mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-30 06:53:09 +00:00
30fe8b05b3
x86 bitops.h provides a __set_bit() but does not define PLATFORM__SET_BIT as a result generic_set_bit() is used instead of the architecturally provided __set_bit(). This patch defines PLATFORM__SET_BIT which means that __set_bit() in x86 bitops.h will be called whenever generic_set_bit() is called - as opposed to the default cross-platform generic_set_bit(). Signed-off-by: Bryan O'Donoghue <pure.logic@nexus-software.ie> Cc: Simon Glass <sjg@chromium.org> Cc: Bin Meng <bmeng.cn@gmail.com>
410 lines
9.9 KiB
C
410 lines
9.9 KiB
C
#ifndef _I386_BITOPS_H
|
|
#define _I386_BITOPS_H
|
|
|
|
/*
|
|
* Copyright 1992, Linus Torvalds.
|
|
*/
|
|
|
|
|
|
/*
|
|
* These have to be done with inline assembly: that way the bit-setting
|
|
* is guaranteed to be atomic. All bit operations return 0 if the bit
|
|
* was cleared before the operation and != 0 if it was not.
|
|
*
|
|
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
|
|
*/
|
|
|
|
#include <asm-generic/bitops/fls.h>
|
|
#include <asm-generic/bitops/__fls.h>
|
|
#include <asm-generic/bitops/fls64.h>
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define LOCK_PREFIX "lock ; "
|
|
#else
|
|
#define LOCK_PREFIX ""
|
|
#endif
|
|
|
|
#define ADDR (*(volatile long *) addr)
|
|
|
|
/**
|
|
* set_bit - Atomically set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This function is atomic and may not be reordered. See __set_bit()
|
|
* if you do not require the atomic guarantees.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static __inline__ void set_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btsl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"Ir" (nr));
|
|
}
|
|
|
|
/**
|
|
* __set_bit - Set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
* may be that only one operation succeeds.
|
|
*/
|
|
static __inline__ void __set_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__(
|
|
"btsl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"Ir" (nr));
|
|
}
|
|
|
|
#define PLATFORM__SET_BIT
|
|
|
|
/**
|
|
* clear_bit - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* clear_bit() is atomic and may not be reordered. However, it does
|
|
* not contain a memory barrier, so if it is used for locking purposes,
|
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
|
* in order to ensure changes are visible on other processors.
|
|
*/
|
|
static __inline__ void clear_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btrl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"Ir" (nr));
|
|
}
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
|
|
/**
|
|
* __change_bit - Toggle a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
* may be that only one operation succeeds.
|
|
*/
|
|
static __inline__ void __change_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__(
|
|
"btcl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"Ir" (nr));
|
|
}
|
|
|
|
/**
|
|
* change_bit - Toggle a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* change_bit() is atomic and may not be reordered.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static __inline__ void change_bit(int nr, volatile void * addr)
|
|
{
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btcl %1,%0"
|
|
:"=m" (ADDR)
|
|
:"Ir" (nr));
|
|
}
|
|
|
|
/**
|
|
* test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btsl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"Ir" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* __test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is non-atomic and can be reordered.
|
|
* If two examples of this operation race, one can appear to succeed
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
*/
|
|
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__(
|
|
"btsl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"Ir" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btrl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"Ir" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* __test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is non-atomic and can be reordered.
|
|
* If two examples of this operation race, one can appear to succeed
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
*/
|
|
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__(
|
|
"btrl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"Ir" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
/* WARNING: non atomic and it can be reordered! */
|
|
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__(
|
|
"btcl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"Ir" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* test_and_change_bit - Change a bit and return its new value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__( LOCK_PREFIX
|
|
"btcl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"Ir" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
#if 0 /* Fool kernel-doc since it doesn't do macros yet */
|
|
/**
|
|
* test_bit - Determine whether a bit is set
|
|
* @nr: bit number to test
|
|
* @addr: Address to start counting from
|
|
*/
|
|
static int test_bit(int nr, const volatile void * addr);
|
|
#endif
|
|
|
|
static __inline__ int constant_test_bit(int nr, const volatile void * addr)
|
|
{
|
|
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
|
|
}
|
|
|
|
static __inline__ int variable_test_bit(int nr, volatile void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__(
|
|
"btl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit)
|
|
:"m" (ADDR),"Ir" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
#define test_bit(nr,addr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
constant_test_bit((nr),(addr)) : \
|
|
variable_test_bit((nr),(addr)))
|
|
|
|
/**
|
|
* find_first_zero_bit - find the first zero bit in a memory region
|
|
* @addr: The address to start the search at
|
|
* @size: The maximum size to search
|
|
*
|
|
* Returns the bit-number of the first zero bit, not the number of the byte
|
|
* containing a bit.
