mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-07 10:48:54 +00:00
66cf977716
Signed-off-by: Pali Rohár <pali@kernel.org> Reviewed-by: Stefan Roese <sr@denx.de>
2450 lines
61 KiB
C
2450 lines
61 KiB
C
/*
|
|
* Boot a Marvell SoC, with Xmodem over UART0.
|
|
* supports Kirkwood, Dove, Avanta, Armada 370, Armada XP, Armada 375,
|
|
* Armada 38x and Armada 39x.
|
|
*
|
|
* (c) 2012 Daniel Stodden <daniel.stodden@gmail.com>
|
|
* (c) 2021 Pali Rohár <pali@kernel.org>
|
|
* (c) 2021 Marek Behún <kabel@kernel.org>
|
|
*
|
|
* References:
|
|
* - "88F6180, 88F6190, 88F6192, and 88F6281: Integrated Controller: Functional
|
|
* Specifications" December 2, 2008. Chapter 24.2 "BootROM Firmware".
|
|
* https://web.archive.org/web/20130730091033/https://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
|
|
* - "88AP510: High-Performance SoC with Integrated CPU, 2D/3D Graphics
|
|
* Processor, and High-Definition Video Decoder: Functional Specifications"
|
|
* August 3, 2011. Chapter 5 "BootROM Firmware"
|
|
* https://web.archive.org/web/20120130172443/https://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf
|
|
* - "88F6665, 88F6660, 88F6658, 88F6655, 88F6655F, 88F6650, 88F6650F, 88F6610,
|
|
* and 88F6610F Avanta LP Family Integrated Single/Dual CPU Ecosystem for
|
|
* Gateway (GW), Home Gateway Unit (HGU), and Single Family Unit (SFU)
|
|
* Functional Specifications" Doc. No. MV-S108952-00, Rev. A. November 7, 2013.
|
|
* Chapter 7 "Boot Flow"
|
|
* CONFIDENTIAL, no public documentation available
|
|
* - "88F6710, 88F6707, and 88F6W11: ARMADA(R) 370 SoC: Functional Specifications"
|
|
* May 26, 2014. Chapter 6 "BootROM Firmware".
|
|
* https://web.archive.org/web/20140617183701/https://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
|
|
* - "MV78230, MV78260, and MV78460: ARMADA(R) XP Family of Highly Integrated
|
|
* Multi-Core ARMv7 Based SoC Processors: Functional Specifications"
|
|
* May 29, 2014. Chapter 6 "BootROM Firmware".
|
|
* https://web.archive.org/web/20180829171131/https://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf
|
|
* - "BobCat2 Control and Management Subsystem Functional Specifications"
|
|
* Doc. No. MV-S109400-00, Rev. A. December 4, 2014.
|
|
* Chapter 1.6 BootROM Firmware
|
|
* CONFIDENTIAL, no public documentation available
|
|
* - "AlleyCat3 and PONCat3 Highly Integrated 1/10 Gigabit Ethernet Switch
|
|
* Control and Management Subsystem: Functional Specifications"
|
|
* Doc. No. MV-S109693-00, Rev. A. May 20, 2014.
|
|
* Chapter 1.6 BootROM Firmware
|
|
* CONFIDENTIAL, no public documentation available
|
|
* - "ARMADA(R) 375 Value-Performance Dual Core CPU System on Chip: Functional
|
|
* Specifications" Doc. No. MV-S109377-00, Rev. A. September 18, 2013.
|
|
* Chapter 7 "Boot Sequence"
|
|
* CONFIDENTIAL, no public documentation available
|
|
* - "88F6810, 88F6811, 88F6821, 88F6W21, 88F6820, and 88F6828: ARMADA(R) 38x
|
|
* Family High-Performance Single/Dual CPU System on Chip: Functional
|
|
* Specifications" Doc. No. MV-S109094-00, Rev. C. August 2, 2015.
|
|
* Chapter 7 "Boot Flow"
|
|
* CONFIDENTIAL, no public documentation available
|
|
* - "88F6920, 88F6925 and 88F6928: ARMADA(R) 39x High-Performance Dual Core CPU
|
|
* System on Chip Functional Specifications" Doc. No. MV-S109896-00, Rev. B.
|
|
* December 22, 2015. Chapter 7 "Boot Flow"
|
|
* CONFIDENTIAL, no public documentation available
|
|
* - "Marvell boot image parser", Marvell U-Boot 2013.01, version 18.06. September 17, 2015.
|
|
* https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/blob/u-boot-2013.01-armada-18.06/tools/marvell/doimage_mv/hdrparser.c
|
|
* - "Marvell doimage Tool", Marvell U-Boot 2013.01, version 18.06. August 30, 2015.
|
|
* https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/blob/u-boot-2013.01-armada-18.06/tools/marvell/doimage_mv/doimage.c
|
|
*
|
|
* Storage location / offset of different image types:
|
|
* - IBR_HDR_SPI_ID (0x5A):
|
|
* SPI image can be stored at any 2 MB aligned offset in the first 16 MB of
|
|
* SPI-NOR or parallel-NOR. Despite the type name it really can be stored on
|
|
* parallel-NOR and cannot be stored on other SPI devices, like SPI-NAND.
|
|
* So it should have been named NOR image, not SPI image. This image type
|
|
* supports XIP - Execute In Place directly from NOR memory. Destination
|
|
* address of the XIP image is set to 0xFFFFFFFF and execute address to the
|
|
* absolute offset in bytes from the beginning of NOR memory.
|
|
*
|
|
* - IBR_HDR_NAND_ID (0x8B):
|
|
* NAND image can be stored either at any 2 MB aligned offset in the first
|
|
* 16 MB of SPI-NAND or at any blocksize aligned offset in the first 64 MB
|
|
* of parallel-NAND.
|
|
*
|
|
* - IBR_HDR_PEX_ID (0x9C):
|
|
* PEX image is used for booting from PCI Express device. Source address
|
|
* stored in image is ignored by BootROM. It is not the BootROM who parses
|
|
* or loads data part of the PEX image. BootROM just configures SoC to the
|
|
* PCIe endpoint mode and let the PCIe device on the other end of the PCIe
|
|
* link (which must be in Root Complex mode) to load kwbimage into SoC's
|
|
* memory and tell BootROM physical address.
|
|
*
|
|
* - IBR_HDR_UART_ID (0x69):
|
|
* UART image can be transfered via xmodem protocol over first UART.
|
|
* Unlike all other image types, header size stored in the image must be
|
|
* multiply of the 128 bytes (for all other image types it can be any size)
|
|
* and data part of the image does not have to contain 32-bit checksum
|
|
* (all other image types must have valid 32-bit checksum in its data part).
|
|
* And data size stored in the image is ignored. A38x BootROM determinates
|
|
* size of the data part implicitly by the end of the xmodem transfer.
|
|
* A38x BootROM has a bug which cause that BootROM loads data part of UART
|
|
* image into RAM target address increased by one byte when source address
|
|
* and header size stored in the image header are not same. So UART image
|
|
* should be constructed in a way that there is no gap between header and
|
|
* data part.
|
|
*
|
|
* - IBR_HDR_I2C_ID (0x4D):
|
|
* It is unknown for what kind of storage is used this image. It is not
|
|
* specified in any document from References section.
|
|
*
|
|
* - IBR_HDR_SATA_ID (0x78):
|
|
* SATA image can be stored at sector 1 (after the MBR table), sector 34
|
|
* (after the GPT table) or at any next sector which is aligned to 2 MB and
|
|
* is in the first 16 MB of SATA disk. Note that source address in SATA image
|
|
* is stored in sector unit and not in bytes like for any other images.
|
|
* Unfortunately sector size is disk specific, in most cases it is 512 bytes
|
|
* but there are also Native 4K SATA disks which have 4096 bytes long sectors.
|
|
*
|
|
* - IBR_HDR_SDIO_ID (0xAE):
|
|
* SDIO image can be stored on different medias:
|
|
* - SD(SC) card
|
|
* - SDHC/SDXC card
|
|
* - eMMC HW boot partition
|
|
* - eMMC user data partition / MMC card
|
|
* It cannot be stored on SDIO card despite the image name.
|
|
*
|
|
* For SD(SC)/SDHC/SDXC cards, image can be stored at the same locations as
|
|
* the SATA image (sector 1, sector 34 or any 2 MB aligned sector) but within
|
|
* the first 64 MB. SDHC and SDXC cards have fixed 512 bytes long sector size.
|
|
* Old SD(SC) cards unfortunately can have also different sector sizes, mostly
|
|
* 1024 bytes long sector sizes and also can be changed at runtime.
|
|
*
|
|
* For MMC-compatible devices, image can be stored at offset 0 or at offset
|
|
* 2 MB. If MMC device supports HW boot partitions then image must be stored
|
|
* on the HW partition as is configured in the EXT_CSC register (it can be
|
|
* either boot or user data).
|
|
*
|
|
* Note that source address for SDIO image is stored in byte unit, like for
|
|
* any other images (except SATA). Marvell Functional Specifications for
|
|
* A38x and A39x SoCs say that source address is in sector units, but this
|
|
* is purely incorrect information. A385 BootROM really expects source address
|
|
* for SDIO images in bytes and also Marvell tools generate SDIO image with
|
|
* source address in byte units.
|
|
*/
|
|
|
|
#include "kwbimage.h"
|
|
#include "mkimage.h"
|
|
#include "version.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <image.h>
|
|
#include <libgen.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <stdint.h>
|
|
#include <time.h>
|
|
#include <sys/stat.h>
|
|
#include <pthread.h>
|
|
|
|
#ifdef __linux__
|
|
#include "termios_linux.h"
|
|
#else
|
|
#include <termios.h>
|
|
#endif
|
|
|
|
/*
|
|
* These functions are in <term.h> header file, but this header file conflicts
|
|
* with "termios_linux.h" header file. So declare these functions manually.
