u-boot/drivers/net/greth.c
Ben Warren fc363ce354 Moved initialization of GRETH Ethernet driver to CPU directory
Added a cpu_eth_init() function to leon2/leon3 CPU directories and
removed code from net/eth.c

Signed-off-by: Ben Warren <biggerbadderben@gmail.com>
2008-08-26 22:17:24 -07:00

661 lines
17 KiB
C

/* Gaisler.com GRETH 10/100/1000 Ethernet MAC driver
*
* Driver use polling mode (no Interrupt)
*
* (C) Copyright 2007
* Daniel Hellstrom, Gaisler Research, daniel@gaisler.com
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <command.h>
#include <net.h>
#include <malloc.h>
#include <asm/processor.h>
#include <ambapp.h>
#include <asm/leon.h>
/* #define DEBUG */
#include "greth.h"
/* Default to 3s timeout on autonegotiation */
#ifndef GRETH_PHY_TIMEOUT_MS
#define GRETH_PHY_TIMEOUT_MS 3000
#endif
/* ByPass Cache when reading regs */
#define GRETH_REGLOAD(addr) SPARC_NOCACHE_READ(addr)
/* Write-through cache ==> no bypassing needed on writes */
#define GRETH_REGSAVE(addr,data) (*(unsigned int *)(addr) = (data))
#define GRETH_REGORIN(addr,data) GRETH_REGSAVE(addr,GRETH_REGLOAD(addr)|data)
#define GRETH_REGANDIN(addr,data) GRETH_REGSAVE(addr,GRETH_REGLOAD(addr)&data)
#define GRETH_RXBD_CNT 4
#define GRETH_TXBD_CNT 1
#define GRETH_RXBUF_SIZE 1540
#define GRETH_BUF_ALIGN 4
#define GRETH_RXBUF_EFF_SIZE \
( (GRETH_RXBUF_SIZE&~(GRETH_BUF_ALIGN-1))+GRETH_BUF_ALIGN )
typedef struct {
greth_regs *regs;
int irq;
struct eth_device *dev;
/* Hardware info */
unsigned char phyaddr;
int gbit_mac;
/* Current operating Mode */
int gb; /* GigaBit */
int fd; /* Full Duplex */
int sp; /* 10/100Mbps speed (1=100,0=10) */
int auto_neg; /* Auto negotiate done */
unsigned char hwaddr[6]; /* MAC Address */
/* Descriptors */
greth_bd *rxbd_base, *rxbd_max;
greth_bd *txbd_base, *txbd_max;
greth_bd *rxbd_curr;
/* rx buffers in rx descriptors */
void *rxbuf_base; /* (GRETH_RXBUF_SIZE+ALIGNBYTES) * GRETH_RXBD_CNT */
/* unused for gbit_mac, temp buffer for sending packets with unligned
* start.
* Pointer to packet allocated with malloc.
*/
void *txbuf;
struct {
/* rx status */
unsigned int rx_packets,
rx_crc_errors, rx_frame_errors, rx_length_errors, rx_errors;
/* tx stats */
unsigned int tx_packets,
tx_latecol_errors,
tx_underrun_errors, tx_limit_errors, tx_errors;
} stats;
} greth_priv;
/* Read MII register 'addr' from core 'regs' */
static int read_mii(int addr, volatile greth_regs * regs)
{
while (GRETH_REGLOAD(&regs->mdio) & GRETH_MII_BUSY) {
}
GRETH_REGSAVE(&regs->mdio, (0 << 11) | ((addr & 0x1F) << 6) | 2);
while (GRETH_REGLOAD(&regs->mdio) & GRETH_MII_BUSY) {
}
if (!(GRETH_REGLOAD(&regs->mdio) & GRETH_MII_NVALID)) {
return (GRETH_REGLOAD(&regs->mdio) >> 16) & 0xFFFF;
} else {
return -1;
}
}
static void write_mii(int addr, int data, volatile greth_regs * regs)
{
while (GRETH_REGLOAD(&regs->mdio) & GRETH_MII_BUSY) {
}
GRETH_REGSAVE(&regs->mdio,
((data & 0xFFFF) << 16) | (0 << 11) | ((addr & 0x1F) << 6)
| 1);
while (GRETH_REGLOAD(&regs->mdio) & GRETH_MII_BUSY) {
