u-boot/arch/arm/mach-imx/imx8ulp/clock.c
Ye Li dc77d0f9fc imx8ulp: clock: Handle the DDRLOCKED when setting DDR clock
The DDRLOCKED bit in CGC2 DDRCLK will auto lock up and down by HW
according to DDR DIV updating or DDR CLK halt status change. So DDR
PCC disable/enable will trigger the lock up/down flow. We
need wait until unlock to ensure clock is ready.

And before configuring the DDRCLK DIV, we need polling the DDRLOCKED
until it is unlocked. Otherwise writing ti DIV bits will not set.

Reviewed-by: Peng Fan <peng.fan@nxp.com>
Signed-off-by: Ye Li <ye.li@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
2022-02-05 13:38:39 +01:00

529 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020 NXP
*/
#include <common.h>
#include <command.h>
#include <div64.h>
#include <asm/arch/imx-regs.h>
#include <asm/io.h>
#include <errno.h>
#include <asm/arch/clock.h>
#include <asm/arch/pcc.h>
#include <asm/arch/cgc.h>
#include <asm/arch/sys_proto.h>
#include <asm/global_data.h>
#include <linux/delay.h>
DECLARE_GLOBAL_DATA_PTR;
#define PLL_USB_EN_USB_CLKS_MASK (0x01 << 6)
#define PLL_USB_PWR_MASK (0x01 << 12)
#define PLL_USB_ENABLE_MASK (0x01 << 13)
#define PLL_USB_BYPASS_MASK (0x01 << 16)
#define PLL_USB_REG_ENABLE_MASK (0x01 << 21)
#define PLL_USB_DIV_SEL_MASK (0x07 << 22)
#define PLL_USB_LOCK_MASK (0x01 << 31)
#define PCC5_LPDDR4_ADDR 0x2da70108
static void lpuart_set_clk(u32 index, enum cgc_clk clk)
{
const u32 lpuart_pcc_slots[] = {
LPUART4_PCC3_SLOT,
LPUART5_PCC3_SLOT,
LPUART6_PCC4_SLOT,
LPUART7_PCC4_SLOT,
};
const u32 lpuart_pcc[] = {
3, 3, 4, 4,
};
if (index > 3)
return;
pcc_clock_enable(lpuart_pcc[index], lpuart_pcc_slots[index], false);
pcc_clock_sel(lpuart_pcc[index], lpuart_pcc_slots[index], clk);
pcc_clock_enable(lpuart_pcc[index], lpuart_pcc_slots[index], true);
pcc_reset_peripheral(lpuart_pcc[index], lpuart_pcc_slots[index], false);
}
static void init_clk_lpuart(void)
{
u32 index = 0, i;
const u32 lpuart_array[] = {
LPUART4_RBASE,
LPUART5_RBASE,
LPUART6_RBASE,
LPUART7_RBASE,
};
for (i = 0; i < 4; i++) {
if (lpuart_array[i] == LPUART_BASE) {
index = i;
break;
}
}
lpuart_set_clk(index, SOSC_DIV2);
}
void init_clk_fspi(int index)
{
pcc_clock_enable(4, FLEXSPI2_PCC4_SLOT, false);
pcc_clock_sel(4, FLEXSPI2_PCC4_SLOT, PLL3_PFD2_DIV1);
pcc_clock_div_config(4, FLEXSPI2_PCC4_SLOT, false, 8);
pcc_clock_enable(4, FLEXSPI2_PCC4_SLOT, true);
pcc_reset_peripheral(4, FLEXSPI2_PCC4_SLOT, false);
}
void setclkout_ddr(void)
{
writel(0x12800000, 0x2DA60020);
writel(0xa00, 0x298C0000); /* PTD0 */
}
void ddrphy_pll_lock(void)
{
writel(0x00011542, 0x2E065964);
writel(0x00011542, 0x2E06586C);
writel(0x00000B01, 0x2E062000);
writel(0x00000B01, 0x2E060000);
}
void init_clk_ddr(void)
{
/* disable the ddr pcc */
writel(0xc0000000, PCC5_LPDDR4_ADDR);
/* enable pll4 and ddrclk*/
cgc2_pll4_init();