|
|
*/
|
|
extern int setupterm(const char *, int, int *);
|
|
extern char *tigetstr(const char *);
|
|
|
|
/*
|
|
* Marvell BootROM UART Sensing
|
|
*/
|
|
|
|
static unsigned char kwboot_msg_boot[] = {
|
|
0xBB, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
|
|
};
|
|
|
|
static unsigned char kwboot_msg_debug[] = {
|
|
0xDD, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
|
|
};
|
|
|
|
/* Defines known to work on Kirkwood */
|
|
#define KWBOOT_MSG_RSP_TIMEO 50 /* ms */
|
|
|
|
/* Defines known to work on Armada XP */
|
|
#define KWBOOT_MSG_RSP_TIMEO_AXP 10 /* ms */
|
|
|
|
/*
|
|
* Xmodem Transfers
|
|
*/
|
|
|
|
#define SOH 1 /* sender start of block header */
|
|
#define EOT 4 /* sender end of block transfer */
|
|
#define ACK 6 /* target block ack */
|
|
#define NAK 21 /* target block negative ack */
|
|
|
|
#define KWBOOT_XM_BLKSZ 128 /* xmodem block size */
|
|
|
|
struct kwboot_block {
|
|
uint8_t soh;
|
|
uint8_t pnum;
|
|
uint8_t _pnum;
|
|
uint8_t data[KWBOOT_XM_BLKSZ];
|
|
uint8_t csum;
|
|
} __packed;
|
|
|
|
#define KWBOOT_BLK_RSP_TIMEO 2000 /* ms */
|
|
#define KWBOOT_HDR_RSP_TIMEO 10000 /* ms */
|
|
|
|
/* ARM code to change baudrate */
|
|
static unsigned char kwboot_baud_code[] = {
|
|
/* ; #define UART_BASE 0xd0012000 */
|
|
/* ; #define DLL 0x00 */
|
|
/* ; #define DLH 0x04 */
|
|
/* ; #define LCR 0x0c */
|
|
/* ; #define DLAB 0x80 */
|
|
/* ; #define LSR 0x14 */
|
|
/* ; #define TEMT 0x40 */
|
|
/* ; #define DIV_ROUND(a, b) ((a + b/2) / b) */
|
|
/* ; */
|
|
/* ; u32 set_baudrate(u32 old_b, u32 new_b) { */
|
|
/* ; while */
|
|
/* ; (!(readl(UART_BASE + LSR) & TEMT)); */
|
|
/* ; u32 lcr = readl(UART_BASE + LCR); */
|
|
/* ; writel(UART_BASE + LCR, lcr | DLAB); */
|
|
/* ; u8 old_dll = readl(UART_BASE + DLL); */
|
|
/* ; u8 old_dlh = readl(UART_BASE + DLH); */
|
|
/* ; u16 old_dl = old_dll | (old_dlh << 8); */
|
|
/* ; u32 clk = old_b * old_dl; */
|
|
/* ; u16 new_dl = DIV_ROUND(clk, new_b); */
|
|
/* ; u8 new_dll = new_dl & 0xff; */
|
|
/* ; u8 new_dlh = (new_dl >> 8) & 0xff; */
|
|
/* ; writel(UART_BASE + DLL, new_dll); */
|
|
/* ; writel(UART_BASE + DLH, new_dlh); */
|
|
/* ; writel(UART_BASE + LCR, lcr & ~DLAB); */
|
|
/* ; msleep(5); */
|
|
/* ; return 0; */
|
|
/* ; } */
|
|
|
|
/* ; r0 = UART_BASE */
|
|
0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */
|
|
0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */
|
|
|
|
/* ; Wait until Transmitter FIFO is Empty */
|
|
/* .Lloop_txempty: */
|
|
/* ; r1 = UART_BASE[LSR] & TEMT */
|
|
0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */
|
|
0x40, 0x00, 0x11, 0xe3, /* tst r1, #0x40 */
|
|
0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_txempty */
|
|
|
|
/* ; Set Divisor Latch Access Bit */
|
|
/* ; UART_BASE[LCR] |= DLAB */
|
|
0x0c, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x0c] */
|
|
0x80, 0x10, 0x81, 0xe3, /* orr r1, r1, #0x80 */
|
|
0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */
|
|
|
|
/* ; Read current Divisor Latch */
|
|
/* ; r1 = UART_BASE[DLH]<<8 | UART_BASE[DLL] */
|
|
0x00, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x00] */
|
|
0xff, 0x10, 0x01, 0xe2, /* and r1, r1, #0xff */
|
|
0x01, 0x20, 0xa0, 0xe1, /* mov r2, r1 */
|
|
0x04, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x04] */
|
|
0xff, 0x10, 0x01, 0xe2, /* and r1, r1, #0xff */
|
|
0x41, 0x14, 0xa0, 0xe1, /* asr r1, r1, #8 */
|
|
0x02, 0x10, 0x81, 0xe1, /* orr r1, r1, r2 */
|
|
|
|
/* ; Read old baudrate value */
|
|
/* ; r2 = old_baudrate */
|
|
0x74, 0x20, 0x9f, 0xe5, /* ldr r2, old_baudrate */
|
|
|
|
/* ; Calculate base clock */
|
|
/* ; r1 = r2 * r1 */
|
|
0x92, 0x01, 0x01, 0xe0, /* mul r1, r2, r1 */
|
|
|
|
/* ; Read new baudrate value */
|
|
/* ; r2 = new_baudrate */
|
|
0x70, 0x20, 0x9f, 0xe5, /* ldr r2, new_baudrate */
|
|
|
|
/* ; Calculate new Divisor Latch */
|
|
/* ; r1 = DIV_ROUND(r1, r2) = */
|
|
/* ; = (r1 + r2/2) / r2 */
|
|
0xa2, 0x10, 0x81, 0xe0, /* add r1, r1, r2, lsr #1 */
|
|
0x02, 0x40, 0xa0, 0xe1, /* mov r4, r2 */
|
|
0xa1, 0x00, 0x54, 0xe1, /* cmp r4, r1, lsr #1 */
|
|
/* .Lloop_div1: */
|
|
0x84, 0x40, 0xa0, 0x91, /* movls r4, r4, lsl #1 */
|
|
0xa1, 0x00, 0x54, 0xe1, /* cmp r4, r1, lsr #1 */
|
|
0xfc, 0xff, 0xff, 0x9a, /* bls .Lloop_div1 */
|
|
0x00, 0x30, 0xa0, 0xe3, /* mov r3, #0 */
|
|
/* .Lloop_div2: */
|
|
0x04, 0x00, 0x51, 0xe1, /* cmp r1, r4 */
|
|
0x04, 0x10, 0x41, 0x20, /* subhs r1, r1, r4 */
|
|
0x03, 0x30, 0xa3, 0xe0, /* adc r3, r3, r3 */
|
|
0xa4, 0x40, 0xa0, 0xe1, /* mov r4, r4, lsr #1 */
|
|
0x02, 0x00, 0x54, 0xe1, /* cmp r4, r2 */
|
|
0xf9, 0xff, 0xff, 0x2a, /* bhs .Lloop_div2 */
|
|
0x03, 0x10, 0xa0, 0xe1, /* mov r1, r3 */
|
|
|
|
/* ; Set new Divisor Latch Low */
|
|
/* ; UART_BASE[DLL] = r1 & 0xff */
|
|
0x01, 0x20, 0xa0, 0xe1, /* mov r2, r1 */
|
|
0xff, 0x20, 0x02, 0xe2, /* and r2, r2, #0xff */
|
|
0x00, 0x20, 0x80, 0xe5, /* str r2, [r0, #0x00] */
|
|
|
|
/* ; Set new Divisor Latch High */
|
|
/* ; UART_BASE[DLH] = r1>>8 & 0xff */
|
|
0x41, 0x24, 0xa0, 0xe1, /* asr r2, r1, #8 */
|
|
0xff, 0x20, 0x02, 0xe2, /* and r2, r2, #0xff */
|
|
0x04, 0x20, 0x80, 0xe5, /* str r2, [r0, #0x04] */
|
|
|
|
/* ; Clear Divisor Latch Access Bit */
|
|
/* ; UART_BASE[LCR] &= ~DLAB */
|
|
0x0c, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x0c] */
|
|
0x80, 0x10, 0xc1, 0xe3, /* bic r1, r1, #0x80 */
|
|
0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */
|
|
|
|
/* ; Loop 0x2dc000 (2998272) cycles */
|
|
/* ; which is about 5ms on 1200 MHz CPU */
|
|
/* ; r1 = 0x2dc000 */
|
|
0xb7, 0x19, 0xa0, 0xe3, /* mov r1, #0x2dc000 */
|
|
/* .Lloop_sleep: */
|
|
0x01, 0x10, 0x41, 0xe2, /* sub r1, r1, #1 */
|
|
0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */
|
|
0xfc, 0xff, 0xff, 0x1a, /* bne .Lloop_sleep */
|
|
|
|
/* ; Jump to the end of execution */
|
|
0x01, 0x00, 0x00, 0xea, /* b end */
|
|
|
|
/* ; Placeholder for old baudrate value */
|
|
/* old_baudrate: */
|
|
0x00, 0x00, 0x00, 0x00, /* .word 0 */
|
|
|
|
/* ; Placeholder for new baudrate value */
|
|
/* new_baudrate: */
|
|
0x00, 0x00, 0x00, 0x00, /* .word 0 */
|
|
|
|
/* end: */
|
|
};
|
|
|
|
/* ARM code from binary header executed by BootROM before changing baudrate */
|
|
static unsigned char kwboot_baud_code_binhdr_pre[] = {
|
|
/* ; #define UART_BASE 0xd0012000 */
|
|
/* ; #define THR 0x00 */
|
|
/* ; #define LSR 0x14 */
|
|
/* ; #define THRE 0x20 */
|
|
/* ; */
|
|
/* ; void send_preamble(void) { */
|
|
/* ; const u8 *str = "$baudratechange"; */
|
|
/* ; u8 c; */
|
|
/* ; do { */
|
|
/* ; while */
|
|
/* ; ((readl(UART_BASE + LSR) & THRE)); */
|
|
/* ; c = *str++; */
|
|
/* ; writel(UART_BASE + THR, c); */
|
|
/* ; } while (c); */
|
|
/* ; } */
|
|
|
|
/* ; Preserve registers for BootROM */
|
|
0xfe, 0x5f, 0x2d, 0xe9, /* push { r1 - r12, lr } */
|
|
|
|
/* ; r0 = UART_BASE */
|
|
0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */
|
|
0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */
|
|
|
|
/* ; r2 = address of preamble string */
|
|
0x00, 0x20, 0x8f, 0xe2, /* adr r2, .Lstr_preamble */
|
|
|
|
/* ; Skip preamble data section */
|
|
0x03, 0x00, 0x00, 0xea, /* b .Lloop_preamble */
|
|
|
|
/* ; Preamble string */
|
|
/* .Lstr_preamble: */
|
|
0x24, 0x62, 0x61, 0x75, /* .asciz "$baudratechange" */
|
|
0x64, 0x72, 0x61, 0x74,
|
|
0x65, 0x63, 0x68, 0x61,
|
|
0x6e, 0x67, 0x65, 0x00,
|
|
|
|
/* ; Send preamble string over UART */
|
|
/* .Lloop_preamble: */
|
|
/* */
|
|
/* ; Wait until Transmitter Holding is Empty */
|
|
/* .Lloop_thre: */
|
|
/* ; r1 = UART_BASE[LSR] & THRE */
|
|
0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */
|
|
0x20, 0x00, 0x11, 0xe3, /* tst r1, #0x20 */
|
|
