the physical
* address of the CPU-side restoration code.
*/
reg = readl(&pmc->pmc_scratch41);
writel(reg, EXCEP_VECTOR_CPU_RESET_VECTOR);
/* Select CPU complex clock source */
writel(CCLK_PLLP_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
/* Start the CPU0 clock and stop the CPU1 clock */
reg = CPU_CMPLX_CPU_BRIDGE_CLKDIV_4 | CPU_CMPLX_CPU0_CLK_STP_RUN |
CPU_CMPLX_CPU1_CLK_STP_STOP;
writel(reg, &clkrst->crc_clk_cpu_cmplx);
/* Enable the CPU complex clock */
reg = readl(&clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
reg |= CLK_ENB_CPU;
writel(reg, &clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
/* Make sure the resets were held for at least 2 microseconds */
reg = readl(TIMER_USEC_CNTR);
while (readl(TIMER_USEC_CNTR) <= (reg + 2))
;
#ifdef DEBUG_RESET_CORESIGHT
/*
* De-assert CoreSight reset.
* NOTE: We're leaving the CoreSight clock on the oscillator for
* now. It will be restored to its original clock source
* when the CPU-side restoration code runs.
*/
reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
reg &= ~SWR_CSITE_RST;
writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
#endif
/* Unlock the CPU CoreSight interfaces */
reg = 0xC5ACCE55;
writel(reg, CSITE_CPU_DBG0_LAR);
writel(reg, CSITE_CPU_DBG1_LAR);
/*
* Sample the microsecond timestamp again. This is the time we must
* use when returning from LP0 for PLL stabilization delays.
*/
reg = readl(TIMER_USEC_CNTR);
writel(reg, &pmc->pmc_scratch1);
pllx_base.word = 0;
pllx_misc.word = 0;
scratch3.word = readl(&pmc->pmc_scratch3);
/* Get the OSC. For 19.2 MHz, use 19 to make the calculations easier */
reg = (readl(TIMER_USEC_CFG) & USEC_CFG_DIVISOR_MASK) + 1;
/*
* According to the TRM, for 19.2MHz OSC, the USEC_DIVISOR is 0x5f, and
* USEC_DIVIDEND is 0x04. So, if USEC_DIVISOR > 26, OSC is 19.2 MHz.
*
* reg is used to calculate the pllx freq, which is used to determine if
* to set dccon or not.
*/
if (reg > 26)
reg = 19;
/* PLLX_BASE.PLLX_DIVM */
if (scratch3.pllx_base_divm == reg)
reg = 0;
else
reg = 1;
/* PLLX_BASE.PLLX_DIVN */
pllx_base.divn = scratch3.pllx_base_divn;
reg = scratch3.pllx_base_divn << reg;
/* PLLX_BASE.PLLX_DIVP */
pllx_base.divp = scratch3.pllx_base_divp;
reg = reg >> scratch3.pllx_base_divp;
pllx_base.bypass = 1;
/* PLLX_MISC_DCCON must be set for pllx frequency > 600 MHz. */
if (reg > 600)
pllx_misc.dccon = 1;
/* PLLX_MISC_LFCON */
pllx_misc.lfcon = scratch3.pllx_misc_lfcon;
/* PLLX_MISC_CPCON */
pllx_misc.cpcon = scratch3.pllx_misc_cpcon;
writel(pllx_misc.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_misc);
writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
pllx_base.enable = 1;
writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
pllx_base.bypass = 0;
writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
writel(0, flow->halt_cpu_events);
reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DERESET0;
writel(reg, &clkrst->crc_cpu_cmplx_clr);
reg = PLLM_OUT1_RSTN_RESET_DISABLE | PLLM_OUT1_CLKEN_ENABLE |
PLLM_OUT1_RATIO_VAL_8;
writel(reg, &clkrst->crc_pll[CLOCK_ID_MEMORY].pll_out);
reg = SCLK_SWAKE_FIQ_SRC_PLLM_OUT1 | SCLK_SWAKE_IRQ_SRC_PLLM_OUT1 |
SCLK_SWAKE_RUN_SRC_PLLM_OUT1 | SCLK_SWAKE_IDLE_SRC_PLLM_OUT1 |
SCLK_SYS_STATE_IDLE;
writel(reg, &clkrst->crc_sclk_brst_pol);
/* avp_resume: no return after the write */
reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
reg &= ~CPU_RST;
writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
/* avp_halt: */
avp_halt:
reg = EVENT_MODE_STOP | EVENT_JTAG;
writel(reg, flow->halt_cop_events);
goto avp_halt;
do_reset:
/*
* Execution comes here if something goes wrong. The chip is reset and
* a cold boot is performed.
*/
writel(SWR_TRIG_SYS_RST, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
goto do_reset;
}
/*
* wb_end() is a dummy function, and must be directly following wb_start(),
* and is used to calculate the size of wb_start().
*/
void wb_end(void)
{
}