cgc2_ddrclk_config(1, 1);
/* enable ddr pcc */
writel(0xd0000000, PCC5_LPDDR4_ADDR);
/* Wait until ddrclk reg lock bit is cleared, so that the div update is finished */
cgc2_ddrclk_wait_unlock();
/* for debug */
/* setclkout_ddr(); */
}
int set_ddr_clk(u32 phy_freq_mhz)
{
debug("%s %u\n", __func__, phy_freq_mhz);
if (phy_freq_mhz == 48) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(2, 0); /* 24Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 384) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(0, 0); /* 192Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 528) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(4, 1); /* 264Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 264) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(4, 3); /* 132Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 192) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(0, 1); /* 96Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 96) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(0, 3); /* 48Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else {
printf("ddr phy clk %uMhz is not supported\n", phy_freq_mhz);
return -EINVAL;
}
/* Wait until ddrclk reg lock bit is cleared, so that the div update is finished */
cgc2_ddrclk_wait_unlock();
return 0;
}
void clock_init(void)
{
cgc1_soscdiv_init();
cgc1_init_core_clk();
init_clk_lpuart();
pcc_clock_enable(4, SDHC0_PCC4_SLOT, false);
pcc_clock_sel(4, SDHC0_PCC4_SLOT, PLL3_PFD1_DIV2);
pcc_clock_enable(4, SDHC0_PCC4_SLOT, true);
pcc_reset_peripheral(4, SDHC0_PCC4_SLOT, false);
pcc_clock_enable(4, SDHC1_PCC4_SLOT, false);
pcc_clock_sel(4, SDHC1_PCC4_SLOT, PLL3_PFD2_DIV1);
pcc_clock_enable(4, SDHC1_PCC4_SLOT, true);
pcc_reset_peripheral(4, SDHC1_PCC4_SLOT, false);
pcc_clock_enable(4, SDHC2_PCC4_SLOT, false);
pcc_clock_sel(4, SDHC2_PCC4_SLOT, PLL3_PFD2_DIV1);
pcc_clock_enable(4, SDHC2_PCC4_SLOT, true);
pcc_reset_peripheral(4, SDHC2_PCC4_SLOT, false);
/* Enable upower mu1 clk */
pcc_clock_enable(3, UPOWER_PCC3_SLOT, true);
/*
* Enable clock division
* TODO: may not needed after ROM ready.
*/
}
#if IS_ENABLED(CONFIG_SYS_I2C_IMX_LPI2C)
int enable_i2c_clk(unsigned char enable, u32 i2c_num)
{
/* Set parent to FIRC DIV2 clock */
const u32 lpi2c_pcc_clks[] = {
LPI2C4_PCC3_SLOT << 8 | 3,
LPI2C5_PCC3_SLOT << 8 | 3,
LPI2C6_PCC4_SLOT << 8 | 4,
LPI2C7_PCC4_SLOT << 8 | 4,
};
if (i2c_num == 0)
return 0;
if (i2c_num < 4 || i2c_num > 7)
return -EINVAL;
if (enable) {
pcc_clock_enable(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, false);
pcc_clock_sel(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, SOSC_DIV2);
pcc_clock_enable(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, true);
pcc_reset_peripheral(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, false);
} else {
pcc_clock_enable(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, false);
