u-boot/common/spl/spl.c
Sean Anderson 775074165d spl: Add generic spl_load function
Implementers of SPL_LOAD_IMAGE_METHOD have to correctly determine what
type of image is being loaded and then call the appropriate image load
function correctly. This is tricky, because some image load functions
expect the whole image to already be loaded (CONFIG_SPL_LOAD_FIT_FULL),
some will load the image automatically using spl_load_info.read()
(CONFIG_SPL_LOAD_FIT/CONFIG_SPL_LOAD_IMX_CONTAINER), and some just parse
the header and expect the caller to do the actual loading afterwards
(legacy/raw images). Load methods often only support a subset of the
above methods, meaning that not all image types can be used with all
load methods. Further, the code to invoke these functions is
duplicated between different load functions.

To address this problem, this commit introduces a "spl_load" function.
It aims to handle image detection and correct invocation of each of the
parse/load functions.

Although this function generally results in a size reduction with
several users, it tends to bloat boards with only a single user.
This is generally because programmers open-coding the contents of this
function can make optimizations based on the specific loader. For
example, NOR flash is memory-mapped, so it never bothers calling
load->read. The compiler can't really make these optimizations across
translation units. LTO solves this, but it is only available on some
arches. To address this, perform "pseudo-LTO" by inlining spl_load when
there are one or fewer users. At the moment, there are no users, so
define SPL_LOAD_USERS to be 0.

Signed-off-by: Sean Anderson <seanga2@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
2023-11-16 13:49:14 -05:00

913 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Aneesh V <aneesh@ti.com>
*/
#include <common.h>
#include <bloblist.h>
#include <binman_sym.h>
#include <bootstage.h>
#include <dm.h>
#include <handoff.h>
#include <hang.h>
#include <init.h>
#include <irq_func.h>
#include <log.h>
#include <mapmem.h>
#include <serial.h>
#include <spl.h>
#include <spl_load.h>
#include <system-constants.h>
#include <asm/global_data.h>
#include <asm-generic/gpio.h>
#include <asm/u-boot.h>
#include <nand.h>
#include <fat.h>
#include <u-boot/crc.h>
#if CONFIG_IS_ENABLED(BANNER_PRINT)
#include <timestamp.h>
#endif
#include <version.h>
#include <image.h>
#include <malloc.h>
#include <mapmem.h>
#include <dm/root.h>
#include <dm/util.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <linux/compiler.h>
#include <fdt_support.h>
#include <bootcount.h>
#include <wdt.h>
DECLARE_GLOBAL_DATA_PTR;
DECLARE_BINMAN_MAGIC_SYM;
u32 *boot_params_ptr = NULL;
#if CONFIG_IS_ENABLED(BINMAN_UBOOT_SYMBOLS)
/* See spl.h for information about this */
binman_sym_declare(ulong, u_boot_any, image_pos);
binman_sym_declare(ulong, u_boot_any, size);
#ifdef CONFIG_TPL
binman_sym_declare(ulong, u_boot_spl_any, image_pos);
binman_sym_declare(ulong, u_boot_spl_any, size);
#endif
#ifdef CONFIG_VPL
binman_sym_declare(ulong, u_boot_vpl_any, image_pos);
binman_sym_declare(ulong, u_boot_vpl_any, size);
#endif
#endif /* BINMAN_UBOOT_SYMBOLS */
/* Define board data structure */
static struct bd_info bdata __attribute__ ((section(".data")));
#if CONFIG_IS_ENABLED(SHOW_BOOT_PROGRESS)
/*
* Board-specific Platform code can reimplement show_boot_progress () if needed
*/
__weak void show_boot_progress(int val) {}
#endif
#if defined(CONFIG_SPL_OS_BOOT) || CONFIG_IS_ENABLED(HANDOFF) || \
defined(CONFIG_SPL_ATF)
/* weak, default platform-specific function to initialize dram banks */
__weak int dram_init_banksize(void)
{
return 0;
}
#endif
/*
* Default function to determine if u-boot or the OS should
* be started. This implementation always returns 1.