0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_thre */
|
|
|
|
/* ; Put character into Transmitter FIFO */
|
|
/* ; r1 = *r2++ */
|
|
0x01, 0x10, 0xd2, 0xe4, /* ldrb r1, [r2], #1 */
|
|
/* ; UART_BASE[THR] = r1 */
|
|
0x00, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0] */
|
|
|
|
/* ; Loop until end of preamble string */
|
|
0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */
|
|
0xf8, 0xff, 0xff, 0x1a, /* bne .Lloop_preamble */
|
|
};
|
|
|
|
/* ARM code for returning from binary header back to BootROM */
|
|
static unsigned char kwboot_baud_code_binhdr_post[] = {
|
|
/* ; Return 0 - no error */
|
|
0x00, 0x00, 0xa0, 0xe3, /* mov r0, #0 */
|
|
0xfe, 0x9f, 0xbd, 0xe8, /* pop { r1 - r12, pc } */
|
|
};
|
|
|
|
/* ARM code for jumping to the original image exec_addr */
|
|
static unsigned char kwboot_baud_code_data_jump[] = {
|
|
0x04, 0xf0, 0x1f, 0xe5, /* ldr pc, exec_addr */
|
|
/* ; Placeholder for exec_addr */
|
|
/* exec_addr: */
|
|
0x00, 0x00, 0x00, 0x00, /* .word 0 */
|
|
};
|
|
|
|
static const char kwb_baud_magic[16] = "$baudratechange";
|
|
|
|
static int kwboot_verbose;
|
|
|
|
static int msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO;
|
|
static int blk_rsp_timeo = KWBOOT_BLK_RSP_TIMEO;
|
|
|
|
static ssize_t
|
|
kwboot_write(int fd, const char *buf, size_t len)
|
|
{
|
|
ssize_t tot = 0;
|
|
|
|
while (tot < len) {
|
|
ssize_t wr = write(fd, buf + tot, len - tot);
|
|
|
|
if (wr < 0 && errno == EINTR)
|
|
continue;
|
|
else if (wr < 0)
|
|
return wr;
|
|
|
|
tot += wr;
|
|
}
|
|
|
|
return tot;
|
|
}
|
|
|
|
static void
|
|
kwboot_printv(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
if (kwboot_verbose) {
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
|
|
static void
|
|
__spinner(void)
|
|
{
|
|
const char seq[] = { '-', '\\', '|', '/' };
|
|
const int div = 8;
|
|
static int state, bs;
|
|
|
|
if (state % div == 0) {
|
|
fputc(bs, stdout);
|
|
fputc(seq[state / div % sizeof(seq)], stdout);
|
|
fflush(stdout);
|
|
}
|
|
|
|
bs = '\b';
|
|
state++;
|
|
}
|
|
|
|
static void
|
|
kwboot_spinner(void)
|
|
{
|
|
if (kwboot_verbose)
|
|
__spinner();
|
|
}
|
|
|
|
static void
|
|
__progress(int pct, char c)
|
|
{
|
|
const int width = 70;
|
|
static const char *nl = "";
|
|
static int pos;
|
|
|
|
if (pos % width == 0)
|
|
printf("%s%3d %% [", nl, pct);
|
|
|
|
fputc(c, stdout);
|
|
|
|
nl = "]\n";
|
|
pos = (pos + 1) % width;
|
|
|
|
if (pct == 100) {
|
|
while (pos && pos++ < width)
|
|
fputc(' ', stdout);
|
|
fputs(nl, stdout);
|
|
nl = "";
|
|
pos = 0;
|
|
}
|
|
|
|
fflush(stdout);
|
|
|
|
}
|
|
|
|
static void
|
|
kwboot_progress(int _pct, char c)
|
|
{
|
|
static int pct;
|
|
|
|
if (_pct != -1)
|
|
pct = _pct;
|
|
|
|
if (kwboot_verbose)
|
|
__progress(pct, c);
|
|
|
|
if (pct == 100)
|
|
pct = 0;
|
|
}
|
|
|
|
static int
|
|
kwboot_tty_recv(int fd, void *buf, size_t len, int timeo)
|
|
{
|
|
int rc, nfds;
|
|
fd_set rfds;
|
|
struct timeval tv;
|
|
ssize_t n;
|
|
|
|
rc = -1;
|
|
|
|
FD_ZERO(&rfds);
|
|
FD_SET(fd, &rfds);
|
|
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = timeo * 1000;
|
|
if (tv.tv_usec > 1000000) {
|
|
tv.tv_sec += tv.tv_usec / 1000000;
|
|
tv.tv_usec %= 1000000;
|
|
}
|
|
|
|
do {
|
|
nfds = select(fd + 1, &rfds, NULL, NULL, &tv);
|
|
if (nfds < 0 && errno == EINTR)
|
|
continue;
|
|
else if (nfds < 0)
|
|
goto out;
|
|
else if (!nfds) {
|
|
errno = ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
n = read(fd, buf, len);
|
|
if (n < 0 && errno == EINTR)
|
|
continue;
|
|
else if (n <= 0)
|
|
goto out;
|
|
|
|
buf = (char *)buf + n;
|
|
len -= n;
|
|
} while (len > 0);
|
|
|
|
rc = 0;
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
kwboot_tty_send(int fd, const void *buf, size_t len, int nodrain)
|
|
{
|
|
if (!buf)
|
|
return 0;
|
|
|
|
if (kwboot_write(fd, buf, len) < 0)
|
|
return -1;
|
|
|
|
if (nodrain)
|
|
return 0;
|
|
|
|
return tcdrain(fd);
|
|
}
|
|
|
|
static int
|
|
kwboot_tty_send_char(int fd, unsigned char c)
|
|
{
|
|
return kwboot_tty_send(fd, &c, 1, 0);
|
|
}
|
|
|
|
static speed_t
|
|
kwboot_tty_baudrate_to_speed(int baudrate)
|
|
{
|
|
switch (baudrate) {
|
|
#ifdef B4000000
|
|
case 4000000:
|
|
return B4000000;
|
|
#endif
|
|
#ifdef B3500000
|
|
case 3500000:
|
|
return B3500000;
|
|
#endif
|
|
#ifdef B3000000
|
|
case 3000000:
|
|
return B3000000;
|
|
#endif
|
|
#ifdef B2500000
|
|
case 2500000:
|
|
return B2500000;
|
|
#endif
|
|
#ifdef B2000000
|
|
case 2000000:
|
|
return B2000000;
|
|
#endif
|
|
#ifdef B1500000
|
|
case 1500000:
|
|
return B1500000;
|
|
#endif
|
|
#ifdef B1152000
|
|
case 1152000:
|
|
return B1152000;
|
|
#endif
|
|
#ifdef B1000000
|
|
case 1000000:
|
|
return B1000000;
|
|
#endif
|
|
#ifdef B921600
|
|
case 921600:
|
|
return B921600;
|
|
#endif
|
|
#ifdef B614400
|
|
case 614400:
|
|
return B614400;
|
|
#endif
|
|
#ifdef B576000
|
|
case 576000:
|
|
return B576000;
|
|
#endif
|
|
#ifdef B500000
|
|
case 500000:
|
|
return B500000;
|
|
#endif
|
|
#ifdef B460800
|
|
case 460800:
|
|
return B460800;
|
|
#endif
|
|
#ifdef B307200
|
|
case 307200:
|
|
return B307200;
|
|
#endif
|
|
#ifdef B230400
|
|
case 230400:
|
|
return B230400;
|
|
#endif
|
|
#ifdef B153600
|
|
case 153600:
|
|
return B153600;
|
|
#endif
|
|
#ifdef B115200
|
|
case 115200:
|
|
return B115200;
|
|
#endif
|
|
#ifdef B76800
|
|
case 76800:
|
|
return B76800;
|
|
#endif
|
|
#ifdef B57600
|
|
case 57600:
|
|
return B57600;
|
|
#endif
|
|
#ifdef B38400
|
|
case 38400:
|
|
return B38400;
|
|
#endif
|
|
#ifdef B19200
|
|
case 19200:
|
|
return B19200;
|
|
#endif
|
|
#ifdef B9600
|
|
case 9600:
|
|
return B9600;
|
|
#endif
|
|
#ifdef B4800
|
|
case 4800:
|
|
return B4800;
|
|
#endif
|
|
#ifdef B2400
|
|
case 2400:
|
|
return B2400;
|
|
#endif
|
|
#ifdef B1800
|
|
case 1800:
|
|
return B1800;
|
|
#endif
|
|
#ifdef B1200
|
|
case 1200:
|
|
return B1200;
|
|
#endif
|
|
#ifdef B600
|
|
case 600:
|
|
return B600;
|
|
#endif
|
|
#ifdef B300
|
|
case 300:
|
|
return B300;
|
|
#endif
|
|
#ifdef B200
|
|
case 200:
|
|
return B200;
|
|
#endif
|
|
#ifdef B150
|
|
case 150:
|
|
return B150;
|
|
#endif
|
|
#ifdef B134
|
|
case 134:
|
|
return B134;
|
|
#endif
|
|
#ifdef B110
|
|
case 110:
|
|
return B110;
|
|
#endif
|
|
#ifdef B75
|
|
case 75:
|
|
return B75;
|
|
#endif
|
|
#ifdef B50
|
|
case 50:
|
|
return B50;
|
|
#endif
|
|
default:
|
|
#ifdef BOTHER
|
|
return BOTHER;
|
|
#else
|
|
return B0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static int
|
|
_is_within_tolerance(int value, int reference, int tolerance)
|
|
{
|
|
return 100 * value >= reference * (100 - tolerance) &&
|
|
100 * value <= reference * (100 + tolerance);
|
|
}
|
|
|
|
static int
|
|
kwboot_tty_change_baudrate(int fd, int baudrate)
|
|
{
|
|
struct termios tio;
|
|
speed_t speed;
|
|
int rc;
|
|
|
|
rc = tcgetattr(fd, &tio);
|
|
if (rc)
|
|
return rc;
|
|
|
|
speed = kwboot_tty_baudrate_to_speed(baudrate);
|
|
if (speed == B0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
#ifdef BOTHER
|
|
if (speed == BOTHER)
|
|
tio.c_ospeed = tio.c_ispeed = baudrate;
|
|
#endif
|
|
|
|
rc = cfsetospeed(&tio, speed);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = cfsetispeed(&tio, speed);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = tcsetattr(fd, TCSANOW, &tio);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = tcgetattr(fd, &tio);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (cfgetospeed(&tio) != speed || cfgetispeed(&tio) != speed)
|
|
goto baud_fail;
|
|
|
|
#ifdef BOTHER
|
|
/*
|
|
* Check whether set baudrate is within 3% tolerance.
|
|
* If BOTHER is defined, Linux always fills out c_ospeed / c_ispeed
|
|
* with real values.