}
return 0;
}
u32 imx_get_i2cclk(u32 i2c_num)
{
const u32 lpi2c_pcc_clks[] = {
LPI2C4_PCC3_SLOT << 8 | 3,
LPI2C5_PCC3_SLOT << 8 | 3,
LPI2C6_PCC4_SLOT << 8 | 4,
LPI2C7_PCC4_SLOT << 8 | 4,
};
if (i2c_num == 0)
return 24000000;
if (i2c_num < 4 || i2c_num > 7)
return 0;
return pcc_clock_get_rate(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8);
}
#endif
void enable_usboh3_clk(unsigned char enable)
{
if (enable) {
pcc_clock_enable(4, USB0_PCC4_SLOT, true);
pcc_clock_enable(4, USBPHY_PCC4_SLOT, true);
pcc_reset_peripheral(4, USB0_PCC4_SLOT, false);
pcc_reset_peripheral(4, USBPHY_PCC4_SLOT, false);
#ifdef CONFIG_USB_MAX_CONTROLLER_COUNT
if (CONFIG_USB_MAX_CONTROLLER_COUNT > 1) {
pcc_clock_enable(4, USB1_PCC4_SLOT, true);
pcc_clock_enable(4, USB1PHY_PCC4_SLOT, true);
pcc_reset_peripheral(4, USB1_PCC4_SLOT, false);
pcc_reset_peripheral(4, USB1PHY_PCC4_SLOT, false);
}
#endif
pcc_clock_enable(4, USB_XBAR_PCC4_SLOT, true);
} else {
pcc_clock_enable(4, USB0_PCC4_SLOT, false);
pcc_clock_enable(4, USB1_PCC4_SLOT, false);
pcc_clock_enable(4, USBPHY_PCC4_SLOT, false);
pcc_clock_enable(4, USB1PHY_PCC4_SLOT, false);
pcc_clock_enable(4, USB_XBAR_PCC4_SLOT, false);
}
}
int enable_usb_pll(ulong usb_phy_base)
{
u32 sosc_rate;
s32 timeout = 1000000;
struct usbphy_regs *usbphy =
(struct usbphy_regs *)usb_phy_base;
sosc_rate = cgc1_sosc_div(SOSC);
if (!sosc_rate)
return -EPERM;
if (!(readl(&usbphy->usb1_pll_480_ctrl) & PLL_USB_LOCK_MASK)) {
writel(0x1c00000, &usbphy->usb1_pll_480_ctrl_clr);
switch (sosc_rate) {
case 24000000:
writel(0xc00000, &usbphy->usb1_pll_480_ctrl_set);
break;
case 30000000:
writel(0x800000, &usbphy->usb1_pll_480_ctrl_set);
break;
case 19200000:
writel(0x1400000, &usbphy->usb1_pll_480_ctrl_set);
break;
default:
writel(0xc00000, &usbphy->usb1_pll_480_ctrl_set);
break;
}
/* Enable the regulator first */
writel(PLL_USB_REG_ENABLE_MASK,
&usbphy->usb1_pll_480_ctrl_set);
/* Wait at least 15us */
udelay(15);
/* Enable the power */
writel(PLL_USB_PWR_MASK, &usbphy->usb1_pll_480_ctrl_set);
/* Wait lock */
while (timeout--) {
if (readl(&usbphy->usb1_pll_480_ctrl) &
PLL_USB_LOCK_MASK)
break;
}
if (timeout <= 0) {
/* If timeout, we power down the pll */
writel(PLL_USB_PWR_MASK,
&usbphy->usb1_pll_480_ctrl_clr);
return -ETIME;
}
}
/* Clear the bypass */
writel(PLL_USB_BYPASS_MASK, &usbphy->usb1_pll_480_ctrl_clr);
/* Enable the PLL clock out to USB */
writel((PLL_USB_EN_USB_CLKS_MASK | PLL_USB_ENABLE_MASK),
&usbphy->usb1_pll_480_ctrl_set);
return 0;
}
void enable_mipi_dsi_clk(unsigned char enable)
{
if (enable) {
pcc_clock_enable(5, DSI_PCC5_SLOT, false);
pcc_reset_peripheral(5, DSI_PCC5_SLOT, true);
pcc_clock_sel(5, DSI_PCC5_SLOT, PLL4_PFD3_DIV2);
pcc_clock_div_config(5, DSI_PCC5_SLOT, 0, 6);
pcc_clock_enable(5, DSI_PCC5_SLOT, true);