*
* Please implement your own board specific funcion to do this.
*
* RETURN
* 0 to not start u-boot
* positive if u-boot should start
*/
#if CONFIG_IS_ENABLED(OS_BOOT)
__weak int spl_start_uboot(void)
{
puts(SPL_TPL_PROMPT
"Please implement spl_start_uboot() for your board\n");
puts(SPL_TPL_PROMPT "Direct Linux boot not active!\n");
return 1;
}
/*
* Weak default function for arch specific zImage check. Return zero
* and fill start and end address if image is recognized.
*/
int __weak bootz_setup(ulong image, ulong *start, ulong *end)
{
return 1;
}
int __weak booti_setup(ulong image, ulong *relocated_addr, ulong *size, bool force_reloc)
{
return 1;
}
#endif
/* Weak default function for arch/board-specific fixups to the spl_image_info */
void __weak spl_perform_fixups(struct spl_image_info *spl_image)
{
}
void spl_fixup_fdt(void *fdt_blob)
{
#if defined(CONFIG_SPL_OF_LIBFDT)
int err;
if (!fdt_blob)
return;
err = fdt_check_header(fdt_blob);
if (err < 0) {
printf("fdt_root: %s\n", fdt_strerror(err));
return;
}
/* fixup the memory dt node */
err = fdt_shrink_to_minimum(fdt_blob, 0);
if (err == 0) {
printf(SPL_TPL_PROMPT "fdt_shrink_to_minimum err - %d\n", err);
return;
}
err = arch_fixup_fdt(fdt_blob);
if (err) {
printf(SPL_TPL_PROMPT "arch_fixup_fdt err - %d\n", err);
return;
}
#endif
}
ulong spl_get_image_pos(void)
{
if (!CONFIG_IS_ENABLED(BINMAN_UBOOT_SYMBOLS))
return BINMAN_SYM_MISSING;
#ifdef CONFIG_VPL
if (spl_next_phase() == PHASE_VPL)
return binman_sym(ulong, u_boot_vpl_any, image_pos);
#endif
return spl_next_phase() == PHASE_SPL ?
binman_sym(ulong, u_boot_spl_any, image_pos) :
binman_sym(ulong, u_boot_any, image_pos);
}
ulong spl_get_image_size(void)
{
if (!CONFIG_IS_ENABLED(BINMAN_UBOOT_SYMBOLS))
return BINMAN_SYM_MISSING;
#ifdef CONFIG_VPL
if (spl_next_phase() == PHASE_VPL)
return binman_sym(ulong, u_boot_vpl_any, size);
#endif
return spl_next_phase() == PHASE_SPL ?
binman_sym(ulong, u_boot_spl_any, size) :
binman_sym(ulong, u_boot_any, size);
}
ulong spl_get_image_text_base(void)
{
#ifdef CONFIG_VPL
if (spl_next_phase() == PHASE_VPL)
return CONFIG_VPL_TEXT_BASE;
#endif
return spl_next_phase() == PHASE_SPL ? CONFIG_SPL_TEXT_BASE :
CONFIG_TEXT_BASE;
}
/*
* Weak default function for board specific cleanup/preparation before
* Linux boot. Some boards/platforms might not need it, so just provide
* an empty stub here.
