mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-28 22:13:08 +00:00
c726fc01cf
There is a number of users that use uclass_first_device to access the first and (assumed) only device in uclass. Some check the return value of uclass_first_device and also that a device was returned which is exactly what uclass_first_device_err does. Some are not checking that a device was returned and can potentially crash if no device exists in the uclass. Finally there is one that returns NULL on error either way. Convert all of these to use uclass_first_device_err instead, the return value will be removed from uclass_first_device in a later patch. Signed-off-by: Michal Suchanek <msuchanek@suse.de> Reviewed-by: Simon Glass <sjg@chromium.org>
613 lines
17 KiB
C
613 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Tests for ACPI table generation
|
|
*
|
|
* Copyright 2019 Google LLC
|
|
* Written by Simon Glass <sjg@chromium.org>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <console.h>
|
|
#include <dm.h>
|
|
#include <malloc.h>
|
|
#include <mapmem.h>
|
|
#include <timestamp.h>
|
|
#include <version.h>
|
|
#include <tables_csum.h>
|
|
#include <version.h>
|
|
#include <acpi/acpigen.h>
|
|
#include <acpi/acpi_device.h>
|
|
#include <acpi/acpi_table.h>
|
|
#include <asm/global_data.h>
|
|
#include <dm/acpi.h>
|
|
#include <dm/test.h>
|
|
#include <test/ut.h>
|
|
#include "acpi.h"
|
|
|
|
#define BUF_SIZE 4096
|
|
|
|
#define OEM_REVISION ((((U_BOOT_VERSION_NUM / 1000) % 10) << 28) | \
|
|
(((U_BOOT_VERSION_NUM / 100) % 10) << 24) | \
|
|
(((U_BOOT_VERSION_NUM / 10) % 10) << 20) | \
|
|
((U_BOOT_VERSION_NUM % 10) << 16) | \
|
|
(((U_BOOT_VERSION_NUM_PATCH / 10) % 10) << 12) | \
|
|
((U_BOOT_VERSION_NUM_PATCH % 10) << 8) | \
|
|
0x01)
|
|
|
|
/**
|
|
* struct testacpi_plat - Platform data for the test ACPI device
|
|
*
|
|
* @no_name: true to emit an empty ACPI name from testacpi_get_name()
|
|
* @return_error: true to return an error instead of a name
|
|
*/
|
|
struct testacpi_plat {
|
|
bool return_error;
|
|
bool no_name;
|
|
};
|
|
|
|
/**
|
|
* setup_ctx_and_base_tables() - Set up context along with RSDP, RSDT and XSDT
|
|
*
|
|
* Set up the context with the given start position. Some basic tables are
|
|
* always needed, so set them up as well.
|
|
*
|
|
* @ctx: Context to set up
|
|
*/
|
|
static int setup_ctx_and_base_tables(struct unit_test_state *uts,
|
|
struct acpi_ctx *ctx, ulong start)
|
|
{
|
|
struct acpi_writer *entry = ACPI_WRITER_GET(0base);
|
|
|
|
acpi_setup_ctx(ctx, start);
|
|
|
|
ctx->tab_start = ctx->current;
|
|
ut_assertok(acpi_write_one(ctx, entry));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int testacpi_write_tables(const struct udevice *dev,
|
|
struct acpi_ctx *ctx)
|
|
{
|
|
struct acpi_dmar *dmar;
|
|
int ret;
|
|
|
|
dmar = (struct acpi_dmar *)ctx->current;
|
|
acpi_create_dmar(dmar, DMAR_INTR_REMAP);
|
|
ctx->current += sizeof(struct acpi_dmar);
|
|
ret = acpi_add_table(ctx, dmar);
|
|
if (ret)
|
|
return log_msg_ret("add", ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int testacpi_get_name(const struct udevice *dev, char *out_name)
|
|
{
|
|
struct testacpi_plat *plat = dev_get_plat(dev);
|
|
|
|
if (plat->return_error)
|
|
return -EINVAL;
|
|
if (plat->no_name) {
|
|
*out_name = '\0';
|
|
return 0;
|
|
}
|
|
if (device_get_uclass_id(dev->parent) == UCLASS_TEST_ACPI)
|
|
return acpi_copy_name(out_name, ACPI_TEST_CHILD_NAME);
|
|
else
|
|
