mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-19 01:33:10 +00:00
3991 lines
112 KiB
C
3991 lines
112 KiB
C
// SPDX-License-Identifier: BSD-3-Clause
|
|
/*
|
|
* Copyright Altera Corporation (C) 2012-2015
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <log.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch/sdram.h>
|
|
#include <errno.h>
|
|
#include <hang.h>
|
|
#include "sequencer.h"
|
|
|
|
static const struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
|
|
(struct socfpga_sdr_rw_load_manager *)
|
|
(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
|
|
static const struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs
|
|
= (struct socfpga_sdr_rw_load_jump_manager *)
|
|
(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
|
|
static const struct socfpga_sdr_reg_file *sdr_reg_file =
|
|
(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
|
|
static const struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
|
|
(struct socfpga_sdr_scc_mgr *)
|
|
(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
|
|
static const struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
|
|
(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
|
|
static const struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
|
|
(struct socfpga_phy_mgr_cfg *)
|
|
(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
|
|
static const struct socfpga_data_mgr *data_mgr =
|
|
(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
|
|
static const struct socfpga_sdr_ctrl *sdr_ctrl =
|
|
(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
|
|
|
|
#define DELTA_D 1
|
|
|
|
/*
|
|
* In order to reduce ROM size, most of the selectable calibration steps are
|
|
* decided at compile time based on the user's calibration mode selection,
|
|
* as captured by the STATIC_CALIB_STEPS selection below.
|
|
*
|
|
* However, to support simulation-time selection of fast simulation mode, where
|
|
* we skip everything except the bare minimum, we need a few of the steps to
|
|
* be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
|
|
* check, which is based on the rtl-supplied value, or we dynamically compute
|
|
* the value to use based on the dynamically-chosen calibration mode
|
|
*/
|
|
|
|
#define DLEVEL 0
|
|
#define STATIC_IN_RTL_SIM 0
|
|
#define STATIC_SKIP_DELAY_LOOPS 0
|
|
|
|
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
|
|
STATIC_SKIP_DELAY_LOOPS)
|
|
|
|
#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
|
|
((non_skip_value) & seq->skip_delay_mask)
|
|
|
|
bool dram_is_ddr(const u8 ddr)
|
|
{
|
|
const struct socfpga_sdram_config *cfg = socfpga_get_sdram_config();
|
|
const u8 type = (cfg->ctrl_cfg >> SDR_CTRLGRP_CTRLCFG_MEMTYPE_LSB) &
|
|
SDR_CTRLGRP_CTRLCFG_MEMTYPE_MASK;
|
|
|
|
if (ddr == 2 && type == 1) /* DDR2 */
|
|
return true;
|
|
|
|
if (ddr == 3 && type == 2) /* DDR3 */
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void set_failing_group_stage(struct socfpga_sdrseq *seq,
|
|
u32 group, u32 stage, u32 substage)
|
|
{
|
|
/*
|
|
* Only set the global stage if there was not been any other
|
|
* failing group
|
|
*/
|
|
if (seq->gbl.error_stage == CAL_STAGE_NIL) {
|
|
seq->gbl.error_substage = substage;
|
|
seq->gbl.error_stage = stage;
|
|
seq->gbl.error_group = group;
|
|
}
|
|
}
|
|
|
|
static void reg_file_set_group(u16 set_group)
|
|
{
|
|
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
|
|
}
|
|
|
|
static void reg_file_set_stage(u8 set_stage)
|
|
{
|
|
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
|
|
}
|
|
|
|
static void reg_file_set_sub_stage(u8 set_sub_stage)
|
|
{
|
|
set_sub_stage &= 0xff;
|
|
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
|
|
}
|
|
|
|
/**
|
|
* phy_mgr_initialize() - Initialize PHY Manager
|
|
*
|
|
* Initialize PHY Manager.