*/
__weak void spl_board_prepare_for_linux(void)
{
/* Nothing to do! */
}
__weak void spl_board_prepare_for_optee(void *fdt)
{
}
__weak const char *spl_board_loader_name(u32 boot_device)
{
return NULL;
}
#if CONFIG_IS_ENABLED(OPTEE_IMAGE)
__weak void __noreturn jump_to_image_optee(struct spl_image_info *spl_image)
{
spl_optee_entry(NULL, NULL, spl_image->fdt_addr,
(void *)spl_image->entry_point);
}
#endif
__weak void spl_board_prepare_for_boot(void)
{
/* Nothing to do! */
}
__weak struct legacy_img_hdr *spl_get_load_buffer(ssize_t offset, size_t size)
{
return map_sysmem(CONFIG_TEXT_BASE + offset, 0);
}
#ifdef CONFIG_SPL_RAW_IMAGE_SUPPORT
void spl_set_header_raw_uboot(struct spl_image_info *spl_image)
{
ulong u_boot_pos = spl_get_image_pos();
#if CONFIG_SYS_MONITOR_LEN != 0
spl_image->size = CONFIG_SYS_MONITOR_LEN;
#else
/* Unknown U-Boot size, let's assume it will not be more than 200 KB */
spl_image->size = 200 * 1024;
#endif
/*
* Binman error cases: address of the end of the previous region or the
* start of the image's entry area (usually 0) if there is no previous
* region.
*/
if (u_boot_pos && u_boot_pos != BINMAN_SYM_MISSING) {
/* Binman does not support separated entry addresses */
spl_image->entry_point = u_boot_pos;
spl_image->load_addr = u_boot_pos;
} else {
spl_image->entry_point = CONFIG_SYS_UBOOT_START;
spl_image->load_addr = CONFIG_TEXT_BASE;
}
spl_image->os = IH_OS_U_BOOT;
spl_image->name = "U-Boot";
}
#endif
__weak int spl_parse_board_header(struct spl_image_info *spl_image,
const struct spl_boot_device *bootdev,
const void *image_header, size_t size)
{
return -EINVAL;
}
__weak int spl_parse_legacy_header(struct spl_image_info *spl_image,
const struct legacy_img_hdr *header)
{
/* LEGACY image not supported */
debug("Legacy boot image support not enabled, proceeding to other boot methods\n");
return -EINVAL;
}
int spl_parse_image_header(struct spl_image_info *spl_image,
const struct spl_boot_device *bootdev,
const struct legacy_img_hdr *header)
{
int ret;
if (CONFIG_IS_ENABLED(LOAD_FIT_FULL)) {
ret = spl_load_fit_image(spl_image, header);
if (!ret)
return ret;
}
if (image_get_magic(header) == IH_MAGIC) {
int ret;
ret = spl_parse_legacy_header(spl_image, header);
if (ret)
return ret;
} else {
#ifdef CONFIG_SPL_PANIC_ON_RAW_IMAGE
/*
* CONFIG_SPL_PANIC_ON_RAW_IMAGE is defined when the
* code which loads images in SPL cannot guarantee that
* absolutely all read errors will be reported.
* An example is the LPC32XX MLC NAND driver, which
* will consider that a completely unreadable NAND block
* is bad, and thus should be skipped silently.
*/
panic("** no mkimage signature but raw image not supported");
#endif
#if CONFIG_IS_ENABLED(OS_BOOT)
#if defined(CMD_BOOTI)
ulong start, size;
if (!booti_setup((ulong)header, &start, &size, 0)) {
spl_image->name = "Linux";
spl_image->os = IH_OS_LINUX;
spl_image->load_addr = start;
spl_image->entry_point = start;
spl_image->size = size;
debug(SPL_TPL_PROMPT
"payload Image, load addr: 0x%lx size: %d\n",
spl_image->load_addr, spl_image->size);
return 0;
}
#elif defined(CMD_BOOTZ)
ulong start, end;
if (!bootz_setup((ulong)header, &start, &end)) {
spl_image->name = "Linux";
spl_image->os = IH_OS_LINUX;
spl_image->load_addr = CONFIG_SYS_LOAD_ADDR;
spl_image->entry_point = CONFIG_SYS_LOAD_ADDR;
spl_image->size = end - start;
debug(SPL_TPL_PROMPT
"payload zImage, load addr: 0x%lx size: %d\n",
spl_image->load_addr, spl_image->size);
return 0;
}
#endif
#endif
if (!spl_parse_board_header(spl_image, bootdev, (const void *)header, sizeof(*header)))
return 0;
#ifdef CONFIG_SPL_RAW_IMAGE_SUPPORT