return acpi_copy_name(out_name, ACPI_TEST_DEV_NAME);
|
|
}
|
|
|
|
static int testacpi_fill_ssdt(const struct udevice *dev, struct acpi_ctx *ctx)
|
|
{
|
|
const char *data;
|
|
|
|
data = dev_read_string(dev, "acpi-ssdt-test-data");
|
|
if (data) {
|
|
while (*data)
|
|
acpigen_emit_byte(ctx, *data++);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int testacpi_inject_dsdt(const struct udevice *dev, struct acpi_ctx *ctx)
|
|
{
|
|
const char *data;
|
|
|
|
data = dev_read_string(dev, "acpi-dsdt-test-data");
|
|
if (data) {
|
|
while (*data)
|
|
acpigen_emit_byte(ctx, *data++);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct acpi_ops testacpi_ops = {
|
|
.get_name = testacpi_get_name,
|
|
.write_tables = testacpi_write_tables,
|
|
.fill_ssdt = testacpi_fill_ssdt,
|
|
.inject_dsdt = testacpi_inject_dsdt,
|
|
};
|
|
|
|
static const struct udevice_id testacpi_ids[] = {
|
|
{ .compatible = "denx,u-boot-acpi-test" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(testacpi_drv) = {
|
|
.name = "testacpi_drv",
|
|
.of_match = testacpi_ids,
|
|
.id = UCLASS_TEST_ACPI,
|
|
.bind = dm_scan_fdt_dev,
|
|
.plat_auto = sizeof(struct testacpi_plat),
|
|
ACPI_OPS_PTR(&testacpi_ops)
|
|
};
|
|
|
|
UCLASS_DRIVER(testacpi) = {
|
|
.name = "testacpi",
|
|
.id = UCLASS_TEST_ACPI,
|
|
};
|
|
|
|
/* Test ACPI get_name() */
|
|
static int dm_test_acpi_get_name(struct unit_test_state *uts)
|
|
{
|
|
char name[ACPI_NAME_MAX];
|
|
struct udevice *dev, *dev2, *i2c, *spi, *timer, *sound;
|
|
struct udevice *pci, *root;
|
|
|
|
/* Test getting the name from the driver */
|
|
ut_assertok(uclass_first_device_err(UCLASS_TEST_ACPI, &dev));
|
|
ut_assertok(acpi_get_name(dev, name));
|
|
ut_asserteq_str(ACPI_TEST_DEV_NAME, name);
|
|
|
|
/* Test getting the name from the device tree */
|
|
ut_assertok(uclass_get_device_by_name(UCLASS_TEST_FDT, "a-test",
|
|
&dev2));
|
|
ut_assertok(acpi_get_name(dev2, name));
|
|
ut_asserteq_str("GHIJ", name);
|
|
|
|
/* Test getting the name from acpi_device_get_name() */
|
|
ut_assertok(uclass_first_device_err(UCLASS_I2C, &i2c));
|
|
ut_assertok(acpi_get_name(i2c, name));
|
|
ut_asserteq_str("I2C0", name);
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_SPI, &spi));
|
|
ut_assertok(acpi_get_name(spi, name));
|
|
ut_asserteq_str("SPI0", name);
|
|
|
|
/* ACPI doesn't know about the timer */
|
|
ut_assertok(uclass_first_device_err(UCLASS_TIMER, &timer));
|
|
ut_asserteq(-ENOENT, acpi_get_name(timer, name));
|
|
|
|
/* May as well test the rest of the cases */
|
|
ut_assertok(uclass_first_device_err(UCLASS_SOUND, &sound));
|
|
ut_assertok(acpi_get_name(sound, name));
|
|
ut_asserteq_str("HDAS", name);
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_PCI, &pci));
|
|
ut_assertok(acpi_get_name(pci, name));
|
|
ut_asserteq_str("PCI0", name);
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_ROOT, &root));
|
|
ut_assertok(acpi_get_name(root, name));
|
|
ut_asserteq_str("\\_SB", name);
|
|
|
|
/* Note that we don't have tests for acpi_name_from_id() */
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_get_name, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test acpi_get_table_revision() */
|
|
static int dm_test_acpi_get_table_revision(struct unit_test_state *uts)
|
|
{
|
|
ut_asserteq(1, acpi_get_table_revision(ACPITAB_MCFG));
|
|
ut_asserteq(2, acpi_get_table_revision(ACPITAB_RSDP));
|
|
ut_asserteq(4, acpi_get_table_revision(ACPITAB_TPM2));
|
|