pcc_reset_peripheral(5, DSI_PCC5_SLOT, false);
} else {
pcc_clock_enable(5, DSI_PCC5_SLOT, false);
pcc_reset_peripheral(5, DSI_PCC5_SLOT, true);
}
}
void enable_adc1_clk(bool enable)
{
if (enable) {
pcc_clock_enable(1, ADC1_PCC1_SLOT, false);
pcc_clock_sel(1, ADC1_PCC1_SLOT, CM33_BUSCLK);
pcc_clock_enable(1, ADC1_PCC1_SLOT, true);
pcc_reset_peripheral(1, ADC1_PCC1_SLOT, false);
} else {
pcc_clock_enable(1, ADC1_PCC1_SLOT, false);
}
}
void reset_lcdclk(void)
{
/* Disable clock and reset dcnano*/
pcc_clock_enable(5, DCNANO_PCC5_SLOT, false);
pcc_reset_peripheral(5, DCNANO_PCC5_SLOT, true);
}
void mxs_set_lcdclk(u32 base_addr, u32 freq_in_khz)
{
u8 pcd, best_pcd = 0;
u32 frac, rate, parent_rate, pfd, div;
u32 best_pfd = 0, best_frac = 0, best = 0, best_div = 0;
u32 pll4_rate;
pcc_clock_enable(5, DCNANO_PCC5_SLOT, false);
pll4_rate = cgc_clk_get_rate(PLL4);
pll4_rate = pll4_rate / 1000; /* Change to khz*/
debug("PLL4 rate %ukhz\n", pll4_rate);
for (pfd = 12; pfd <= 35; pfd++) {
parent_rate = pll4_rate;
parent_rate = parent_rate * 18 / pfd;
for (div = 1; div <= 64; div++) {
parent_rate = parent_rate / div;
for (pcd = 0; pcd < 8; pcd++) {
for (frac = 0; frac < 2; frac++) {
if (pcd == 0 && frac == 1)
continue;
rate = parent_rate * (frac + 1) / (pcd + 1);
if (rate > freq_in_khz)
continue;
if (best == 0 || rate > best) {
best = rate;
best_pfd = pfd;
best_frac = frac;
best_pcd = pcd;
best_div = div;
}
}
}
}
}
if (best == 0) {
printf("Can't find parent clock for LCDIF, target freq: %u\n", freq_in_khz);
return;
}
debug("LCD target rate %ukhz, best rate %ukhz, frac %u, pcd %u, best_pfd %u, best_div %u\n",
freq_in_khz, best, best_frac, best_pcd, best_pfd, best_div);
cgc2_pll4_pfd_config(PLL4_PFD0, best_pfd);
cgc2_pll4_pfddiv_config(PLL4_PFD0_DIV1, best_div - 1);
pcc_clock_sel(5, DCNANO_PCC5_SLOT, PLL4_PFD0_DIV1);
pcc_clock_div_config(5, DCNANO_PCC5_SLOT, best_frac, best_pcd + 1);
pcc_clock_enable(5, DCNANO_PCC5_SLOT, true);
pcc_reset_peripheral(5, DCNANO_PCC5_SLOT, false);
}
u32 mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ESDHC_CLK:
return pcc_clock_get_rate(4, SDHC0_PCC4_SLOT);
case MXC_ESDHC2_CLK:
return pcc_clock_get_rate(4, SDHC1_PCC4_SLOT);
case MXC_ESDHC3_CLK:
return pcc_clock_get_rate(4, SDHC2_PCC4_SLOT);
case MXC_ARM_CLK:
return cgc_clk_get_rate(PLL2);
default:
return 0;
}
}
u32 get_lpuart_clk(void)
{
int index = 0;
const u32 lpuart_array[] = {
LPUART4_RBASE,
LPUART5_RBASE,
LPUART6_RBASE,
LPUART7_RBASE,
};
const u32 lpuart_pcc_slots[] = {
LPUART4_PCC3_SLOT,
LPUART5_PCC3_SLOT,
LPUART6_PCC4_SLOT,
LPUART7_PCC4_SLOT,
};
const u32 lpuart_pcc[] = {
3, 3, 4, 4,
};
for (index = 0; index < 4; index++) {
if (lpuart_array[index] == LPUART_BASE)
break;
}
if (index > 3)
return 0;
return pcc_clock_get_rate(lpuart_pcc[index], lpuart_pcc_slots[index]);
}
#ifndef CONFIG_SPL_BUILD
/*
* Dump some core clockes.