/* Signature not found - assume u-boot.bin */
debug("mkimage signature not found - ih_magic = %x\n",
header->ih_magic);
spl_set_header_raw_uboot(spl_image);
#else
/* RAW image not supported, proceed to other boot methods. */
debug("Raw boot image support not enabled, proceeding to other boot methods\n");
return -EINVAL;
#endif
}
return 0;
}
#if SPL_LOAD_USERS > 1
int spl_load(struct spl_image_info *spl_image,
const struct spl_boot_device *bootdev, struct spl_load_info *info,
size_t size, size_t offset)
{
return _spl_load(spl_image, bootdev, info, size, offset);
}
#endif
__weak void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image)
{
typedef void __noreturn (*image_entry_noargs_t)(void);
image_entry_noargs_t image_entry =
(image_entry_noargs_t)spl_image->entry_point;
debug("image entry point: 0x%lx\n", spl_image->entry_point);
image_entry();
}
#if CONFIG_IS_ENABLED(HANDOFF)
/**
* Set up the SPL hand-off information
*
* This is initially empty (zero) but can be written by
*/
static int setup_spl_handoff(void)
{
struct spl_handoff *ho;
ho = bloblist_ensure(BLOBLISTT_U_BOOT_SPL_HANDOFF, sizeof(struct spl_handoff));
if (!ho)
return -ENOENT;
return 0;
}
__weak int handoff_arch_save(struct spl_handoff *ho)
{
return 0;
}
static int write_spl_handoff(void)
{
struct spl_handoff *ho;
int ret;
ho = bloblist_find(BLOBLISTT_U_BOOT_SPL_HANDOFF, sizeof(struct spl_handoff));
if (!ho)
return -ENOENT;
handoff_save_dram(ho);
ret = handoff_arch_save(ho);
if (ret)
return ret;
debug(SPL_TPL_PROMPT "Wrote SPL handoff\n");
return 0;
}
#else
static inline int setup_spl_handoff(void) { return 0; }
static inline int write_spl_handoff(void) { return 0; }
#endif /* HANDOFF */
/**
* get_bootstage_id() - Get the bootstage ID to emit
*
* @start: true if this is for starting SPL, false for ending it
* Return: bootstage ID to use
*/
static enum bootstage_id get_bootstage_id(bool start)
{
enum u_boot_phase phase = spl_phase();
if (IS_ENABLED(CONFIG_TPL_BUILD) && phase == PHASE_TPL)
return start ? BOOTSTAGE_ID_START_TPL : BOOTSTAGE_ID_END_TPL;
else if (IS_ENABLED(CONFIG_VPL_BUILD) && phase == PHASE_VPL)
return start ? BOOTSTAGE_ID_START_VPL : BOOTSTAGE_ID_END_VPL;
else
return start ? BOOTSTAGE_ID_START_SPL : BOOTSTAGE_ID_END_SPL;
}
static int spl_common_init(bool setup_malloc)
{
int ret;
#if CONFIG_IS_ENABLED(SYS_MALLOC_F)
if (setup_malloc) {
#ifdef CFG_MALLOC_F_ADDR
gd->malloc_base = CFG_MALLOC_F_ADDR;
#endif
gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
gd->malloc_ptr = 0;
}
#endif
ret = bootstage_init(u_boot_first_phase());
if (ret) {
debug("%s: Failed to set up bootstage: ret=%d\n", __func__,
ret);
return ret;
}
if (!u_boot_first_phase()) {
ret = bootstage_unstash_default();
if (ret)
log_debug("Failed to unstash bootstage: ret=%d\n", ret);
}
bootstage_mark_name(get_bootstage_id(true),
spl_phase_name(spl_phase()));
#if CONFIG_IS_ENABLED(LOG)
ret = log_init();
if (ret) {
debug("%s: Failed to set up logging\n", __func__);
return ret;
}
#endif
if (CONFIG_IS_ENABLED(OF_REAL)) {
ret = fdtdec_setup();
if (ret) {
debug("fdtdec_setup() returned error %d\n", ret);
return ret;
}
}
if (CONFIG_IS_ENABLED(DM)) {
bootstage_start(BOOTSTAGE_ID_ACCUM_DM_SPL,
spl_phase() == PHASE_TPL ? "dm tpl" : "dm_spl");
/* With CONFIG_SPL_OF_PLATDATA, bring in all devices */
ret = dm_init_and_scan(!CONFIG_IS_ENABLED(OF_PLATDATA));
bootstage_accum(BOOTSTAGE_ID_ACCUM_DM_SPL);
if (ret) {
debug("dm_init_and_scan() returned error %d\n", ret);
return ret;
}
}
return 0;
}
void spl_set_bd(void)
{
/*
* NOTE: On some platforms (e.g. x86) bdata may be in flash and not
* writeable.