ut_asserteq(-EINVAL, acpi_get_table_revision(ACPITAB_COUNT));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_get_table_revision,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test acpi_create_dmar() */
|
|
static int dm_test_acpi_create_dmar(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_dmar dmar;
|
|
struct udevice *cpu;
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_CPU, &cpu));
|
|
ut_assertnonnull(cpu);
|
|
ut_assertok(acpi_create_dmar(&dmar, DMAR_INTR_REMAP));
|
|
ut_asserteq(DMAR_INTR_REMAP, dmar.flags);
|
|
ut_asserteq(32 - 1, dmar.host_address_width);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_create_dmar, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test acpi_fill_header() */
|
|
static int dm_test_acpi_fill_header(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_table_header hdr;
|
|
|
|
/* Make sure these 5 fields are not changed */
|
|
hdr.length = 0x11;
|
|
hdr.revision = 0x22;
|
|
hdr.checksum = 0x33;
|
|
hdr.aslc_revision = 0x44;
|
|
acpi_fill_header(&hdr, "ABCD");
|
|
|
|
ut_asserteq_mem("ABCD", hdr.signature, sizeof(hdr.signature));
|
|
ut_asserteq(0x11, hdr.length);
|
|
ut_asserteq(0x22, hdr.revision);
|
|
ut_asserteq(0x33, hdr.checksum);
|
|
ut_asserteq_mem(OEM_ID, hdr.oem_id, sizeof(hdr.oem_id));
|
|
ut_asserteq_mem(OEM_TABLE_ID, hdr.oem_table_id,
|
|
sizeof(hdr.oem_table_id));
|
|
ut_asserteq(OEM_REVISION, hdr.oem_revision);
|
|
ut_asserteq_mem(ASLC_ID, hdr.aslc_id, sizeof(hdr.aslc_id));
|
|
ut_asserteq(0x44, hdr.aslc_revision);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_fill_header, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test ACPI write_tables() */
|
|
static int dm_test_acpi_write_tables(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_dmar *dmar;
|
|
struct acpi_ctx ctx;
|
|
ulong addr;
|
|
void *buf;
|
|
int i;
|
|
|
|
buf = malloc(BUF_SIZE);
|
|
ut_assertnonnull(buf);
|
|
addr = map_to_sysmem(buf);
|
|
|
|
ut_assertok(setup_ctx_and_base_tables(uts, &ctx, addr));
|
|
dmar = ctx.current;
|
|
ut_assertok(acpi_write_dev_tables(&ctx));
|
|
|
|
/*
|
|
* We should have three dmar tables, one for each
|
|
* "denx,u-boot-acpi-test" device
|
|
*/
|
|
ut_asserteq_ptr(dmar + 3, ctx.current);
|
|
ut_asserteq(DMAR_INTR_REMAP, dmar->flags);
|
|
ut_asserteq(32 - 1, dmar->host_address_width);
|
|
|
|
ut_asserteq(DMAR_INTR_REMAP, dmar[1].flags);
|
|
ut_asserteq(32 - 1, dmar[1].host_address_width);
|
|
|
|
ut_asserteq(DMAR_INTR_REMAP, dmar[2].flags);
|
|
ut_asserteq(32 - 1, dmar[2].host_address_width);
|
|
|
|
/* Check that the pointers were added correctly */
|
|
for (i = 0; i < 3; i++) {
|
|
ut_asserteq(map_to_sysmem(dmar + i), ctx.rsdt->entry[i]);
|
|
ut_asserteq(map_to_sysmem(dmar + i), ctx.xsdt->entry[i]);
|
|
}
|
|
ut_asserteq(0, ctx.rsdt->entry[3]);
|
|
ut_asserteq(0, ctx.xsdt->entry[3]);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_write_tables, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test basic ACPI functions */
|
|
static int dm_test_acpi_basic(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_ctx ctx;
|
|
|
|
/* Check align works */
|
|
ctx.current = (void *)5;
|
|
acpi_align(&ctx);
|
|
ut_asserteq_ptr((void *)16, ctx.current);
|
|
|
|
/* Check that align does nothing if already aligned */
|
|
acpi_align(&ctx);
|
|
ut_asserteq_ptr((void *)16, ctx.current);
|
|
acpi_align64(&ctx);
|
|
ut_asserteq_ptr((void *)64, ctx.current);
|
|
acpi_align64(&ctx);
|
|
ut_asserteq_ptr((void *)64, ctx.current);