|
|
*/
|
|
static void phy_mgr_initialize(struct socfpga_sdrseq *seq)
|
|
{
|
|
u32 ratio;
|
|
|
|
debug("%s:%d\n", __func__, __LINE__);
|
|
/* Calibration has control over path to memory */
|
|
/*
|
|
* In Hard PHY this is a 2-bit control:
|
|
* 0: AFI Mux Select
|
|
* 1: DDIO Mux Select
|
|
*/
|
|
writel(0x3, &phy_mgr_cfg->mux_sel);
|
|
|
|
/* USER memory clock is not stable we begin initialization */
|
|
writel(0, &phy_mgr_cfg->reset_mem_stbl);
|
|
|
|
/* USER calibration status all set to zero */
|
|
writel(0, &phy_mgr_cfg->cal_status);
|
|
|
|
writel(0, &phy_mgr_cfg->cal_debug_info);
|
|
|
|
/* Init params only if we do NOT skip calibration. */
|
|
if ((seq->dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
|
|
return;
|
|
|
|
ratio = seq->rwcfg->mem_dq_per_read_dqs /
|
|
seq->rwcfg->mem_virtual_groups_per_read_dqs;
|
|
seq->param.read_correct_mask_vg = (1 << ratio) - 1;
|
|
seq->param.write_correct_mask_vg = (1 << ratio) - 1;
|
|
seq->param.read_correct_mask = (1 << seq->rwcfg->mem_dq_per_read_dqs)
|
|
- 1;
|
|
seq->param.write_correct_mask = (1 << seq->rwcfg->mem_dq_per_write_dqs)
|
|
- 1;
|
|
}
|
|
|
|
/**
|
|
* set_rank_and_odt_mask() - Set Rank and ODT mask
|
|
* @rank: Rank mask
|
|
* @odt_mode: ODT mode, OFF or READ_WRITE
|
|
*
|
|
* Set Rank and ODT mask (On-Die Termination).
|
|
*/
|
|
static void set_rank_and_odt_mask(struct socfpga_sdrseq *seq,
|
|
const u32 rank, const u32 odt_mode)
|
|
{
|
|
u32 odt_mask_0 = 0;
|
|
u32 odt_mask_1 = 0;
|
|
u32 cs_and_odt_mask;
|
|
|
|
if (odt_mode == RW_MGR_ODT_MODE_OFF) {
|
|
odt_mask_0 = 0x0;
|
|
odt_mask_1 = 0x0;
|
|
} else { /* RW_MGR_ODT_MODE_READ_WRITE */
|
|
switch (seq->rwcfg->mem_number_of_ranks) {
|
|
case 1: /* 1 Rank */
|
|
/* Read: ODT = 0 ; Write: ODT = 1 */
|
|
odt_mask_0 = 0x0;
|
|
odt_mask_1 = 0x1;
|
|
break;
|
|
case 2: /* 2 Ranks */
|
|
if (seq->rwcfg->mem_number_of_cs_per_dimm == 1) {
|
|
/*
|
|
* - Dual-Slot , Single-Rank (1 CS per DIMM)
|
|
* OR
|
|
* - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
|
|
*
|
|
* Since MEM_NUMBER_OF_RANKS is 2, they
|
|
* are both single rank with 2 CS each
|
|
* (special for RDIMM).
|
|
*
|
|
* Read: Turn on ODT on the opposite rank
|
|
* Write: Turn on ODT on all ranks
|
|
*/
|
|
odt_mask_0 = 0x3 & ~(1 << rank);
|
|
odt_mask_1 = 0x3;
|
|
if (dram_is_ddr(2))
|
|
odt_mask_1 &= ~(1 << rank);
|
|
} else {
|
|
/*
|
|
* - Single-Slot , Dual-Rank (2 CS per DIMM)
|
|
*
|
|
* Read: Turn on ODT off on all ranks
|
|
* Write: Turn on ODT on active rank
|
|
*/
|
|
odt_mask_0 = 0x0;
|
|
odt_mask_1 = 0x3 & (1 << rank);
|
|
}
|
|
break;
|
|
case 4: /* 4 Ranks */
|
|
/*
|
|
* DDR3 Read, DDR2 Read/Write:
|
|
* ----------+-----------------------+
|
|
* | ODT |
|
|
* +-----------------------+
|
|
* Rank | 3 | 2 | 1 | 0 |
|
|
* ----------+-----+-----+-----+-----+
|
|
* 0 | 0 | 1 | 0 | 0 |
|
|
* 1 | 1 | 0 | 0 | 0 |
|
|
* 2 | 0 | 0 | 0 | 1 |
|
|
* 3 | 0 | 0 | 1 | 0 |
|
|
* ----------+-----+-----+-----+-----+
|
|
*
|
|
* DDR3 Write:
|
|
* ----------+-----------------------+
|
|
* | ODT |
|
|
* Write To +-----------------------+
|
|
* Rank | 3 | 2 | 1 | 0 |
|
|
* ----------+-----+-----+-----+-----+
|
|
* 0 | 0 | 1 | 0 | 1 |
|
|
* 1 | 1 | 0 | 1 | 0 |
|
|
* 2 | 0 | 1 | 0 | 1 |
|
|
* 3 | 1 | 0 | 1 | 0 |
|
|
* ----------+-----+-----+-----+-----+
|
|
*/
|
|
switch (rank) {
|
|
case 0:
|
|
odt_mask_0 = 0x4;
|
|
if (dram_is_ddr(2))
|
|
odt_mask_1 = 0x4;
|
|
else if (dram_is_ddr(3))
|
|
odt_mask_1 = 0x5;
|
|
break;
|
|
case 1:
|
|
odt_mask_0 = 0x8;
|
|
if (dram_is_ddr(2))
|
|
odt_mask_1 = 0x8;
|
|
else if (dram_is_ddr(3))
|
|
odt_mask_1 = 0xA;
|
|
break;
|
|
case 2:
|
|
odt_mask_0 = 0x1;
|
|
if (dram_is_ddr(2))
|
|
odt_mask_1 = 0x1;
|
|
else if (dram_is_ddr(3))
|
|
odt_mask_1 = 0x5;
|
|
break;
|
|
case 3:
|
|
odt_mask_0 = 0x2;
|
|