*/
if (!gd->bd)
gd->bd = &bdata;
}
int spl_early_init(void)
{
int ret;
debug("%s\n", __func__);
ret = spl_common_init(true);
if (ret)
return ret;
gd->flags |= GD_FLG_SPL_EARLY_INIT;
return 0;
}
int spl_init(void)
{
int ret;
bool setup_malloc = !(IS_ENABLED(CONFIG_SPL_STACK_R) &&
IS_ENABLED(CONFIG_SPL_SYS_MALLOC_SIMPLE));
debug("%s\n", __func__);
if (!(gd->flags & GD_FLG_SPL_EARLY_INIT)) {
ret = spl_common_init(setup_malloc);
if (ret)
return ret;
}
gd->flags |= GD_FLG_SPL_INIT;
return 0;
}
#ifndef BOOT_DEVICE_NONE
#define BOOT_DEVICE_NONE 0xdeadbeef
#endif
__weak void board_boot_order(u32 *spl_boot_list)
{
spl_boot_list[0] = spl_boot_device();
}
__weak int spl_check_board_image(struct spl_image_info *spl_image,
const struct spl_boot_device *bootdev)
{
return 0;
}
static int spl_load_image(struct spl_image_info *spl_image,
struct spl_image_loader *loader)
{
int ret;
struct spl_boot_device bootdev;
bootdev.boot_device = loader->boot_device;
bootdev.boot_device_name = NULL;
ret = loader->load_image(spl_image, &bootdev);
#ifdef CONFIG_SPL_LEGACY_IMAGE_CRC_CHECK
if (!ret && spl_image->dcrc_length) {
/* check data crc */
ulong dcrc = crc32_wd(0, (unsigned char *)spl_image->dcrc_data,
spl_image->dcrc_length, CHUNKSZ_CRC32);
if (dcrc != spl_image->dcrc) {
puts("SPL: Image data CRC check failed!\n");
ret = -EINVAL;
}
}
#endif
if (!ret)
ret = spl_check_board_image(spl_image, &bootdev);
return ret;
}
/**
* boot_from_devices() - Try loading a booting U-Boot from a list of devices
*
* @spl_image: Place to put the image details if successful
* @spl_boot_list: List of boot devices to try
* @count: Number of elements in spl_boot_list
* Return: 0 if OK, -ENODEV if there were no boot devices
* if CONFIG_SHOW_ERRORS is enabled, returns -ENXIO if there were
* devices but none worked
*/
static int boot_from_devices(struct spl_image_info *spl_image,
u32 spl_boot_list[], int count)
{
struct spl_image_loader *drv =
ll_entry_start(struct spl_image_loader, spl_image_loader);
const int n_ents =
ll_entry_count(struct spl_image_loader, spl_image_loader);
int ret = -ENODEV;
int i;
for (i = 0; i < count && spl_boot_list[i] != BOOT_DEVICE_NONE; i++) {
struct spl_image_loader *loader;
int bootdev = spl_boot_list[i];
if (CONFIG_IS_ENABLED(SHOW_ERRORS))
ret = -ENXIO;
for (loader = drv; loader != drv + n_ents; loader++) {
if (bootdev != loader->boot_device)
continue;