|
|
|
|
/* Check incrementing */
|
|
acpi_inc(&ctx, 3);
|
|
ut_asserteq_ptr((void *)67, ctx.current);
|
|
acpi_inc_align(&ctx, 3);
|
|
ut_asserteq_ptr((void *)80, ctx.current);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_basic, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test setup_ctx_and_base_tables */
|
|
static int dm_test_setup_ctx_and_base_tables(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_rsdp *rsdp;
|
|
struct acpi_rsdt *rsdt;
|
|
struct acpi_xsdt *xsdt;
|
|
struct acpi_ctx ctx;
|
|
void *buf, *end;
|
|
ulong addr;
|
|
|
|
/*
|
|
* Use an unaligned address deliberately, by allocating an aligned
|
|
* address and then adding 4 to it
|
|
*/
|
|
buf = memalign(64, BUF_SIZE);
|
|
ut_assertnonnull(buf);
|
|
addr = map_to_sysmem(buf);
|
|
ut_assertok(setup_ctx_and_base_tables(uts, &ctx, addr + 4));
|
|
ut_asserteq(map_to_sysmem(PTR_ALIGN(buf + 4, 16)), gd_acpi_start());
|
|
|
|
rsdp = buf + 16;
|
|
ut_asserteq_ptr(rsdp, ctx.rsdp);
|
|
ut_asserteq_mem(RSDP_SIG, rsdp->signature, sizeof(rsdp->signature));
|
|
ut_asserteq(sizeof(*rsdp), rsdp->length);
|
|
ut_assertok(table_compute_checksum(rsdp, 20));
|
|
ut_assertok(table_compute_checksum(rsdp, sizeof(*rsdp)));
|
|
|
|
rsdt = PTR_ALIGN((void *)rsdp + sizeof(*rsdp), 16);
|
|
ut_asserteq_ptr(rsdt, ctx.rsdt);
|
|
ut_asserteq_mem("RSDT", rsdt->header.signature, ACPI_NAME_LEN);
|
|
ut_asserteq(sizeof(*rsdt), rsdt->header.length);
|
|
ut_assertok(table_compute_checksum(rsdt, sizeof(*rsdt)));
|
|
|
|
xsdt = PTR_ALIGN((void *)rsdt + sizeof(*rsdt), 16);
|
|
ut_asserteq_ptr(xsdt, ctx.xsdt);
|
|
ut_asserteq_mem("XSDT", xsdt->header.signature, ACPI_NAME_LEN);
|
|
ut_asserteq(sizeof(*xsdt), xsdt->header.length);
|
|
ut_assertok(table_compute_checksum(xsdt, sizeof(*xsdt)));
|
|
|
|
end = PTR_ALIGN((void *)xsdt + sizeof(*xsdt), 64);
|
|
ut_asserteq_ptr(end, ctx.current);
|
|
|
|
ut_asserteq(map_to_sysmem(rsdt), rsdp->rsdt_address);
|
|
ut_asserteq(map_to_sysmem(xsdt), rsdp->xsdt_address);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_setup_ctx_and_base_tables,
|
|
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test 'acpi list' command */
|
|
static int dm_test_acpi_cmd_list(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_ctx ctx;
|
|
ulong addr;
|
|
void *buf;
|
|
|
|
buf = memalign(16, BUF_SIZE);
|
|
ut_assertnonnull(buf);
|
|
addr = map_to_sysmem(buf);
|
|
ut_assertok(setup_ctx_and_base_tables(uts, &ctx, addr));
|
|
|
|
ut_assertok(acpi_write_dev_tables(&ctx));
|
|
|
|
console_record_reset();
|
|
run_command("acpi list", 0);
|
|
ut_assert_nextline("Name Base Size Detail");
|
|
ut_assert_nextline("---- -------- ----- ------");
|
|
ut_assert_nextline("RSDP %08lx %5zx v02 U-BOOT", addr,
|
|
sizeof(struct acpi_rsdp));
|
|
addr = ALIGN(addr + sizeof(struct acpi_rsdp), 16);
|
|
ut_assert_nextline("RSDT %08lx %5zx v01 U-BOOT U-BOOTBL %x INTL 0",
|
|
addr, sizeof(struct acpi_table_header) +
|
|
3 * sizeof(u32), OEM_REVISION);
|
|
addr = ALIGN(addr + sizeof(struct acpi_rsdt), 16);
|
|
ut_assert_nextline("XSDT %08lx %5zx v01 U-BOOT U-BOOTBL %x INTL 0",
|
|
addr, sizeof(struct acpi_table_header) +
|
|
3 * sizeof(u64), OEM_REVISION);
|
|
addr = ALIGN(addr + sizeof(struct acpi_xsdt), 64);
|
|
ut_assert_nextline("DMAR %08lx %5zx v01 U-BOOT U-BOOTBL %x INTL 0",
|
|
addr, sizeof(struct acpi_dmar), OEM_REVISION);
|
|
addr = ALIGN(addr + sizeof(struct acpi_dmar), 16);
|
|
ut_assert_nextline("DMAR %08lx %5zx v01 U-BOOT U-BOOTBL %x INTL 0",