|
|
*/
|
|
if (!_is_within_tolerance(tio.c_ospeed, baudrate, 3))
|
|
goto baud_fail;
|
|
|
|
if (!_is_within_tolerance(tio.c_ispeed, baudrate, 3))
|
|
goto baud_fail;
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
baud_fail:
|
|
fprintf(stderr, "Could not set baudrate to requested value\n");
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
kwboot_open_tty(const char *path, int baudrate)
|
|
{
|
|
int rc, fd, flags;
|
|
struct termios tio;
|
|
|
|
rc = -1;
|
|
|
|
fd = open(path, O_RDWR | O_NOCTTY | O_NDELAY);
|
|
if (fd < 0)
|
|
goto out;
|
|
|
|
rc = tcgetattr(fd, &tio);
|
|
if (rc)
|
|
goto out;
|
|
|
|
cfmakeraw(&tio);
|
|
tio.c_cflag |= CREAD | CLOCAL;
|
|
tio.c_cflag &= ~(CSTOPB | HUPCL | CRTSCTS);
|
|
tio.c_cc[VMIN] = 1;
|
|
tio.c_cc[VTIME] = 0;
|
|
|
|
rc = tcsetattr(fd, TCSANOW, &tio);
|
|
if (rc)
|
|
goto out;
|
|
|
|
flags = fcntl(fd, F_GETFL);
|
|
if (flags < 0)
|
|
goto out;
|
|
|
|
rc = fcntl(fd, F_SETFL, flags & ~O_NDELAY);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = kwboot_tty_change_baudrate(fd, baudrate);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = fd;
|
|
out:
|
|
if (rc < 0) {
|
|
if (fd >= 0)
|
|
close(fd);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void *
|
|
kwboot_msg_write_handler(void *arg)
|
|
{
|
|
int tty = *(int *)((void **)arg)[0];
|
|
const void *msg = ((void **)arg)[1];
|
|
int rsp_timeo = msg_rsp_timeo;
|
|
int i, dummy_oldtype;
|
|
|
|
/* allow to cancel this thread at any time */
|
|
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &dummy_oldtype);
|
|
|
|
while (1) {
|
|
/* write 128 samples of message pattern into the output queue without waiting */
|
|
for (i = 0; i < 128; i++) {
|
|
if (kwboot_tty_send(tty, msg, 8, 1) < 0) {
|
|
perror("\nFailed to send message pattern");
|
|
exit(1);
|
|
}
|
|
}
|
|
/* wait until output queue is transmitted and then make pause */
|
|
if (tcdrain(tty) < 0) {
|
|
perror("\nFailed to send message pattern");
|
|
exit(1);
|
|
}
|
|
/* BootROM requires pause on UART after it detects message pattern */
|
|
usleep(rsp_timeo * 1000);
|
|
}
|
|
}
|
|
|
|
static int
|
|
kwboot_msg_start_thread(pthread_t *thread, int *tty, void *msg)
|
|
{
|
|
void *arg[2];
|
|
int rc;
|
|
|
|
arg[0] = tty;
|
|
arg[1] = msg;
|
|
rc = pthread_create(thread, NULL, kwboot_msg_write_handler, arg);
|
|
if (rc) {
|
|
errno = rc;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kwboot_msg_stop_thread(pthread_t thread)
|
|
{
|
|
int rc;
|
|
|
|
rc = pthread_cancel(thread);
|
|
if (rc) {
|
|
errno = rc;
|
|
return -1;
|
|
}
|
|
|
|
rc = pthread_join(thread, NULL);
|
|
if (rc) {
|
|
errno = rc;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kwboot_bootmsg(int tty)
|
|
{
|
|
struct kwboot_block block;
|
|
pthread_t write_thread;
|
|
int rc, err;
|
|
char c;
|
|
|
|
/* flush input and output queue */
|
|
tcflush(tty, TCIOFLUSH);
|
|
|
|
rc = kwboot_msg_start_thread(&write_thread, &tty, kwboot_msg_boot);
|
|
if (rc) {
|
|
perror("Failed to start write thread");
|
|
return rc;
|
|
}
|
|
|
|
kwboot_printv("Sending boot message. Please reboot the target...");
|
|
|
|
err = 0;
|
|
while (1) {
|
|
kwboot_spinner();
|
|
|
|
rc = kwboot_tty_recv(tty, &c, 1, msg_rsp_timeo);
|
|
if (rc && errno == ETIMEDOUT) {
|
|
continue;
|
|
} else if (rc) {
|
|
err = errno;
|
|
break;
|
|
}
|
|
|
|
if (c == NAK)
|
|
break;
|
|
}
|
|
|
|
kwboot_printv("\n");
|
|
|
|
rc = kwboot_msg_stop_thread(write_thread);
|
|
if (rc) {
|
|
perror("Failed to stop write thread");
|
|
return rc;
|
|
}
|
|
|
|
if (err) {
|
|
errno = err;
|
|
perror("Failed to read response for boot message pattern");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* At this stage we have sent more boot message patterns and BootROM
|
|
* (at least on Armada XP and 385) started interpreting sent bytes as
|
|
* part of xmodem packets. If BootROM is expecting SOH byte as start of
|
|
* a xmodem packet and it receives byte 0xff, then it throws it away and
|
|
* sends a NAK reply to host. If BootROM does not receive any byte for
|
|
* 2s when expecting some continuation of the xmodem packet, it throws
|
|
* away the partially received xmodem data and sends NAK reply to host.
|
|
*
|
|
* Therefore for starting xmodem transfer we have two options: Either
|
|
* wait 2s or send 132 0xff bytes (which is the size of xmodem packet)
|
|
* to ensure that BootROM throws away any partially received data.
|
|
*/
|
|
|
|
/* flush output queue with remaining boot message patterns */
|
|
rc = tcflush(tty, TCOFLUSH);
|
|
if (rc) {
|
|
perror("Failed to flush output queue");
|
|
return rc;
|
|
}
|
|
|
|
/* send one xmodem packet with 0xff bytes to force BootROM to re-sync */
|
|
memset(&block, 0xff, sizeof(block));
|
|
rc = kwboot_tty_send(tty, &block, sizeof(block), 0);
|
|
if (rc) {
|
|
perror("Failed to send sync sequence");
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Sending 132 bytes via 115200B/8-N-1 takes 11.45 ms, reading 132 bytes
|
|
* takes 11.45 ms, so waiting for 30 ms should be enough.
|
|
*/
|
|
usleep(30 * 1000);
|
|
|
|
/* flush remaining NAK replies from input queue */
|
|
rc = tcflush(tty, TCIFLUSH);
|
|
if (rc) {
|
|
perror("Failed to flush input queue");
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kwboot_debugmsg(int tty)
|
|
{
|
|
unsigned char buf[8192];
|
|
pthread_t write_thread;
|
|
int rc, err, i, pos;
|
|
size_t off;
|
|
|
|
/* flush input and output queue */
|
|
tcflush(tty, TCIOFLUSH);
|
|
|
|
rc = kwboot_msg_start_thread(&write_thread, &tty, kwboot_msg_debug);
|
|
if (rc) {
|
|
perror("Failed to start write thread");
|
|
return rc;
|
|
}
|
|
|
|
kwboot_printv("Sending debug message. Please reboot the target...");
|
|
kwboot_spinner();
|
|
|
|
err = 0;
|
|
off = 0;
|
|
while (1) {
|
|
/* Read immediately all bytes in queue without waiting */
|
|
rc = read(tty, buf + off, sizeof(buf) - off);
|
|
if ((rc < 0 && errno == EINTR) || rc == 0) {
|
|
continue;
|
|
} else if (rc < 0) {
|
|
err = errno;
|
|
break;
|
|
}
|
|
off += rc - 1;
|
|
|
|
kwboot_spinner();
|
|
|
|
/*
|
|
* Check if we received at least 4 debug message patterns
|
|
* (console echo from BootROM) in cyclic buffer
|
|
*/
|
|
|
|
for (pos = 0; pos < sizeof(kwboot_msg_debug); pos++)
|
|
if (buf[off] == kwboot_msg_debug[(pos + off) % sizeof(kwboot_msg_debug)])
|
|
break;
|
|
|
|
for (i = off; i >= 0; i--)
|
|
if (buf[i] != kwboot_msg_debug[(pos + i) % sizeof(kwboot_msg_debug)])
|
|
break;
|
|
|
|
off -= i;
|
|
|
|
if (off >= 4 * sizeof(kwboot_msg_debug))
|
|
break;
|
|
|
|
/* If not move valid suffix from end of the buffer to the beginning of buffer */
|
|
memmove(buf, buf + i + 1, off);
|
|
}
|
|
|
|
kwboot_printv("\n");
|
|
|
|
rc = kwboot_msg_stop_thread(write_thread);
|
|
if (rc) {
|
|
perror("Failed to stop write thread");
|
|
return rc;
|
|
}
|
|
|
|
if (err) {
|
|
errno = err;
|
|
perror("Failed to read response for debug message pattern");
|
|
return -1;
|
|
}
|
|
|
|
/* flush output queue with remaining debug message patterns */
|
|
rc = tcflush(tty, TCOFLUSH);
|
|
if (rc) {
|
|
perror("Failed to flush output queue");
|
|
return rc;
|
|
}
|
|
|
|
kwboot_printv("Clearing input buffer...\n");
|
|
|
|
/*
|
|
* Wait until BootROM transmit all remaining echo characters.
|
|
* Experimentally it was measured that for Armada 385 BootROM
|
|
* it is required to wait at least 0.415s. So wait 0.5s.
|
|
*/
|
|
usleep(500 * 1000);
|
|
|
|
/*
|
|
* In off variable is stored number of characters received after the
|
|
* successful detection of echo reply. So these characters are console
|
|
* echo for other following debug message patterns. BootROM may have in
|
|
* its output queue other echo characters which were being transmitting
|
|
* before above sleep call. So read remaining number of echo characters
|
|
* sent by the BootROM now.
|
|
*/
|
|
while ((rc = kwboot_tty_recv(tty, &buf[0], 1, 0)) == 0)
|
|
off++;
|
|
if (errno != ETIMEDOUT) {
|
|
perror("Failed to read response");
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Clear every echo character set by the BootROM by backspace byte.
|
|
* This is required prior writing any command to the BootROM debug
|
|
* because BootROM command line buffer has limited size. If length
|
|
* of the command is larger than buffer size then it looks like
|
|
* that Armada 385 BootROM crashes after sending ENTER. So erase it.
|
|
* Experimentally it was measured that for Armada 385 BootROM it is
|
|
* required to send at least 3 backspace bytes for one echo character.
|
|
* This is unknown why. But lets do it.