if (!CONFIG_IS_ENABLED(SILENT_CONSOLE)) {
if (loader)
printf("Trying to boot from %s\n",
spl_loader_name(loader));
else if (CONFIG_IS_ENABLED(SHOW_ERRORS)) {
printf(SPL_TPL_PROMPT
"Unsupported Boot Device %d\n",
bootdev);
} else {
puts(SPL_TPL_PROMPT
"Unsupported Boot Device!\n");
}
}
if (loader &&
!spl_load_image(spl_image, loader)) {
spl_image->boot_device = bootdev;
return 0;
}
}
}
return ret;
}
#if defined(CONFIG_SPL_FRAMEWORK_BOARD_INIT_F)
void board_init_f(ulong dummy)
{
if (CONFIG_IS_ENABLED(OF_CONTROL)) {
int ret;
ret = spl_early_init();
if (ret) {
debug("spl_early_init() failed: %d\n", ret);
hang();
}
}
preloader_console_init();
}
#endif
void board_init_r(gd_t *dummy1, ulong dummy2)
{
u32 spl_boot_list[] = {
BOOT_DEVICE_NONE,
BOOT_DEVICE_NONE,
BOOT_DEVICE_NONE,
BOOT_DEVICE_NONE,
BOOT_DEVICE_NONE,
};
typedef void __noreturn (*jump_to_image_t)(struct spl_image_info *);
jump_to_image_t jump_to_image = &jump_to_image_no_args;
struct spl_image_info spl_image;
int ret, os;
debug(">>" SPL_TPL_PROMPT "board_init_r()\n");
spl_set_bd();
if (IS_ENABLED(CONFIG_SPL_SYS_MALLOC)) {
mem_malloc_init((ulong)map_sysmem(SPL_SYS_MALLOC_START,
SPL_SYS_MALLOC_SIZE),
SPL_SYS_MALLOC_SIZE);
gd->flags |= GD_FLG_FULL_MALLOC_INIT;
}
if (!(gd->flags & GD_FLG_SPL_INIT)) {
if (spl_init())
hang();
}
timer_init();
if (CONFIG_IS_ENABLED(BLOBLIST)) {
ret = bloblist_init();
if (ret) {
debug("%s: Failed to set up bloblist: ret=%d\n",
__func__, ret);
puts(SPL_TPL_PROMPT "Cannot set up bloblist\n");
hang();
}
}
if (CONFIG_IS_ENABLED(HANDOFF)) {
int ret;
ret = setup_spl_handoff();
if (ret) {
puts(SPL_TPL_PROMPT "Cannot set up SPL handoff\n");
hang();
}
}
if (CONFIG_IS_ENABLED(BOARD_INIT))
spl_board_init();
if (IS_ENABLED(CONFIG_SPL_WATCHDOG) && CONFIG_IS_ENABLED(WDT))
initr_watchdog();
if (IS_ENABLED(CONFIG_SPL_OS_BOOT) || CONFIG_IS_ENABLED(HANDOFF) ||
IS_ENABLED(CONFIG_SPL_ATF))
dram_init_banksize();
if (CONFIG_IS_ENABLED(PCI) && !(gd->flags & GD_FLG_DM_DEAD)) {
ret = pci_init();
if (ret)
puts(SPL_TPL_PROMPT "Cannot initialize PCI\n");
/* Don't fail. We still can try other boot methods. */
}
bootcount_inc();
/* Dump driver model states to aid analysis */
if (CONFIG_IS_ENABLED(DM_STATS)) {
struct dm_stats mem;
dm_get_mem(&mem);
dm_dump_mem(&mem);
}
memset(&spl_image, '\0', sizeof(spl_image));
if (IS_ENABLED(CONFIG_SPL_OS_BOOT))
spl_image.arg = (void *)SPL_PAYLOAD_ARGS_ADDR;
spl_image.boot_device = BOOT_DEVICE_NONE;