*/
int do_mx8ulp_showclocks(struct cmd_tbl *cmdtp, int flag, int argc, char * const argv[])
{
printf("SDHC0 %8d MHz\n", pcc_clock_get_rate(4, SDHC0_PCC4_SLOT) / 1000000);
printf("SDHC1 %8d MHz\n", pcc_clock_get_rate(4, SDHC1_PCC4_SLOT) / 1000000);
printf("SDHC2 %8d MHz\n", pcc_clock_get_rate(4, SDHC2_PCC4_SLOT) / 1000000);
printf("SOSC %8d MHz\n", cgc_clk_get_rate(SOSC) / 1000000);
printf("FRO %8d MHz\n", cgc_clk_get_rate(FRO) / 1000000);
printf("PLL2 %8d MHz\n", cgc_clk_get_rate(PLL2) / 1000000);
printf("PLL3 %8d MHz\n", cgc_clk_get_rate(PLL3) / 1000000);
printf("PLL3_VCODIV %8d MHz\n", cgc_clk_get_rate(PLL3_VCODIV) / 1000000);
printf("PLL3_PFD0 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD0) / 1000000);
printf("PLL3_PFD1 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD1) / 1000000);
printf("PLL3_PFD2 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD2) / 1000000);
printf("PLL3_PFD3 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD3) / 1000000);
printf("PLL4_PFD0 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD0) / 1000000);
printf("PLL4_PFD1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD1) / 1000000);
printf("PLL4_PFD2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD2) / 1000000);
printf("PLL4_PFD3 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD3) / 1000000);
printf("PLL4_PFD0_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD0_DIV1) / 1000000);
printf("PLL4_PFD0_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD0_DIV2) / 1000000);
printf("PLL4_PFD1_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD1_DIV1) / 1000000);
printf("PLL4_PFD1_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD1_DIV2) / 1000000);
printf("PLL4_PFD2_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD2_DIV1) / 1000000);
printf("PLL4_PFD2_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD2_DIV2) / 1000000);
printf("PLL4_PFD3_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD3_DIV1) / 1000000);
printf("PLL4_PFD3_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD3_DIV2) / 1000000);
printf("LPAV_AXICLK %8d MHz\n", cgc_clk_get_rate(LPAV_AXICLK) / 1000000);
printf("LPAV_AHBCLK %8d MHz\n", cgc_clk_get_rate(LPAV_AHBCLK) / 1000000);
printf("LPAV_BUSCLK %8d MHz\n", cgc_clk_get_rate(LPAV_BUSCLK) / 1000000);
printf("NIC_APCLK %8d MHz\n", cgc_clk_get_rate(NIC_APCLK) / 1000000);
printf("NIC_PERCLK %8d MHz\n", cgc_clk_get_rate(NIC_PERCLK) / 1000000);
printf("XBAR_APCLK %8d MHz\n", cgc_clk_get_rate(XBAR_APCLK) / 1000000);
printf("XBAR_BUSCLK %8d MHz\n", cgc_clk_get_rate(XBAR_BUSCLK) / 1000000);
printf("AD_SLOWCLK %8d MHz\n", cgc_clk_get_rate(AD_SLOWCLK) / 1000000);
return 0;
}
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_mx8ulp_showclocks,
"display clocks",
""
);
#endif