|
|
*/
|
|
off *= 3;
|
|
memset(buf, '\x08', sizeof(buf));
|
|
while (off > sizeof(buf)) {
|
|
rc = kwboot_tty_send(tty, buf, sizeof(buf), 1);
|
|
if (rc) {
|
|
perror("Failed to send clear sequence");
|
|
return rc;
|
|
}
|
|
off -= sizeof(buf);
|
|
}
|
|
rc = kwboot_tty_send(tty, buf, off, 0);
|
|
if (rc) {
|
|
perror("Failed to send clear sequence");
|
|
return rc;
|
|
}
|
|
|
|
usleep(msg_rsp_timeo * 1000);
|
|
rc = tcflush(tty, TCIFLUSH);
|
|
if (rc) {
|
|
perror("Failed to flush input queue");
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t
|
|
kwboot_xm_makeblock(struct kwboot_block *block, const void *data,
|
|
size_t size, int pnum)
|
|
{
|
|
size_t i, n;
|
|
|
|
block->soh = SOH;
|
|
block->pnum = pnum;
|
|
block->_pnum = ~block->pnum;
|
|
|
|
n = size < KWBOOT_XM_BLKSZ ? size : KWBOOT_XM_BLKSZ;
|
|
memcpy(&block->data[0], data, n);
|
|
memset(&block->data[n], 0, KWBOOT_XM_BLKSZ - n);
|
|
|
|
block->csum = 0;
|
|
for (i = 0; i < n; i++)
|
|
block->csum += block->data[i];
|
|
|
|
return n;
|
|
}
|
|
|
|
static uint64_t
|
|
_now(void)
|
|
{
|
|
struct timespec ts;
|
|
|
|
if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
|
|
static int err_print;
|
|
|
|
if (!err_print) {
|
|
perror("clock_gettime() does not work");
|
|
err_print = 1;
|
|
}
|
|
|
|
/* this will just make the timeout not work */
|
|
return -1ULL;
|
|
}
|
|
|
|
return ts.tv_sec * 1000ULL + (ts.tv_nsec + 500000) / 1000000;
|
|
}
|
|
|
|
static int
|
|
_is_xm_reply(char c)
|
|
{
|
|
return c == ACK || c == NAK;
|
|
}
|
|
|
|
static int
|
|
_xm_reply_to_error(int c)
|
|
{
|
|
int rc = -1;
|
|
|
|
switch (c) {
|
|
case ACK:
|
|
rc = 0;
|
|
break;
|
|
case NAK:
|
|
errno = EBADMSG;
|
|
break;
|
|
default:
|
|
errno = EPROTO;
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
kwboot_baud_magic_handle(int fd, char c, int baudrate)
|
|
{
|
|
static size_t rcv_len;
|
|
|
|
if (rcv_len < sizeof(kwb_baud_magic)) {
|
|
/* try to recognize whole magic word */
|
|
if (c == kwb_baud_magic[rcv_len]) {
|
|
rcv_len++;
|
|
} else {
|
|
printf("%.*s%c", (int)rcv_len, kwb_baud_magic, c);
|
|
fflush(stdout);
|
|
rcv_len = 0;
|
|
}
|
|
}
|
|
|
|
if (rcv_len == sizeof(kwb_baud_magic)) {
|
|
/* magic word received */
|
|
kwboot_printv("\nChanging baudrate to %d Bd\n", baudrate);
|
|
|
|
return kwboot_tty_change_baudrate(fd, baudrate) ? : 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
kwboot_xm_recv_reply(int fd, char *c, int stop_on_non_xm,
|
|
int ignore_nak_reply,
|
|
int allow_non_xm, int *non_xm_print,
|
|
int baudrate, int *baud_changed)
|
|
{
|
|
int timeout = allow_non_xm ? KWBOOT_HDR_RSP_TIMEO : blk_rsp_timeo;
|
|
uint64_t recv_until = _now() + timeout;
|
|
int rc;
|
|
|
|
while (1) {
|
|
rc = kwboot_tty_recv(fd, c, 1, timeout);
|
|
if (rc) {
|
|
if (errno != ETIMEDOUT)
|
|
return rc;
|
|
else if (allow_non_xm && *non_xm_print)
|
|
return -1;
|
|
else
|
|
*c = NAK;
|
|
}
|
|
|
|
/* If received xmodem reply, end. */
|
|
if (_is_xm_reply(*c)) {
|
|
if (*c == NAK && ignore_nak_reply) {
|
|
timeout = recv_until - _now();
|
|
if (timeout >= 0)
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If receiving/printing non-xmodem text output is allowed and
|
|
* such a byte was received, we want to increase receiving time
|
|
* and either:
|
|
* - print the byte, if it is not part of baudrate change magic
|
|
* sequence while baudrate change was requested (-B option)
|
|
* - change baudrate
|
|
* Otherwise decrease timeout by time elapsed.
|
|
*/
|
|
if (allow_non_xm) {
|
|
recv_until = _now() + timeout;
|
|
|
|
if (baudrate && !*baud_changed) {
|
|
rc = kwboot_baud_magic_handle(fd, *c, baudrate);
|
|
if (rc == 1)
|
|
*baud_changed = 1;
|
|
else if (!rc)
|
|
*non_xm_print = 1;
|
|
else
|
|
return rc;
|
|
} else if (!baudrate || !*baud_changed) {
|
|
putchar(*c);
|
|
fflush(stdout);
|
|
*non_xm_print = 1;
|
|
}
|
|
} else {
|
|
if (stop_on_non_xm)
|
|
break;
|
|
timeout = recv_until - _now();
|
|
if (timeout < 0) {
|
|
errno = ETIMEDOUT;
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kwboot_xm_sendblock(int fd, struct kwboot_block *block, int allow_non_xm,
|
|
int *done_print, int baudrate, int allow_retries)
|
|
{
|
|
int non_xm_print, baud_changed;
|
|
int rc, err, retries;
|
|
char c;
|
|
|
|
*done_print = 0;
|
|
non_xm_print = 0;
|
|
baud_changed = 0;
|
|
|
|
retries = 0;
|
|
do {
|
|
rc = kwboot_tty_send(fd, block, sizeof(*block), 1);
|
|
if (rc)
|
|
goto err;
|
|
|
|
if (allow_non_xm && !*done_print) {
|
|
kwboot_progress(100, '.');
|
|
kwboot_printv("Done\n");
|
|
*done_print = 1;
|
|
}
|
|
|
|
rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
|
|
retries > 8,
|
|
allow_non_xm, &non_xm_print,
|
|
baudrate, &baud_changed);
|
|
if (rc)
|
|
goto err;
|
|
|
|
if (!allow_non_xm && c != ACK) {
|
|
if (c == NAK && allow_retries && retries + 1 < 16)
|
|
kwboot_progress(-1, '+');
|
|
else
|
|
kwboot_progress(-1, 'E');
|
|
}
|
|
} while (c == NAK && allow_retries && retries++ < 16);
|
|
|
|
if (non_xm_print)
|
|
kwboot_printv("\n");
|
|
|
|
if (allow_non_xm && baudrate && !baud_changed) {
|
|
fprintf(stderr, "Baudrate was not changed\n");
|
|
errno = EPROTO;
|
|
return -1;
|
|
}
|
|
|
|
return _xm_reply_to_error(c);
|
|
err:
|
|
err = errno;
|
|
kwboot_printv("\n");
|
|
errno = err;
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
kwboot_xm_finish(int fd)
|
|
{
|
|
int rc, retries;
|
|
char c;
|
|
|
|
kwboot_printv("Finishing transfer\n");
|
|
|
|
retries = 0;
|
|
do {
|
|
rc = kwboot_tty_send_char(fd, EOT);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
|
|
retries > 8,
|
|
0, NULL, 0, NULL);
|
|
if (rc)
|
|
return rc;
|
|
} while (c == NAK && retries++ < 16);
|
|
|
|
return _xm_reply_to_error(c);
|
|
}
|
|
|
|
static int
|
|
kwboot_xmodem_one(int tty, int *pnum, int header, const uint8_t *data,
|
|
size_t size, int baudrate)
|
|
{
|
|
int done_print = 0;
|
|
size_t sent, left;
|
|
int rc;
|
|
|
|
kwboot_printv("Sending boot image %s (%zu bytes)...\n",
|
|
header ? "header" : "data", size);
|
|
|
|
left = size;
|
|
sent = 0;
|
|
|
|
while (sent < size) {
|
|
struct kwboot_block block;
|
|
int last_block;
|
|
size_t blksz;
|
|
|
|
blksz = kwboot_xm_makeblock(&block, data, left, (*pnum)++);
|
|
data += blksz;
|
|
|
|
last_block = (left <= blksz);
|
|
|
|
/*
|
|
* Handling of repeated xmodem packets is completely broken in
|
|
* Armada 385 BootROM - it completely ignores xmodem packet
|
|
* numbers, they are only used for checksum verification.
|
|
* BootROM can handle a retry of the xmodem packet only during
|
|
* the transmission of kwbimage header and only if BootROM
|
|
* itself sent NAK response to previous attempt (it does it on
|
|
* checksum failure). During the transmission of kwbimage data
|
|
* part, BootROM always expects next xmodem packet, even if it
|
|
* sent NAK to previous attempt - there is absolutely no way to
|
|
* repair incorrectly transmitted xmodem packet during kwbimage
|
|
* data part upload. Also, if kwboot receives non-ACK/NAK
|
|
* response (meaning that original BootROM response was damaged
|
|
* on UART) there is no way to detect if BootROM accepted xmodem
|
|
* packet or not and no way to check if kwboot could repeat the
|
|
* packet or not.
|
|
*
|
|
* Stop transfer and return failure if kwboot receives unknown
|
|
* reply if non-xmodem reply is not allowed (for all xmodem
|
|
* packets except the last header packet) or when non-ACK reply
|
|
* is received during data part transfer.
|
|
*/
|
|
rc = kwboot_xm_sendblock(tty, &block, header && last_block,
|
|
&done_print, baudrate, header);
|
|
if (rc)
|
|
goto out;
|
|
|
|
sent += blksz;
|
|
left -= blksz;
|
|
|
|
if (!done_print)
|
|
kwboot_progress(sent * 100 / size, '.');
|
|
}
|
|
|
|
if (!done_print)
|
|
kwboot_printv("Done\n");
|
|
|
|
return 0;
|
|
out:
|
|
kwboot_printv("\n");
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
kwboot_xmodem(int tty, const void *_img, size_t size, int baudrate)
|
|
{
|
|
const uint8_t *img = _img;
|
|
int rc, pnum;
|
|
size_t hdrsz;
|
|
|
|
hdrsz = kwbheader_size(img);
|
|
|
|
/*
|
|
* If header size is not aligned to xmodem block size (which applies
|
|
* for all images in kwbimage v0 format) then we have to ensure that
|
|
* the last xmodem block of header contains beginning of the data
|
|
* followed by the header. So align header size to xmodem block size.
|
|
*/
|
|
hdrsz += (KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ) % KWBOOT_XM_BLKSZ;
|
|
if (hdrsz > size)
|
|
hdrsz = size;
|
|
|
|
pnum = 1;
|
|
|
|
rc = kwboot_xmodem_one(tty, &pnum, 1, img, hdrsz, baudrate);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* If we have already sent image data as a part of the last
|
|
* xmodem header block then we have nothing more to send.