if (dram_is_ddr(2))
|
|
odt_mask_1 = 0x2;
|
|
else if (dram_is_ddr(3))
|
|
odt_mask_1 = 0xA;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
cs_and_odt_mask = (0xFF & ~(1 << rank)) |
|
|
((0xFF & odt_mask_0) << 8) |
|
|
((0xFF & odt_mask_1) << 16);
|
|
writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_set() - Set SCC Manager register
|
|
* @off: Base offset in SCC Manager space
|
|
* @grp: Read/Write group
|
|
* @val: Value to be set
|
|
*
|
|
* This function sets the SCC Manager (Scan Chain Control Manager) register.
|
|
*/
|
|
static void scc_mgr_set(u32 off, u32 grp, u32 val)
|
|
{
|
|
writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_initialize() - Initialize SCC Manager registers
|
|
*
|
|
* Initialize SCC Manager registers.
|
|
*/
|
|
static void scc_mgr_initialize(void)
|
|
{
|
|
/*
|
|
* Clear register file for HPS. 16 (2^4) is the size of the
|
|
* full register file in the scc mgr:
|
|
* RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
|
|
* MEM_IF_READ_DQS_WIDTH - 1);
|
|
*/
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
|
|
__func__, __LINE__, i);
|
|
scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
|
|
}
|
|
}
|
|
|
|
static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
|
|
{
|
|
scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
|
|
}
|
|
|
|
static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
|
|
{
|
|
scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
|
|
}
|
|
|
|
static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
|
|
{
|
|
scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
|
|
}
|
|
|
|
static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
|
|
{
|
|
scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
|
|
}
|
|
|
|
static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
|
|
{
|
|
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
|
|
}
|
|
|
|
static void scc_mgr_set_dqs_io_in_delay(struct socfpga_sdrseq *seq,
|
|
u32 delay)
|
|
{
|
|
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
|
|
seq->rwcfg->mem_dq_per_write_dqs, delay);
|
|
}
|
|
|
|
static void scc_mgr_set_dm_in_delay(struct socfpga_sdrseq *seq, u32 dm,
|
|
u32 delay)
|
|
{
|
|
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
|
|
seq->rwcfg->mem_dq_per_write_dqs + 1 + dm,
|
|
delay);
|
|
}
|
|
|
|
static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
|
|
{
|
|
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
|
|
}
|
|
|
|
static void scc_mgr_set_dqs_out1_delay(struct socfpga_sdrseq *seq,
|
|
u32 delay)
|
|
{
|
|
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
|
|
seq->rwcfg->mem_dq_per_write_dqs, delay);
|
|
}
|
|
|
|
static void scc_mgr_set_dm_out1_delay(struct socfpga_sdrseq *seq, u32 dm,
|
|
u32 delay)
|
|
{
|
|
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
|
|
seq->rwcfg->mem_dq_per_write_dqs + 1 + dm,
|
|
delay);
|
|
}
|
|
|
|
/* load up dqs config settings */
|
|
static void scc_mgr_load_dqs(u32 dqs)
|
|
{
|
|
writel(dqs, &sdr_scc_mgr->dqs_ena);
|
|
}
|
|
|
|
/* load up dqs io config settings */
|
|
static void scc_mgr_load_dqs_io(void)
|
|
{
|
|
writel(0, &sdr_scc_mgr->dqs_io_ena);
|
|
}
|
|
|
|
/* load up dq config settings */
|
|
static void scc_mgr_load_dq(u32 dq_in_group)
|
|
{
|
|
writel(dq_in_group, &sdr_scc_mgr->dq_ena);
|
|
}
|
|
|
|
/* load up dm config settings */
|
|
static void scc_mgr_load_dm(u32 dm)
|
|
{
|
|
writel(dm, &sdr_scc_mgr->dm_ena);
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
|
|
* @off: Base offset in SCC Manager space
|
|
* @grp: Read/Write group
|
|
* @val: Value to be set
|
|
* @update: If non-zero, trigger SCC Manager update for all ranks
|
|
*
|
|
* This function sets the SCC Manager (Scan Chain Control Manager) register
|
|
* and optionally triggers the SCC update for all ranks.