}
}
/* init/start hardware and allocate descriptor buffers for rx side
*
*/
int greth_init(struct eth_device *dev, bd_t * bis)
{
int i;
greth_priv *greth = dev->priv;
greth_regs *regs = greth->regs;
#ifdef DEBUG
printf("greth_init\n");
#endif
GRETH_REGSAVE(&regs->control, 0);
if (!greth->rxbd_base) {
/* allocate descriptors */
greth->rxbd_base = (greth_bd *)
memalign(0x1000, GRETH_RXBD_CNT * sizeof(greth_bd));
greth->txbd_base = (greth_bd *)
memalign(0x1000, GRETH_RXBD_CNT * sizeof(greth_bd));
/* allocate buffers to all descriptors */
greth->rxbuf_base =
malloc(GRETH_RXBUF_EFF_SIZE * GRETH_RXBD_CNT);
}
/* initate rx decriptors */
for (i = 0; i < GRETH_RXBD_CNT; i++) {
greth->rxbd_base[i].addr = (unsigned int)
greth->rxbuf_base + (GRETH_RXBUF_EFF_SIZE * i);
/* enable desciptor & set wrap bit if last descriptor */
if (i >= (GRETH_RXBD_CNT - 1)) {
greth->rxbd_base[i].stat = GRETH_BD_EN | GRETH_BD_WR;
} else {
greth->rxbd_base[i].stat = GRETH_BD_EN;
}
}
/* initiate indexes */
greth->rxbd_curr = greth->rxbd_base;
greth->rxbd_max = greth->rxbd_base + (GRETH_RXBD_CNT - 1);
greth->txbd_max = greth->txbd_base + (GRETH_TXBD_CNT - 1);
/*
* greth->txbd_base->addr = 0;
* greth->txbd_base->stat = GRETH_BD_WR;
*/
/* initate tx decriptors */
for (i = 0; i < GRETH_TXBD_CNT; i++) {
greth->txbd_base[i].addr = 0;
/* enable desciptor & set wrap bit if last descriptor */
if (i >= (GRETH_RXBD_CNT - 1)) {
greth->txbd_base[i].stat = GRETH_BD_WR;
} else {
greth->txbd_base[i].stat = 0;
}
}
/**** SET HARDWARE REGS ****/
/* Set pointer to tx/rx descriptor areas */
GRETH_REGSAVE(&regs->rx_desc_p, (unsigned int)&greth->rxbd_base[0]);
GRETH_REGSAVE(&regs->tx_desc_p, (unsigned int)&greth->txbd_base[0]);
/* Enable Transmitter, GRETH will now scan descriptors for packets
* to transmitt */
#ifdef DEBUG
printf("greth_init: enabling receiver\n");
#endif
GRETH_REGORIN(&regs->control, GRETH_RXEN);
return 0;
}
/* Initiate PHY to a relevant speed
* return:
* - 0 = success
* - 1 = timeout/fail
*/
int greth_init_phy(greth_priv * dev, bd_t * bis)
{
greth_regs *regs = dev->regs;
int tmp, tmp1, tmp2, i;
unsigned int start, timeout;
/* X msecs to ticks */
timeout = usec2ticks(GRETH_PHY_TIMEOUT_MS * 1000);
/* Get system timer0 current value
* Total timeout is 5s
*/
start = get_timer(0);
/* get phy control register default values */
while ((tmp = read_mii(0, regs)) & 0x8000) {
if (get_timer(start) > timeout)
return 1; /* Fail */
}
/* reset PHY and wait for completion */
write_mii(0, 0x8000 | tmp, regs);
while (((tmp = read_mii(0, regs))) & 0x8000) {
if (get_timer(start) > timeout)
return 1; /* Fail */
}
/* Check if PHY is autoneg capable and then determine operating
* mode, otherwise force it to 10 Mbit halfduplex
*/
dev->gb = 0;
dev->fd = 0;
dev->sp = 0;
dev->auto_neg = 0;
if (!((tmp >> 12) & 1)) {
write_mii(0, 0, regs);
} else {
/* wait for auto negotiation to complete and then check operating mode */
dev->auto_neg = 1;
i = 0;
while (!(((tmp = read_mii(1, regs)) >> 5) & 1)) {