|
|
*/
|
|
if (hdrsz < size) {
|
|
img += hdrsz;
|
|
size -= hdrsz;
|
|
rc = kwboot_xmodem_one(tty, &pnum, 0, img, size, 0);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
rc = kwboot_xm_finish(tty);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (baudrate) {
|
|
kwboot_printv("\nChanging baudrate back to 115200 Bd\n\n");
|
|
rc = kwboot_tty_change_baudrate(tty, 115200);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kwboot_term_pipe(int in, int out, const char *quit, int *s, const char *kbs, int *k)
|
|
{
|
|
char buf[128];
|
|
ssize_t nin, noff;
|
|
|
|
nin = read(in, buf, sizeof(buf));
|
|
if (nin <= 0)
|
|
return -1;
|
|
|
|
noff = 0;
|
|
|
|
if (quit || kbs) {
|
|
int i;
|
|
|
|
for (i = 0; i < nin; i++) {
|
|
if ((quit || kbs) &&
|
|
(!quit || buf[i] != quit[*s]) &&
|
|
(!kbs || buf[i] != kbs[*k])) {
|
|
const char *prefix;
|
|
int plen;
|
|
|
|
if (quit && kbs) {
|
|
prefix = (*s >= *k) ? quit : kbs;
|
|
plen = (*s >= *k) ? *s : *k;
|
|
} else if (quit) {
|
|
prefix = quit;
|
|
plen = *s;
|
|
} else {
|
|
prefix = kbs;
|
|
plen = *k;
|
|
}
|
|
|
|
if (plen > i && kwboot_write(out, prefix, plen - i) < 0)
|
|
return -1;
|
|
}
|
|
|
|
if (quit && buf[i] == quit[*s]) {
|
|
(*s)++;
|
|
if (!quit[*s]) {
|
|
nin = (i > *s) ? (i - *s) : 0;
|
|
break;
|
|
}
|
|
} else if (quit) {
|
|
*s = 0;
|
|
}
|
|
|
|
if (kbs && buf[i] == kbs[*k]) {
|
|
(*k)++;
|
|
if (!kbs[*k]) {
|
|
if (i > *k + noff &&
|
|
kwboot_write(out, buf + noff, i - *k - noff) < 0)
|
|
return -1;
|
|
/*
|
|
* Replace backspace key by '\b' (0x08)
|
|
* byte which is the only recognized
|
|
* backspace byte by Marvell BootROM.
|
|
*/
|
|
if (write(out, "\x08", 1) < 0)
|
|
return -1;
|
|
noff = i + 1;
|
|
*k = 0;
|
|
}
|
|
} else if (kbs) {
|
|
*k = 0;
|
|
}
|
|
}
|
|
|
|
if (i == nin) {
|
|
i = 0;
|
|
if (quit && i < *s)
|
|
i = *s;
|
|
if (kbs && i < *k)
|
|
i = *k;
|
|
nin -= (nin > i) ? i : nin;
|
|
}
|
|
}
|
|
|
|
if (nin > noff && kwboot_write(out, buf + noff, nin - noff) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kwboot_terminal(int tty)
|
|
{
|
|
int rc, in, s, k;
|
|
const char *kbs = NULL;
|
|
const char *quit = "\34c";
|
|
struct termios otio, tio;
|
|
|
|
rc = -1;
|
|
|
|
in = STDIN_FILENO;
|
|
if (isatty(in)) {
|
|
rc = tcgetattr(in, &otio);
|
|
if (!rc) {
|
|
tio = otio;
|
|
cfmakeraw(&tio);
|
|
rc = tcsetattr(in, TCSANOW, &tio);
|
|
}
|
|
if (rc) {
|
|
perror("tcsetattr");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Get sequence for backspace key used by the current
|
|
* terminal. Every occurrence of this sequence will be
|
|
* replaced by '\b' byte which is the only recognized
|
|
* backspace byte by Marvell BootROM.
|
|
*
|
|
* Note that we cannot read this sequence from termios
|
|
* c_cc[VERASE] as VERASE is valid only when ICANON is
|
|
* set in termios c_lflag, which is not case for us.
|
|
*
|
|
* Also most terminals do not set termios c_cc[VERASE]
|
|
* as c_cc[VERASE] can specify only one-byte sequence
|
|
* and instead let applications to read (possible
|
|
* multi-byte) sequence for backspace key from "kbs"
|
|
* terminfo database based on $TERM env variable.
|
|
*
|
|
* So read "kbs" from terminfo database via tigetstr()
|
|
* call after successful setupterm(). Most terminals
|
|
* use byte 0x7F for backspace key, so replacement with
|
|
* '\b' is required.
|
|
*/
|
|
if (setupterm(NULL, STDOUT_FILENO, &rc) == 0) {
|
|
kbs = tigetstr("kbs");
|
|
if (kbs == (char *)-1)
|
|
kbs = NULL;
|
|
}
|
|
|
|
kwboot_printv("[Type Ctrl-%c + %c to quit]\r\n",
|
|
quit[0] | 0100, quit[1]);
|
|
} else
|
|
in = -1;
|
|
|
|
rc = 0;
|
|
s = 0;
|
|
k = 0;
|
|
|
|
do {
|
|
fd_set rfds;
|
|
int nfds = 0;
|
|
|
|
FD_ZERO(&rfds);
|
|
FD_SET(tty, &rfds);
|
|
nfds = nfds < tty ? tty : nfds;
|
|
|
|
if (in >= 0) {
|
|
FD_SET(in, &rfds);
|
|
nfds = nfds < in ? in : nfds;
|
|
}
|
|
|
|
nfds = select(nfds + 1, &rfds, NULL, NULL, NULL);
|
|
if (nfds < 0)
|
|
break;
|
|
|
|
if (FD_ISSET(tty, &rfds)) {
|
|
rc = kwboot_term_pipe(tty, STDOUT_FILENO, NULL, NULL, NULL, NULL);
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
if (in >= 0 && FD_ISSET(in, &rfds)) {
|
|
rc = kwboot_term_pipe(in, tty, quit, &s, kbs, &k);
|
|
if (rc)
|
|
break;
|
|
}
|
|
} while (quit[s] != 0);
|
|
|
|
if (in >= 0)
|
|
tcsetattr(in, TCSANOW, &otio);
|
|
printf("\n");
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static void *
|
|
kwboot_read_image(const char *path, size_t *size, size_t reserve)
|
|
{
|
|
int rc, fd;
|
|
void *img;
|
|
off_t len;
|
|
off_t tot;
|
|
|
|
rc = -1;
|
|
img = NULL;
|
|
|
|
fd = open(path, O_RDONLY);
|
|
if (fd < 0)
|
|
goto out;
|
|
|
|
len = lseek(fd, 0, SEEK_END);
|
|
if (len == (off_t)-1)
|
|
goto out;
|
|
|
|
if (lseek(fd, 0, SEEK_SET) == (off_t)-1)
|
|
goto out;
|
|
|
|
img = malloc(len + reserve);
|
|
if (!img)
|
|
goto out;
|
|
|
|
tot = 0;
|
|
while (tot < len) {
|
|
ssize_t rd = read(fd, img + tot, len - tot);
|
|
|
|
if (rd < 0)
|
|
goto out;
|
|
|
|
tot += rd;
|
|
|
|
if (!rd && tot < len) {
|
|
errno = EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
rc = 0;
|
|
*size = len;
|
|
out:
|
|
if (rc && img) {
|
|
free(img);
|
|
img = NULL;
|
|
}
|
|
if (fd >= 0)
|
|
close(fd);
|
|
|
|
return img;
|
|
}
|
|
|
|
static uint8_t
|
|
kwboot_hdr_csum8(const void *hdr)
|
|
{
|
|
const uint8_t *data = hdr;
|
|
uint8_t csum;
|
|
size_t size;
|
|
|
|
size = kwbheader_size_for_csum(hdr);
|
|
|
|
for (csum = 0; size-- > 0; data++)
|
|
csum += *data;
|
|
|
|
return csum;
|
|
}
|
|
|
|
static uint32_t *
|
|
kwboot_img_csum32_ptr(void *img)
|
|
{
|
|
struct main_hdr_v1 *hdr = img;
|
|
uint32_t datasz;
|
|
|
|
datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
|
|
|
|
return img + le32_to_cpu(hdr->srcaddr) + datasz;
|
|
}
|
|
|
|
static uint32_t
|
|
kwboot_img_csum32(const void *img)
|
|
{
|
|
const struct main_hdr_v1 *hdr = img;
|
|
uint32_t datasz, csum = 0;
|
|
const uint32_t *data;
|
|
|
|
datasz = le32_to_cpu(hdr->blocksize) - sizeof(csum);
|
|
if (datasz % sizeof(uint32_t))
|
|
return 0;
|
|
|
|
data = img + le32_to_cpu(hdr->srcaddr);
|
|
while (datasz > 0) {
|
|
csum += le32_to_cpu(*data++);
|
|
datasz -= 4;
|
|
}
|
|
|
|
return cpu_to_le32(csum);
|
|
}
|
|
|
|
static int
|
|
kwboot_img_is_secure(void *img)
|
|
{
|
|
struct opt_hdr_v1 *ohdr;
|
|
|
|
for_each_opt_hdr_v1 (ohdr, img)
|
|
if (ohdr->headertype == OPT_HDR_V1_SECURE_TYPE)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kwboot_img_has_ddr_init(void *img)
|
|
{
|
|
const struct register_set_hdr_v1 *rhdr;
|
|
const struct main_hdr_v0 *hdr0;
|
|
struct opt_hdr_v1 *ohdr;
|
|
u32 ohdrsz;
|
|
int last;
|
|
|
|
/*
|
|
* kwbimage v0 image headers contain DDR init code either in
|
|
* extension header or in binary code header.
|
|
*/
|
|
if (kwbimage_version(img) == 0) {
|
|
hdr0 = img;
|
|
return hdr0->ext || hdr0->bin;
|
|
}
|
|
|
|
/*
|
|
* kwbimage v1 image headers contain DDR init code either in binary
|
|
* code header or in a register set list header with SDRAM_SETUP.
|
|
*/
|
|
for_each_opt_hdr_v1 (ohdr, img) {
|
|
if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE)
|
|
return 1;
|
|
if (ohdr->headertype == OPT_HDR_V1_REGISTER_TYPE) {
|
|
rhdr = (const struct register_set_hdr_v1 *)ohdr;
|
|
ohdrsz = opt_hdr_v1_size(ohdr);
|
|
if (ohdrsz >= sizeof(*ohdr) + sizeof(rhdr->data[0].last_entry)) {
|
|
ohdrsz -= sizeof(*ohdr) + sizeof(rhdr->data[0].last_entry);
|
|
last = ohdrsz / sizeof(rhdr->data[0].entry);
|
|
if (rhdr->data[last].last_entry.delay ==
|
|
REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP)
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *
|
|
kwboot_img_grow_data_right(void *img, size_t *size, size_t grow)
|
|
{
|
|
struct main_hdr_v1 *hdr = img;
|
|
void *result;
|
|
|
|
/*
|
|
* 32-bit checksum comes after end of image code, so we will be putting
|
|
* new code there. So we get this pointer and then increase data size
|
|
* (since increasing data size changes kwboot_img_csum32_ptr() return
|
|
* value).