|
|
addr, sizeof(struct acpi_dmar), OEM_REVISION);
|
|
addr = ALIGN(addr + sizeof(struct acpi_dmar), 16);
|
|
ut_assert_nextline("DMAR %08lx %5zx v01 U-BOOT U-BOOTBL %x INTL 0",
|
|
addr, sizeof(struct acpi_dmar), OEM_REVISION);
|
|
ut_assert_console_end();
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_cmd_list, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test 'acpi dump' command */
|
|
static int dm_test_acpi_cmd_dump(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_ctx ctx;
|
|
ulong addr;
|
|
void *buf;
|
|
|
|
buf = memalign(16, BUF_SIZE);
|
|
ut_assertnonnull(buf);
|
|
addr = map_to_sysmem(buf);
|
|
ut_assertok(setup_ctx_and_base_tables(uts, &ctx, addr));
|
|
|
|
ut_assertok(acpi_write_dev_tables(&ctx));
|
|
|
|
/* First search for a non-existent table */
|
|
console_record_reset();
|
|
run_command("acpi dump rdst", 0);
|
|
ut_assert_nextline("Table 'RDST' not found");
|
|
ut_assert_console_end();
|
|
|
|
/* Now a real table */
|
|
console_record_reset();
|
|
run_command("acpi dump dmar", 0);
|
|
addr = ALIGN(map_to_sysmem(ctx.xsdt) + sizeof(struct acpi_xsdt), 64);
|
|
ut_assert_nextline("DMAR @ %08lx", addr);
|
|
ut_assert_nextlines_are_dump(0x30);
|
|
ut_assert_console_end();
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_cmd_dump, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test acpi_device_path() */
|
|
static int dm_test_acpi_device_path(struct unit_test_state *uts)
|
|
{
|
|
struct testacpi_plat *plat;
|
|
char buf[ACPI_PATH_MAX];
|
|
struct udevice *dev, *child;
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_TEST_ACPI, &dev));
|
|
ut_assertok(acpi_device_path(dev, buf, sizeof(buf)));
|
|
ut_asserteq_str("\\_SB." ACPI_TEST_DEV_NAME, buf);
|
|
|
|
/* Test running out of space */
|
|
buf[5] = '\0';
|
|
ut_asserteq(-ENOSPC, acpi_device_path(dev, buf, 5));
|
|
ut_asserteq('\0', buf[5]);
|
|
|
|
/* Test a three-component name */
|
|
ut_assertok(device_first_child_err(dev, &child));
|
|
ut_assertok(acpi_device_path(child, buf, sizeof(buf)));
|
|
ut_asserteq_str("\\_SB." ACPI_TEST_DEV_NAME "." ACPI_TEST_CHILD_NAME,
|
|
buf);
|
|
|
|
/* Test handling of a device which doesn't produce a name */
|
|
plat = dev_get_plat(dev);
|
|
plat->no_name = true;
|
|
ut_assertok(acpi_device_path(child, buf, sizeof(buf)));
|
|
ut_asserteq_str("\\_SB." ACPI_TEST_CHILD_NAME, buf);
|
|
|
|
/* Test handling of a device which returns an error */
|
|
plat = dev_get_plat(dev);
|
|
plat->return_error = true;
|
|
ut_asserteq(-EINVAL, acpi_device_path(child, buf, sizeof(buf)));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_device_path, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test acpi_device_status() */
|
|
static int dm_test_acpi_device_status(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
|
|
ut_assertok(uclass_first_device_err(UCLASS_TEST_ACPI, &dev));
|
|
ut_asserteq(ACPI_DSTATUS_ALL_ON, acpi_device_status(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_device_status, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test acpi_fill_ssdt() */
|
|
static int dm_test_acpi_fill_ssdt(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_ctx ctx;
|
|
u8 *buf;
|
|
|
|
buf = malloc(BUF_SIZE);
|
|
ut_assertnonnull(buf);
|
|
|
|
acpi_reset_items();
|
|
ctx.current = buf;
|
|
buf[4] = 'z'; /* sentinel */
|
|
ut_assertok(acpi_fill_ssdt(&ctx));
|
|
|
|
/*
|
|
* These values come from acpi-test2's acpi-ssdt-test-data property.