if (get_timer(start) > timeout) {
printf("Auto negotiation timed out. "
"Selecting default config\n");
tmp = read_mii(0, regs);
dev->gb = ((tmp >> 6) & 1)
&& !((tmp >> 13) & 1);
dev->sp = !((tmp >> 6) & 1)
&& ((tmp >> 13) & 1);
dev->fd = (tmp >> 8) & 1;
goto auto_neg_done;
}
}
if ((tmp >> 8) & 1) {
tmp1 = read_mii(9, regs);
tmp2 = read_mii(10, regs);
if ((tmp1 & GRETH_MII_EXTADV_1000FD) &&
(tmp2 & GRETH_MII_EXTPRT_1000FD)) {
dev->gb = 1;
dev->fd = 1;
}
if ((tmp1 & GRETH_MII_EXTADV_1000HD) &&
(tmp2 & GRETH_MII_EXTPRT_1000HD)) {
dev->gb = 1;
dev->fd = 0;
}
}
if ((dev->gb == 0) || ((dev->gb == 1) && (dev->gbit_mac == 0))) {
tmp1 = read_mii(4, regs);
tmp2 = read_mii(5, regs);
if ((tmp1 & GRETH_MII_100TXFD) &&
(tmp2 & GRETH_MII_100TXFD)) {
dev->sp = 1;
dev->fd = 1;
}
if ((tmp1 & GRETH_MII_100TXHD) &&
(tmp2 & GRETH_MII_100TXHD)) {
dev->sp = 1;
dev->fd = 0;
}
if ((tmp1 & GRETH_MII_10FD) && (tmp2 & GRETH_MII_10FD)) {
dev->fd = 1;
}
if ((dev->gb == 1) && (dev->gbit_mac == 0)) {
dev->gb = 0;
dev->fd = 0;
write_mii(0, dev->sp << 13, regs);
}
}
}
auto_neg_done:
#ifdef DEBUG
printf("%s GRETH Ethermac at [0x%x] irq %d. Running \
%d Mbps %s duplex\n", dev->gbit_mac ? "10/100/1000" : "10/100", (unsigned int)(regs), (unsigned int)(dev->irq), dev->gb ? 1000 : (dev->sp ? 100 : 10), dev->fd ? "full" : "half");
#endif
/* Read out PHY info if extended registers are available */
if (tmp & 1) {
tmp1 = read_mii(2, regs);
tmp2 = read_mii(3, regs);
tmp1 = (tmp1 << 6) | ((tmp2 >> 10) & 0x3F);
tmp = tmp2 & 0xF;
tmp2 = (tmp2 >> 4) & 0x3F;
#ifdef DEBUG
printf("PHY: Vendor %x Device %x Revision %d\n", tmp1,
tmp2, tmp);
#endif
} else {
printf("PHY info not available\n");
}
/* set speed and duplex bits in control register */
GRETH_REGORIN(&regs->control,
(dev->gb << 8) | (dev->sp << 7) | (dev->fd << 4));
return 0;
}
void greth_halt(struct eth_device *dev)
{
greth_priv *greth;
greth_regs *regs;
int i;
#ifdef DEBUG
printf("greth_halt\n");
#endif
if (!dev || !dev->priv)
return;
greth = dev->priv;
regs = greth->regs;
if (!regs)
return;
/* disable receiver/transmitter by clearing the enable bits */
GRETH_REGANDIN(&regs->control, ~(GRETH_RXEN | GRETH_TXEN));
/* reset rx/tx descriptors */
if (greth->rxbd_base) {
for (i = 0; i < GRETH_RXBD_CNT; i++) {
greth->rxbd_base[i].stat =
(i >= (GRETH_RXBD_CNT - 1)) ? GRETH_BD_WR : 0;
}
}
if (greth->txbd_base) {
for (i = 0; i < GRETH_TXBD_CNT; i++) {
greth->txbd_base[i].stat =
(i >= (GRETH_TXBD_CNT - 1)) ? GRETH_BD_WR : 0;
}
}
}
int greth_send(struct eth_device *dev, volatile void *eth_data, int data_length)
{
greth_priv *greth = dev->priv;
greth_regs *regs = greth->regs;
greth_bd *txbd;
void *txbuf;
unsigned int status;
#ifdef DEBUG
printf("greth_send\n");
#endif
/* send data, wait for data to be sent, then return */
if (((unsigned int)eth_data & (GRETH_BUF_ALIGN - 1))
&& !greth->gbit_mac) {
/* data not aligned as needed by GRETH 10/100, solve this by allocating 4 byte aligned buffer
* and copy data to before giving it to GRETH.