|
|
*/
|
|
result = kwboot_img_csum32_ptr(img);
|
|
hdr->blocksize = cpu_to_le32(le32_to_cpu(hdr->blocksize) + grow);
|
|
*size += grow;
|
|
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
kwboot_img_grow_hdr(void *img, size_t *size, size_t grow)
|
|
{
|
|
uint32_t hdrsz, datasz, srcaddr;
|
|
struct main_hdr_v1 *hdr = img;
|
|
struct opt_hdr_v1 *ohdr;
|
|
uint8_t *data;
|
|
|
|
srcaddr = le32_to_cpu(hdr->srcaddr);
|
|
|
|
/* calculate real used space in kwbimage header */
|
|
if (kwbimage_version(img) == 0) {
|
|
hdrsz = kwbheader_size(img);
|
|
} else {
|
|
hdrsz = sizeof(*hdr);
|
|
for_each_opt_hdr_v1 (ohdr, hdr)
|
|
hdrsz += opt_hdr_v1_size(ohdr);
|
|
}
|
|
|
|
data = (uint8_t *)img + srcaddr;
|
|
datasz = *size - srcaddr;
|
|
|
|
/* only move data if there is not enough space */
|
|
if (hdrsz + grow > srcaddr) {
|
|
size_t need = hdrsz + grow - srcaddr;
|
|
|
|
/* move data by enough bytes */
|
|
memmove(data + need, data, datasz);
|
|
|
|
hdr->srcaddr = cpu_to_le32(srcaddr + need);
|
|
*size += need;
|
|
}
|
|
|
|
if (kwbimage_version(img) == 1) {
|
|
hdrsz += grow;
|
|
if (hdrsz > kwbheader_size(img)) {
|
|
hdr->headersz_msb = hdrsz >> 16;
|
|
hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void *
|
|
kwboot_add_bin_ohdr_v1(void *img, size_t *size, uint32_t binsz)
|
|
{
|
|
struct main_hdr_v1 *hdr = img;
|
|
struct opt_hdr_v1 *ohdr;
|
|
uint32_t num_args;
|
|
uint32_t offset;
|
|
uint32_t ohdrsz;
|
|
uint8_t *prev_ext;
|
|
|
|
if (hdr->ext) {
|
|
for_each_opt_hdr_v1 (ohdr, img)
|
|
if (opt_hdr_v1_next(ohdr) == NULL)
|
|
break;
|
|
|
|
prev_ext = opt_hdr_v1_ext(ohdr);
|
|
ohdr = _opt_hdr_v1_next(ohdr);
|
|
} else {
|
|
ohdr = (void *)(hdr + 1);
|
|
prev_ext = &hdr->ext;
|
|
}
|
|
|
|
/*
|
|
* ARM executable code inside the BIN header on some mvebu platforms
|
|
* (e.g. A370, AXP) must always be aligned with the 128-bit boundary.
|
|
* This requirement can be met by inserting dummy arguments into
|
|
* BIN header, if needed.
|
|
*/
|
|
offset = &ohdr->data[4] - (char *)img;
|
|
num_args = ((16 - offset % 16) % 16) / sizeof(uint32_t);
|
|
|
|
ohdrsz = sizeof(*ohdr) + 4 + 4 * num_args + binsz + 4;
|
|
kwboot_img_grow_hdr(hdr, size, ohdrsz);
|
|
|
|
*prev_ext = 1;
|
|
|
|
ohdr->headertype = OPT_HDR_V1_BINARY_TYPE;
|
|
ohdr->headersz_msb = ohdrsz >> 16;
|
|
ohdr->headersz_lsb = cpu_to_le16(ohdrsz & 0xffff);
|
|
|
|
memset(&ohdr->data[0], 0, ohdrsz - sizeof(*ohdr));
|
|
*(uint32_t *)&ohdr->data[0] = cpu_to_le32(num_args);
|
|
|
|
return &ohdr->data[4 + 4 * num_args];
|
|
}
|
|
|
|
static void
|
|
_inject_baudrate_change_code(void *img, size_t *size, int for_data,
|
|
int old_baud, int new_baud)
|
|
{
|
|
struct main_hdr_v1 *hdr = img;
|
|
uint32_t orig_datasz;
|
|
uint32_t codesz;
|
|
uint8_t *code;
|
|
|
|
if (for_data) {
|
|
orig_datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
|
|
|
|
codesz = sizeof(kwboot_baud_code) +
|
|
sizeof(kwboot_baud_code_data_jump);
|
|
code = kwboot_img_grow_data_right(img, size, codesz);
|
|
} else {
|
|
codesz = sizeof(kwboot_baud_code_binhdr_pre) +
|
|
sizeof(kwboot_baud_code) +
|
|
sizeof(kwboot_baud_code_binhdr_post);
|
|
code = kwboot_add_bin_ohdr_v1(img, size, codesz);
|
|
|
|
codesz = sizeof(kwboot_baud_code_binhdr_pre);
|
|
memcpy(code, kwboot_baud_code_binhdr_pre, codesz);
|
|
code += codesz;
|
|
}
|
|
|
|
codesz = sizeof(kwboot_baud_code) - 2 * sizeof(uint32_t);
|
|
memcpy(code, kwboot_baud_code, codesz);
|
|
code += codesz;
|
|
*(uint32_t *)code = cpu_to_le32(old_baud);
|
|
code += sizeof(uint32_t);
|
|
*(uint32_t *)code = cpu_to_le32(new_baud);
|
|
code += sizeof(uint32_t);
|
|
|
|
if (for_data) {
|
|
codesz = sizeof(kwboot_baud_code_data_jump) - sizeof(uint32_t);
|
|
memcpy(code, kwboot_baud_code_data_jump, codesz);
|
|
code += codesz;
|
|
*(uint32_t *)code = hdr->execaddr;
|
|
code += sizeof(uint32_t);
|
|
hdr->execaddr = cpu_to_le32(le32_to_cpu(hdr->destaddr) + orig_datasz);
|
|
} else {
|
|
codesz = sizeof(kwboot_baud_code_binhdr_post);
|
|
memcpy(code, kwboot_baud_code_binhdr_post, codesz);
|
|
code += codesz;
|
|
}
|
|
}
|
|
|
|
static const char *
|
|
kwboot_img_type(uint8_t blockid)
|
|
{
|
|
switch (blockid) {
|
|
case IBR_HDR_I2C_ID: return "I2C";
|
|
case IBR_HDR_SPI_ID: return "SPI";
|
|
case IBR_HDR_NAND_ID: return "NAND";
|
|
case IBR_HDR_SATA_ID: return "SATA";
|
|
case IBR_HDR_PEX_ID: return "PEX";
|
|
case IBR_HDR_UART_ID: return "UART";
|
|
case IBR_HDR_SDIO_ID: return "SDIO";
|
|
default: return "unknown";
|
|
}
|
|
}
|
|
|
|
static int
|
|
kwboot_img_patch(void *img, size_t *size, int baudrate)
|
|
{
|
|
struct main_hdr_v1 *hdr;
|
|
struct opt_hdr_v1 *ohdr;
|
|
uint32_t srcaddr;
|
|
uint8_t csum;
|
|
size_t hdrsz;
|
|
int image_ver;
|
|
int is_secure;
|
|
|
|
hdr = img;
|
|
|
|
if (*size < sizeof(struct main_hdr_v1)) {
|
|
fprintf(stderr, "Invalid image header size\n");
|
|
goto err;
|
|
}
|
|
|
|
image_ver = kwbimage_version(img);
|
|
if (image_ver != 0 && image_ver != 1) {
|
|
fprintf(stderr, "Invalid image header version\n");
|
|
goto err;
|
|
}
|
|
|
|
hdrsz = kwbheader_size(hdr);
|
|
|
|
if (*size < hdrsz) {
|
|
fprintf(stderr, "Invalid image header size\n");
|
|
goto err;
|
|
}
|
|
|
|
kwboot_printv("Detected kwbimage v%d with %s boot signature\n", image_ver, kwboot_img_type(hdr->blockid));
|
|
|
|
csum = kwboot_hdr_csum8(hdr) - hdr->checksum;
|
|
if (csum != hdr->checksum) {
|
|
fprintf(stderr, "Image has invalid header checksum stored in image header\n");
|
|
goto err;
|
|
}
|
|
|
|
srcaddr = le32_to_cpu(hdr->srcaddr);
|
|
|
|
switch (hdr->blockid) {
|
|
case IBR_HDR_SATA_ID:
|
|
hdr->srcaddr = cpu_to_le32(srcaddr * 512);
|
|
break;
|
|
|
|
case IBR_HDR_PEX_ID:
|
|
if (srcaddr == 0xFFFFFFFF)
|
|
hdr->srcaddr = cpu_to_le32(hdrsz);
|
|
break;
|
|
|
|
case IBR_HDR_SPI_ID:
|
|
if (hdr->destaddr == cpu_to_le32(0xFFFFFFFF)) {
|
|
kwboot_printv("Patching destination and execution addresses from SPI/NOR XIP area to DDR area 0x00800000\n");
|
|
hdr->destaddr = cpu_to_le32(0x00800000 + le32_to_cpu(hdr->srcaddr));
|
|
hdr->execaddr = cpu_to_le32(0x00800000 + le32_to_cpu(hdr->execaddr));
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (hdrsz > le32_to_cpu(hdr->srcaddr)) {
|
|
fprintf(stderr, "Image has invalid data offset stored in image header\n");
|
|
goto err;
|
|
}
|
|
|
|
if (*size < le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize)) {
|
|
fprintf(stderr, "Image has invalid data size stored in image header\n");
|
|
goto err;
|
|
}
|
|
|
|
for_each_opt_hdr_v1 (ohdr, hdr) {
|
|
if (!opt_hdr_v1_valid_size(ohdr, (const uint8_t *)hdr + hdrsz)) {
|
|
fprintf(stderr, "Invalid optional image header\n");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The 32-bit data checksum is optional for UART image. If it is not
|
|
* present (checksum detected as invalid) then grow data part of the
|
|
* image for the checksum, so it can be inserted there.
|
|
*/
|
|
if (kwboot_img_csum32(img) != *kwboot_img_csum32_ptr(img)) {
|
|
if (hdr->blockid != IBR_HDR_UART_ID) {
|
|
fprintf(stderr, "Image has invalid data checksum\n");
|
|
goto err;
|
|
}
|
|
kwboot_img_grow_data_right(img, size, sizeof(uint32_t));
|
|
/* Update the 32-bit data checksum */
|
|
*kwboot_img_csum32_ptr(img) = kwboot_img_csum32(img);
|
|
}
|
|
|
|
if (!kwboot_img_has_ddr_init(img) &&
|
|
(le32_to_cpu(hdr->destaddr) < 0x40000000 ||
|
|
le32_to_cpu(hdr->destaddr) + le32_to_cpu(hdr->blocksize) > 0x40034000)) {
|
|
fprintf(stderr, "Image does not contain DDR init code needed for UART booting\n");
|
|
goto err;
|
|
}
|
|
|
|
is_secure = kwboot_img_is_secure(img);
|
|
|
|
if (hdr->blockid != IBR_HDR_UART_ID) {
|
|
if (is_secure) {
|
|
fprintf(stderr,
|
|
"Image has secure header with signature for non-UART booting\n");
|
|
goto err;
|
|
}
|
|
|
|
kwboot_printv("Patching image boot signature to UART\n");
|
|
hdr->blockid = IBR_HDR_UART_ID;
|
|
}
|
|
|
|
if (!is_secure) {
|
|
if (image_ver == 1) {
|
|
/*
|
|
* Tell BootROM to send BootROM messages to UART port
|
|
* number 0 (used also for UART booting) with default
|
|
* baudrate (which should be 115200) and do not touch
|
|
* UART MPP configuration.