board_boot_order(spl_boot_list);
ret = boot_from_devices(&spl_image, spl_boot_list,
ARRAY_SIZE(spl_boot_list));
if (ret) {
if (CONFIG_IS_ENABLED(SHOW_ERRORS))
printf(SPL_TPL_PROMPT "failed to boot from all boot devices (err=%d)\n",
ret);
else
puts(SPL_TPL_PROMPT "failed to boot from all boot devices\n");
hang();
}
spl_perform_fixups(&spl_image);
os = spl_image.os;
if (os == IH_OS_U_BOOT) {
debug("Jumping to %s...\n", spl_phase_name(spl_next_phase()));
} else if (CONFIG_IS_ENABLED(ATF) && os == IH_OS_ARM_TRUSTED_FIRMWARE) {
debug("Jumping to U-Boot via ARM Trusted Firmware\n");
spl_fixup_fdt(spl_image_fdt_addr(&spl_image));
jump_to_image = &spl_invoke_atf;
} else if (CONFIG_IS_ENABLED(OPTEE_IMAGE) && os == IH_OS_TEE) {
debug("Jumping to U-Boot via OP-TEE\n");
spl_board_prepare_for_optee(spl_image_fdt_addr(&spl_image));
jump_to_image = &jump_to_image_optee;
} else if (CONFIG_IS_ENABLED(OPENSBI) && os == IH_OS_OPENSBI) {
debug("Jumping to U-Boot via RISC-V OpenSBI\n");
jump_to_image = &spl_invoke_opensbi;
} else if (CONFIG_IS_ENABLED(OS_BOOT) && os == IH_OS_LINUX) {
debug("Jumping to Linux\n");
if (IS_ENABLED(CONFIG_SPL_OS_BOOT))
spl_fixup_fdt((void *)SPL_PAYLOAD_ARGS_ADDR);
spl_board_prepare_for_linux();
jump_to_image = &jump_to_image_linux;
} else {
debug("Unsupported OS image.. Jumping nevertheless..\n");
}
if (CONFIG_IS_ENABLED(SYS_MALLOC_F) &&
!IS_ENABLED(CONFIG_SPL_SYS_MALLOC_SIZE))
debug("SPL malloc() used 0x%lx bytes (%ld KB)\n",
gd_malloc_ptr(), gd_malloc_ptr() / 1024);
bootstage_mark_name(get_bootstage_id(false), "end phase");
ret = bootstage_stash_default();
if (ret)
debug("Failed to stash bootstage: err=%d\n", ret);
if (IS_ENABLED(CONFIG_SPL_VIDEO_REMOVE)) {
struct udevice *dev;
int rc;
rc = uclass_find_device(UCLASS_VIDEO, 0, &dev);
if (!rc && dev) {
rc = device_remove(dev, DM_REMOVE_NORMAL);
if (rc)
printf("Cannot remove video device '%s' (err=%d)\n",
dev->name, rc);
}
}
if (CONFIG_IS_ENABLED(HANDOFF)) {
ret = write_spl_handoff();
if (ret)
printf(SPL_TPL_PROMPT
"SPL hand-off write failed (err=%d)\n", ret);
}
if (CONFIG_IS_ENABLED(BLOBLIST)) {
ret = bloblist_finish();
if (ret)
printf("Warning: Failed to finish bloblist (ret=%d)\n",
ret);
}
spl_board_prepare_for_boot();
jump_to_image(&spl_image);
}
/*
* This requires UART clocks to be enabled. In order for this to work the
* caller must ensure that the gd pointer is valid.