*/
if (!greth->txbuf) {
greth->txbuf = malloc(GRETH_RXBUF_SIZE);
#ifdef DEBUG
printf("GRETH: allocated aligned tx-buf\n");
#endif
}
txbuf = greth->txbuf;
/* copy data info buffer */
memcpy((char *)txbuf, (char *)eth_data, data_length);
/* keep buffer to next time */
} else {
txbuf = (void *)eth_data;
}
/* get descriptor to use, only 1 supported... hehe easy */
txbd = greth->txbd_base;
/* setup descriptor to wrap around to it self */
txbd->addr = (unsigned int)txbuf;
txbd->stat = GRETH_BD_EN | GRETH_BD_WR | data_length;
/* Remind Core which descriptor to use when sending */
GRETH_REGSAVE(&regs->tx_desc_p, (unsigned int)txbd);
/* initate send by enabling transmitter */
GRETH_REGORIN(&regs->control, GRETH_TXEN);
/* Wait for data to be sent */
while ((status = GRETH_REGLOAD(&txbd->stat)) & GRETH_BD_EN) {
;
}
/* was the packet transmitted succesfully? */
if (status & GRETH_TXBD_ERR_AL) {
greth->stats.tx_limit_errors++;
}
if (status & GRETH_TXBD_ERR_UE) {
greth->stats.tx_underrun_errors++;
}
if (status & GRETH_TXBD_ERR_LC) {
greth->stats.tx_latecol_errors++;
}
if (status &
(GRETH_TXBD_ERR_LC | GRETH_TXBD_ERR_UE | GRETH_TXBD_ERR_AL)) {
/* any error */
greth->stats.tx_errors++;
return -1;
}
/* bump tx packet counter */
greth->stats.tx_packets++;
/* return succefully */
return 0;
}
int greth_recv(struct eth_device *dev)
{
greth_priv *greth = dev->priv;
greth_regs *regs = greth->regs;
greth_bd *rxbd;
unsigned int status, len = 0, bad;
unsigned char *d;
int enable = 0;
int i;
#ifdef DEBUG
/* printf("greth_recv\n"); */
#endif
/* Receive One packet only, but clear as many error packets as there are
* available.
*/
{
/* current receive descriptor */
rxbd = greth->rxbd_curr;
/* get status of next received packet */
status = GRETH_REGLOAD(&rxbd->stat);
bad = 0;
/* stop if no more packets received */
if (status & GRETH_BD_EN) {
goto done;
}
#ifdef DEBUG
printf("greth_recv: packet 0x%lx, 0x%lx, len: %d\n",
(unsigned int)rxbd, status, status & GRETH_BD_LEN);
#endif
/* Check status for errors.
*/
if (status & GRETH_RXBD_ERR_FT) {
greth->stats.rx_length_errors++;
bad = 1;
}
if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
greth->stats.rx_frame_errors++;
bad = 1;
}
if (status & GRETH_RXBD_ERR_CRC) {
greth->stats.rx_crc_errors++;
bad = 1;
}
if (bad) {
greth->stats.rx_errors++;
printf
("greth_recv: Bad packet (%d, %d, %d, 0x%08x, %d)\n",
greth->stats.rx_length_errors,
greth->stats.rx_frame_errors,
greth->stats.rx_crc_errors, status,
greth->stats.rx_packets);
/* print all rx descriptors */
for (i = 0; i < GRETH_RXBD_CNT; i++) {
printf("[%d]: Stat=0x%lx, Addr=0x%lx\n", i,
GRETH_REGLOAD(&greth->rxbd_base[i].stat),
GRETH_REGLOAD(&greth->rxbd_base[i].