|
|
*/
|
|
hdr->flags |= 0x1;
|
|
hdr->options &= ~0x1F;
|
|
hdr->options |= MAIN_HDR_V1_OPT_BAUD_DEFAULT;
|
|
hdr->options |= 0 << 3;
|
|
}
|
|
if (image_ver == 0)
|
|
((struct main_hdr_v0 *)img)->nandeccmode = IBR_HDR_ECC_DISABLED;
|
|
hdr->nandpagesize = 0;
|
|
}
|
|
|
|
if (baudrate) {
|
|
if (image_ver == 0) {
|
|
fprintf(stderr,
|
|
"Cannot inject code for changing baudrate into v0 image header\n");
|
|
goto err;
|
|
}
|
|
|
|
if (is_secure) {
|
|
fprintf(stderr,
|
|
"Cannot inject code for changing baudrate into image with secure header\n");
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* First inject code that changes the baudrate from the default
|
|
* value of 115200 Bd to requested value. This code is inserted
|
|
* as a new opt hdr, so it is executed by BootROM after the
|
|
* header part is received.
|
|
*/
|
|
kwboot_printv("Injecting binary header code for changing baudrate to %d Bd\n",
|
|
baudrate);
|
|
_inject_baudrate_change_code(img, size, 0, 115200, baudrate);
|
|
|
|
/*
|
|
* Now inject code that changes the baudrate back to 115200 Bd.
|
|
* This code is appended after the data part of the image, and
|
|
* execaddr is changed so that it is executed before U-Boot
|
|
* proper.
|
|
*/
|
|
kwboot_printv("Injecting code for changing baudrate back\n");
|
|
_inject_baudrate_change_code(img, size, 1, baudrate, 115200);
|
|
|
|
/* Update the 32-bit data checksum */
|
|
*kwboot_img_csum32_ptr(img) = kwboot_img_csum32(img);
|
|
|
|
/* recompute header size */
|
|
hdrsz = kwbheader_size(hdr);
|
|
}
|
|
|
|
if (hdrsz % KWBOOT_XM_BLKSZ) {
|
|
size_t grow = KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ;
|
|
|
|
if (is_secure) {
|
|
fprintf(stderr, "Cannot align image with secure header\n");
|
|
goto err;
|
|
}
|
|
|
|
kwboot_printv("Aligning image header to Xmodem block size\n");
|
|
kwboot_img_grow_hdr(img, size, grow);
|
|
hdrsz += grow;
|
|
|
|
/*
|
|
* kwbimage v1 contains header size field and for UART type it
|
|
* must be set to the aligned xmodem header size because BootROM
|
|
* rounds header size down to xmodem block size.
|
|
*/
|
|
if (kwbimage_version(img) == 1) {
|
|
hdr->headersz_msb = hdrsz >> 16;
|
|
hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff);
|
|
}
|
|
}
|
|
|
|
/* Header size and source address must be same for UART type due to A38x BootROM bug */
|
|
if (hdrsz != le32_to_cpu(hdr->srcaddr)) {
|
|
if (is_secure) {
|
|
fprintf(stderr, "Cannot align image with secure header\n");
|
|
goto err;
|
|
}
|
|
|
|
kwboot_printv("Removing gap between image header and data\n");
|
|
memmove(img + hdrsz, img + le32_to_cpu(hdr->srcaddr), le32_to_cpu(hdr->blocksize));
|
|
hdr->srcaddr = cpu_to_le32(hdrsz);
|
|
}
|
|
|
|
hdr->checksum = kwboot_hdr_csum8(hdr) - csum;
|
|
|
|
*size = le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize);
|
|
return 0;
|
|
err:
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
kwboot_usage(FILE *stream, char *progname)
|
|
{
|
|
fprintf(stream,
|
|
"Usage: %s [OPTIONS] [-b <image> | -D <image> | -b | -d ] [-B <baud> ] [-t] <TTY>\n",
|
|
progname);
|
|
fprintf(stream, "\n");
|
|
fprintf(stream,
|
|
" -b <image>: boot <image> with preamble (Kirkwood, Avanta, Armada 370/XP/375/38x/39x)\n");
|
|
fprintf(stream,
|
|
" -D <image>: boot <image> without preamble (Dove)\n");
|
|
fprintf(stream, " -b: enter xmodem boot mode\n");
|
|
fprintf(stream, " -d: enter console debug mode\n");
|
|
fprintf(stream, " -a: use timings for Armada XP\n");
|
|
fprintf(stream, " -s <resp-timeo>: use specific response-timeout\n");
|
|
fprintf(stream,
|
|
" -o <block-timeo>: use specific xmodem block timeout\n");
|
|
fprintf(stream, "\n");
|
|
fprintf(stream, " -t: mini terminal\n");
|
|
fprintf(stream, "\n");
|
|
fprintf(stream, " -B <baud>: set baud rate\n");
|
|
fprintf(stream, "\n");
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
const char *ttypath, *imgpath;
|
|
int rv, rc, tty, term;
|
|
int bootmsg;
|
|
int debugmsg;
|
|
void *img;
|
|
size_t size;
|
|
size_t after_img_rsv;
|
|
int baudrate;
|
|
int prev_optind;
|
|
int c;
|
|
|
|
rv = 1;
|
|
tty = -1;
|
|
bootmsg = 0;
|
|
debugmsg = 0;
|
|
imgpath = NULL;
|
|
img = NULL;
|
|
term = 0;
|
|
size = 0;
|
|
after_img_rsv = KWBOOT_XM_BLKSZ;
|
|
baudrate = 115200;
|
|
|
|
printf("kwboot version %s\n", PLAIN_VERSION);
|
|
|
|
kwboot_verbose = isatty(STDOUT_FILENO);
|
|
|
|
do {
|
|
prev_optind = optind;
|
|
c = getopt(argc, argv, "hbptaB:dD:q:s:o:");
|
|
if (c < 0)
|
|
break;
|
|
|
|
switch (c) {
|
|
case 'b':
|
|
if (imgpath || bootmsg || debugmsg)
|
|
goto usage;
|
|
bootmsg = 1;
|
|
if (prev_optind == optind)
|
|
goto usage;
|
|
/* Option -b could have optional argument which specify image path */
|
|
if (optind < argc && argv[optind] && argv[optind][0] != '-')
|
|
imgpath = argv[optind++];
|
|
break;
|
|
|
|
case 'D':
|
|
if (imgpath || bootmsg || debugmsg)
|
|
goto usage;
|
|
bootmsg = 0;
|
|
imgpath = optarg;
|
|
break;
|
|
|
|
case 'd':
|
|
if (imgpath || bootmsg || debugmsg)
|
|
goto usage;
|
|
debugmsg = 1;
|
|
break;
|
|
|
|
case 'p':
|
|
/* nop, for backward compatibility */
|
|
break;
|
|
|
|
case 't':
|
|
term = 1;
|
|
break;
|
|
|
|
case 'a':
|
|
msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO_AXP;
|
|
break;
|
|
|
|
case 'q':
|
|
/* nop, for backward compatibility */
|
|
break;
|
|
|
|
case 's':
|
|
msg_rsp_timeo = atoi(optarg);
|
|
break;
|
|
|
|
case 'o':
|
|
blk_rsp_timeo = atoi(optarg);
|
|
break;
|
|
|
|
case 'B':
|
|
baudrate = atoi(optarg);
|
|
break;
|
|
|
|
case 'h':
|
|
rv = 0;
|
|
default:
|
|
goto usage;
|
|
}
|
|
} while (1);
|
|
|
|
if (!bootmsg && !term && !debugmsg && !imgpath)
|
|
goto usage;
|
|
|
|
/*
|
|
* If there is no remaining argument but optional imgpath was parsed
|
|
* then it means that optional imgpath was eaten by getopt parser.
|
|
* Reassing imgpath to required ttypath argument.
|
|
*/
|
|
if (optind == argc && imgpath) {
|
|
ttypath = imgpath;
|
|
imgpath = NULL;
|
|
} else if (optind + 1 == argc) {
|
|
ttypath = argv[optind];
|
|
} else {
|
|
goto usage;
|
|
}
|
|
|
|
/* boot and debug message use baudrate 115200 */
|
|
if (((bootmsg && !imgpath) || debugmsg) && baudrate != 115200) {
|
|
fprintf(stderr, "Baudrate other than 115200 cannot be used for this operation.\n");
|
|
goto usage;
|
|
}
|
|
|
|
tty = kwboot_open_tty(ttypath, baudrate);
|
|
if (tty < 0) {
|
|
perror(ttypath);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* initial baudrate for image transfer is always 115200,
|
|
* the change to different baudrate is done only after the header is sent
|
|
*/
|
|
if (imgpath && baudrate != 115200) {
|
|
rc = kwboot_tty_change_baudrate(tty, 115200);
|
|
if (rc) {
|
|
perror(ttypath);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (baudrate == 115200)
|
|
/* do not change baudrate during Xmodem to the same value */
|
|
baudrate = 0;
|
|
else
|
|
/* ensure we have enough space for baudrate change code */
|
|
after_img_rsv += sizeof(struct opt_hdr_v1) + 8 + 16 +
|
|
sizeof(kwboot_baud_code_binhdr_pre) +
|
|
sizeof(kwboot_baud_code) +
|
|
sizeof(kwboot_baud_code_binhdr_post) +
|
|
KWBOOT_XM_BLKSZ +
|
|
sizeof(kwboot_baud_code) +
|
|
sizeof(kwboot_baud_code_data_jump) +
|
|
sizeof(uint32_t) +
|
|
KWBOOT_XM_BLKSZ;
|
|
|
|
if (imgpath) {
|
|
img = kwboot_read_image(imgpath, &size, after_img_rsv);
|
|
if (!img) {
|
|
perror(imgpath);
|
|
goto out;
|
|
}
|
|
|
|
rc = kwboot_img_patch(img, &size, baudrate);
|
|
if (rc) {
|
|
fprintf(stderr, "%s: Invalid image.\n", imgpath);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (debugmsg) {
|
|
rc = kwboot_debugmsg(tty);
|
|
if (rc)
|
|
goto out;
|
|
} else if (bootmsg) {
|
|
rc = kwboot_bootmsg(tty);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
if (img) {
|
|
rc = kwboot_xmodem(tty, img, size, baudrate);
|
|
if (rc) {
|
|
perror("xmodem");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (term) {
|
|
rc = kwboot_terminal(tty);
|
|
if (rc && !(errno == EINTR)) {
|
|
perror("terminal");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
rv = 0;
|
|
out:
|
|
if (tty >= 0)
|
|
close(tty);
|
|
|
|
if (img)
|
|
free(img);
|
|
|
|
return rv;
|
|
|
|
usage:
|
|
kwboot_usage(rv ? stderr : stdout, basename(argv[0]));
|
|
goto out;
|
|
}
|