*/
void preloader_console_init(void)
{
#ifdef CONFIG_SPL_SERIAL
gd->baudrate = CONFIG_BAUDRATE;
serial_init(); /* serial communications setup */
gd->have_console = 1;
#if CONFIG_IS_ENABLED(BANNER_PRINT)
puts("\nU-Boot " SPL_TPL_NAME " " PLAIN_VERSION " (" U_BOOT_DATE " - "
U_BOOT_TIME " " U_BOOT_TZ ")\n");
#endif
#ifdef CONFIG_SPL_DISPLAY_PRINT
spl_display_print();
#endif
#endif
}
/**
* This function is called before the stack is changed from initial stack to
* relocated stack. It tries to dump the stack size used
*/
__weak void spl_relocate_stack_check(void)
{
#if CONFIG_IS_ENABLED(SYS_REPORT_STACK_F_USAGE)
ulong init_sp = gd->start_addr_sp;
ulong stack_bottom = init_sp - CONFIG_VAL(SIZE_LIMIT_PROVIDE_STACK);
u8 *ptr = (u8 *)stack_bottom;
ulong i;
for (i = 0; i < CONFIG_VAL(SIZE_LIMIT_PROVIDE_STACK); i++) {
if (*ptr != CONFIG_VAL(SYS_STACK_F_CHECK_BYTE))
break;
ptr++;
}
printf("SPL initial stack usage: %lu bytes\n",
CONFIG_VAL(SIZE_LIMIT_PROVIDE_STACK) - i);
#endif
}
/**
* spl_relocate_stack_gd() - Relocate stack ready for board_init_r() execution
*
* Sometimes board_init_f() runs with a stack in SRAM but we want to use SDRAM
* for the main board_init_r() execution. This is typically because we need
* more stack space for things like the MMC sub-system.
*
* This function calculates the stack position, copies the global_data into
* place, sets the new gd (except for ARM, for which setting GD within a C
* function may not always work) and returns the new stack position. The
* caller is responsible for setting up the sp register and, in the case
* of ARM, setting up gd.
*
* All of this is done using the same layout and alignments as done in
* board_init_f_init_reserve() / board_init_f_alloc_reserve().
*
* Return: new stack location, or 0 to use the same stack
*/
ulong spl_relocate_stack_gd(void)
{
#ifdef CONFIG_SPL_STACK_R
gd_t *new_gd;
ulong ptr = CONFIG_SPL_STACK_R_ADDR;
if (CONFIG_IS_ENABLED(SYS_REPORT_STACK_F_USAGE))
spl_relocate_stack_check();
#if defined(CONFIG_SPL_SYS_MALLOC_SIMPLE) && CONFIG_IS_ENABLED(SYS_MALLOC_F)
if (CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN) {
debug("SPL malloc() before relocation used 0x%lx bytes (%ld KB)\n",
gd->malloc_ptr, gd->malloc_ptr / 1024);
ptr -= CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN;
gd->malloc_base = ptr;
gd->malloc_limit = CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN;
gd->malloc_ptr = 0;
}
#endif
/* Get stack position: use 8-byte alignment for ABI compliance */
ptr = CONFIG_SPL_STACK_R_ADDR - roundup(sizeof(gd_t),16);
gd->start_addr_sp = ptr;
new_gd = (gd_t *)ptr;
memcpy(new_gd, (void *)gd, sizeof(gd_t));
#if CONFIG_IS_ENABLED(DM)
dm_fixup_for_gd_move(new_gd);
#endif
#if !defined(CONFIG_ARM) && !defined(CONFIG_RISCV)
gd = new_gd;
#endif
return ptr;
#else
return 0;
#endif
}
#if defined(CONFIG_BOOTCOUNT_LIMIT) && \
((!defined(CONFIG_TPL_BUILD) && !defined(CONFIG_SPL_BOOTCOUNT_LIMIT)) || \
(defined(CONFIG_TPL_BUILD) && !defined(CONFIG_TPL_BOOTCOUNT_LIMIT)))
void bootcount_store(ulong a)
{
}
ulong bootcount_load(void)
{
return 0;
}
#endif