addr));
}
} else {
/* Process the incoming packet. */
len = status & GRETH_BD_LEN;
d = (char *)rxbd->addr;
#ifdef DEBUG
printf
("greth_recv: new packet, length: %d. data: %x %x %x %x %x %x %x %x\n",
len, d[0], d[1], d[2], d[3], d[4], d[5], d[6],
d[7]);
#endif
/* flush all data cache to make sure we're not reading old packet data */
sparc_dcache_flush_all();
/* pass packet on to network subsystem */
NetReceive((void *)d, len);
/* bump stats counters */
greth->stats.rx_packets++;
/* bad is now 0 ==> will stop loop */
}
/* reenable descriptor to receive more packet with this descriptor, wrap around if needed */
rxbd->stat =
GRETH_BD_EN |
(((unsigned int)greth->rxbd_curr >=
(unsigned int)greth->rxbd_max) ? GRETH_BD_WR : 0);
enable = 1;
/* increase index */
greth->rxbd_curr =
((unsigned int)greth->rxbd_curr >=
(unsigned int)greth->rxbd_max) ? greth->
rxbd_base : (greth->rxbd_curr + 1);
};
if (enable) {
GRETH_REGORIN(&regs->control, GRETH_RXEN);
}
done:
/* return positive length of packet or 0 if non recieved */
return len;
}
void greth_set_hwaddr(greth_priv * greth, unsigned char *mac)
{
/* save new MAC address */
greth->dev->enetaddr[0] = greth->hwaddr[0] = mac[0];
greth->dev->enetaddr[1] = greth->hwaddr[1] = mac[1];
greth->dev->enetaddr[2] = greth->hwaddr[2] = mac[2];
greth->dev->enetaddr[3] = greth->hwaddr[3] = mac[3];
greth->dev->enetaddr[4] = greth->hwaddr[4] = mac[4];
greth->dev->enetaddr[5] = greth->hwaddr[5] = mac[5];
greth->regs->esa_msb = (mac[0] << 8) | mac[1];
greth->regs->esa_lsb =
(mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5];
#ifdef DEBUG
printf("GRETH: New MAC address: %02x:%02x:%02x:%02x:%02x:%02x\n",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
#endif
}
int greth_initialize(bd_t * bis)
{
greth_priv *greth;
ambapp_apbdev apbdev;
struct eth_device *dev;
int i;
char *addr_str, *end;
unsigned char addr[6];
#ifdef DEBUG
printf("Scanning for GRETH\n");
#endif
/* Find Device & IRQ via AMBA Plug&Play information */
if (ambapp_apb_first(VENDOR_GAISLER, GAISLER_ETHMAC, &apbdev) != 1) {
return -1; /* GRETH not found */
}
greth = (greth_priv *) malloc(sizeof(greth_priv));
dev = (struct eth_device *)malloc(sizeof(struct eth_device));
memset(dev, 0, sizeof(struct eth_device));
memset(greth, 0, sizeof(greth_priv));
greth->regs = (greth_regs *) apbdev.address;
greth->irq = apbdev.irq;
#ifdef DEBUG
printf("Found GRETH at 0x%lx, irq %d\n", greth->regs, greth->irq);
#endif
dev->priv = (void *)greth;
dev->iobase = (unsigned int)greth->regs;
dev->init = greth_init;
dev->halt = greth_halt;
dev->send = greth_send;
dev->recv = greth_recv;
greth->dev = dev;
/* Reset Core */
GRETH_REGSAVE(&greth->regs->control, GRETH_RESET);
/* Wait for core to finish reset cycle */
while (GRETH_REGLOAD(&greth->regs->control) & GRETH_RESET) ;
/* Get the phy address which assumed to have been set
correctly with the reset value in hardware */
greth->phyaddr = (GRETH_REGLOAD(&greth->regs->mdio) >> 11) & 0x1F;
/* Check if mac is gigabit capable */
greth->gbit_mac = (GRETH_REGLOAD(&greth->regs->control) >> 27) & 1;
/* Make descriptor string */
if (greth->gbit_mac) {
sprintf(dev->name, "GRETH 10/100/GB");
} else {
sprintf(dev->name, "GRETH 10/100");
}
/* initiate PHY, select speed/duplex depending on connected PHY */
if (greth_init_phy(greth, bis)) {
/* Failed to init PHY (timedout) */
return -1;
}
/* Register Device to EtherNet subsystem */
eth_register(dev);
/* Get MAC address */
if ((addr_str = getenv("ethaddr")) != NULL) {
for (i = 0; i < 6; i++) {
addr[i] =
addr_str ? simple_strtoul(addr_str, &end, 16) : 0;
if (addr_str) {
addr_str = (*end) ? end + 1 : end;
}
}
} else {
/* HW Address not found in environment, Set default HW address */
addr[0] = GRETH_HWADDR_0; /* MSB */
addr[1] = GRETH_HWADDR_1;
addr[2] = GRETH_HWADDR_2;
addr[3] = GRETH_HWADDR_3;
addr[4] = GRETH_HWADDR_4;
addr[5] = GRETH_HWADDR_5; /* LSB */
}
/* set and remember MAC address */
greth_set_hwaddr(greth, addr);
return 0;
}