|
|
* This device comes first because of u-boot,acpi-ssdt-order
|
|
*/
|
|
ut_asserteq('c', buf[0]);
|
|
ut_asserteq('d', buf[1]);
|
|
|
|
/* These values come from acpi-test's acpi-ssdt-test-data property */
|
|
ut_asserteq('a', buf[2]);
|
|
ut_asserteq('b', buf[3]);
|
|
|
|
ut_asserteq('z', buf[4]);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_fill_ssdt, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test acpi_inject_dsdt() */
|
|
static int dm_test_acpi_inject_dsdt(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_ctx ctx;
|
|
u8 *buf;
|
|
|
|
buf = malloc(BUF_SIZE);
|
|
ut_assertnonnull(buf);
|
|
|
|
acpi_reset_items();
|
|
ctx.current = buf;
|
|
buf[4] = 'z'; /* sentinel */
|
|
ut_assertok(acpi_inject_dsdt(&ctx));
|
|
|
|
/*
|
|
* These values come from acpi-test's acpi-dsdt-test-data property.
|
|
* There is no u-boot,acpi-dsdt-order so device-tree order is used.
|
|
*/
|
|
ut_asserteq('h', buf[0]);
|
|
ut_asserteq('i', buf[1]);
|
|
|
|
/* These values come from acpi-test's acpi-dsdt-test-data property */
|
|
ut_asserteq('j', buf[2]);
|
|
ut_asserteq('k', buf[3]);
|
|
|
|
ut_asserteq('z', buf[4]);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_inject_dsdt, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|
|
|
|
/* Test 'acpi items' command */
|
|
static int dm_test_acpi_cmd_items(struct unit_test_state *uts)
|
|
{
|
|
struct acpi_ctx ctx;
|
|
ulong addr;
|
|
void *buf;
|
|
|
|
buf = malloc(BUF_SIZE);
|
|
ut_assertnonnull(buf);
|
|
addr = map_to_sysmem(buf);
|
|
|
|
acpi_reset_items();
|
|
ctx.current = buf;
|
|
ut_assertok(acpi_fill_ssdt(&ctx));
|
|
console_record_reset();
|
|
run_command("acpi items", 0);
|
|
ut_assert_nextline("Seq Type Base Size Device/Writer");
|
|
ut_assert_nextline("--- ----- -------- ---- -------------");
|
|
ut_assert_nextline(" 0 ssdt %8lx 2 acpi-test", addr);
|
|
ut_assert_nextline(" 1 ssdt %8lx 2 acpi-test2", addr + 2);
|
|
ut_assert_console_end();
|
|
|
|
acpi_reset_items();
|
|
ctx.current = buf;
|
|
ut_assertok(acpi_inject_dsdt(&ctx));
|
|
console_record_reset();
|
|
run_command("acpi items", 0);
|
|
ut_assert_nextlinen("Seq");
|
|
ut_assert_nextlinen("---");
|
|
ut_assert_nextline(" 0 dsdt %8lx 2 acpi-test", addr);
|
|
ut_assert_nextline(" 1 dsdt %8lx 2 acpi-test2", addr + 2);
|
|
ut_assert_console_end();
|
|
|
|
console_record_reset();
|
|
run_command("acpi items -d", 0);
|
|
ut_assert_nextlinen("Seq");
|
|
ut_assert_nextlinen("---");
|
|
ut_assert_nextline(" 0 dsdt %8lx 2 acpi-test", addr);
|
|
ut_assert_nextlines_are_dump(2);
|
|
ut_assert_nextline("%s", "");
|
|
ut_assert_nextline(" 1 dsdt %8lx 2 acpi-test2", addr + 2);
|
|
ut_assert_nextlines_are_dump(2);
|
|
ut_assert_nextline("%s", "");
|
|
ut_assert_console_end();
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_acpi_cmd_items, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
|