|
|
*/
|
|
static __inline__ int find_first_zero_bit(void * addr, unsigned size)
|
|
{
|
|
int d0, d1, d2;
|
|
int res;
|
|
|
|
if (!size)
|
|
return 0;
|
|
/* This looks at memory. Mark it volatile to tell gcc not to move it around */
|
|
__asm__ __volatile__(
|
|
"movl $-1,%%eax\n\t"
|
|
"xorl %%edx,%%edx\n\t"
|
|
"repe; scasl\n\t"
|
|
"je 1f\n\t"
|
|
"xorl -4(%%edi),%%eax\n\t"
|
|
"subl $4,%%edi\n\t"
|
|
"bsfl %%eax,%%edx\n"
|
|
"1:\tsubl %%ebx,%%edi\n\t"
|
|
"shll $3,%%edi\n\t"
|
|
"addl %%edi,%%edx"
|
|
:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
|
|
:"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* find_next_zero_bit - find the first zero bit in a memory region
|
|
* @addr: The address to base the search on
|
|
* @offset: The bitnumber to start searching at
|
|
* @size: The maximum size to search
|
|
*/
|
|
static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
|
|
{
|
|
unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
|
|
int set = 0, bit = offset & 31, res;
|
|
|
|
if (bit) {
|
|
/*
|
|
* Look for zero in first byte
|
|
*/
|
|
__asm__("bsfl %1,%0\n\t"
|
|
"jne 1f\n\t"
|
|
"movl $32, %0\n"
|
|
"1:"
|
|
: "=r" (set)
|
|
: "r" (~(*p >> bit)));
|
|
if (set < (32 - bit))
|
|
return set + offset;
|
|
set = 32 - bit;
|
|
p++;
|
|
}
|
|
/*
|
|
* No zero yet, search remaining full bytes for a zero
|
|
*/
|
|
res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
|
|
return (offset + set + res);
|
|
}
|
|
|
|
/**
|
|
* ffz - find first zero in word.
|
|
* @word: The word to search
|
|
*
|
|
* Undefined if no zero exists, so code should check against ~0UL first.
|
|
*/
|
|
static __inline__ unsigned long ffz(unsigned long word)
|
|
{
|
|
__asm__("bsfl %1,%0"
|
|
:"=r" (word)
|
|
:"r" (~word));
|
|
return word;
|
|
}
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
/**
|
|
* __ffs - find first set bit in word
|
|
* @word: The word to search
|
|
*
|
|
* Undefined if no bit exists, so code should check against 0 first.
|
|
*/
|
|
static inline unsigned long __ffs(unsigned long word)
|
|
{
|
|
__asm__("rep; bsf %1,%0"
|
|
: "=r" (word)
|
|
: "rm" (word));
|
|
return word;
|
|
}
|
|
|
|
/**
|
|
* ffs - find first bit set
|
|
* @x: the word to search
|
|
*
|
|
* This is defined the same way as
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
* differs in spirit from the above ffz (man ffs).
|
|
*/
|
|
static __inline__ int ffs(int x)
|
|
{
|
|
int r;
|
|
|
|
__asm__("bsfl %1,%0\n\t"
|
|
"jnz 1f\n\t"
|
|
"movl $-1,%0\n"
|
|
"1:" : "=r" (r) : "rm" (x));
|
|
|
|
return r+1;
|
|
}
|
|
#define PLATFORM_FFS
|
|
|
|
static inline int __ilog2(unsigned int x)
|
|
{
|
|
return generic_fls(x) - 1;
|
|
}
|
|
|
|
/**
|
|
* hweightN - returns the hamming weight of a N-bit word
|
|
* @x: the word to weigh
|
|
*
|
|
* The Hamming Weight of a number is the total number of bits set in it.
|
|
*/
|
|
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#define ext2_set_bit __test_and_set_bit
|
|
#define ext2_clear_bit __test_and_clear_bit
|
|
#define ext2_test_bit test_bit
|
|
#define ext2_find_first_zero_bit find_first_zero_bit
|
|
#define ext2_find_next_zero_bit find_next_zero_bit
|
|
|
|
/* Bitmap functions for the minix filesystem. */
|
|
#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
|
|
#define minix_set_bit(nr,addr) __set_bit(nr,addr)
|
|
#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
|
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _I386_BITOPS_H */
|