|
|
*/
|
|
static void scc_mgr_set_all_ranks(struct socfpga_sdrseq *seq,
|
|
const u32 off, const u32 grp, const u32 val,
|
|
const int update)
|
|
{
|
|
u32 r;
|
|
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
|
|
r += NUM_RANKS_PER_SHADOW_REG) {
|
|
scc_mgr_set(off, grp, val);
|
|
|
|
if (update || (r == 0)) {
|
|
writel(grp, &sdr_scc_mgr->dqs_ena);
|
|
writel(0, &sdr_scc_mgr->update);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void scc_mgr_set_dqs_en_phase_all_ranks(struct socfpga_sdrseq *seq,
|
|
u32 read_group, u32 phase)
|
|
{
|
|
/*
|
|
* USER although the h/w doesn't support different phases per
|
|
* shadow register, for simplicity our scc manager modeling
|
|
* keeps different phase settings per shadow reg, and it's
|
|
* important for us to keep them in sync to match h/w.
|
|
* for efficiency, the scan chain update should occur only
|
|
* once to sr0.
|
|
*/
|
|
scc_mgr_set_all_ranks(seq, SCC_MGR_DQS_EN_PHASE_OFFSET,
|
|
read_group, phase, 0);
|
|
}
|
|
|
|
static void scc_mgr_set_dqdqs_output_phase_all_ranks(struct socfpga_sdrseq *seq,
|
|
u32 write_group, u32 phase)
|
|
{
|
|
/*
|
|
* USER although the h/w doesn't support different phases per
|
|
* shadow register, for simplicity our scc manager modeling
|
|
* keeps different phase settings per shadow reg, and it's
|
|
* important for us to keep them in sync to match h/w.
|
|
* for efficiency, the scan chain update should occur only
|
|
* once to sr0.
|
|
*/
|
|
scc_mgr_set_all_ranks(seq, SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
|
|
write_group, phase, 0);
|
|
}
|
|
|
|
static void scc_mgr_set_dqs_en_delay_all_ranks(struct socfpga_sdrseq *seq,
|
|
u32 read_group, u32 delay)
|
|
{
|
|
/*
|
|
* In shadow register mode, the T11 settings are stored in
|
|
* registers in the core, which are updated by the DQS_ENA
|
|
* signals. Not issuing the SCC_MGR_UPD command allows us to
|
|
* save lots of rank switching overhead, by calling
|
|
* select_shadow_regs_for_update with update_scan_chains
|
|
* set to 0.
|
|
*/
|
|
scc_mgr_set_all_ranks(seq, SCC_MGR_DQS_EN_DELAY_OFFSET,
|
|
read_group, delay, 1);
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_set_oct_out1_delay() - Set OCT output delay
|
|
* @write_group: Write group
|
|
* @delay: Delay value
|
|
*
|
|
* This function sets the OCT output delay in SCC manager.
|
|
*/
|
|
static void scc_mgr_set_oct_out1_delay(struct socfpga_sdrseq *seq,
|
|
const u32 write_group, const u32 delay)
|
|
{
|
|
const int ratio = seq->rwcfg->mem_if_read_dqs_width /
|
|
seq->rwcfg->mem_if_write_dqs_width;
|
|
const int base = write_group * ratio;
|
|
int i;
|
|
/*
|
|
* Load the setting in the SCC manager
|
|
* Although OCT affects only write data, the OCT delay is controlled
|
|
* by the DQS logic block which is instantiated once per read group.
|
|
* For protocols where a write group consists of multiple read groups,
|
|
* the setting must be set multiple times.
|
|
*/
|
|
for (i = 0; i < ratio; i++)
|
|
scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_set_hhp_extras() - Set HHP extras.
|
|
*
|
|
* Load the fixed setting in the SCC manager HHP extras.
|
|
*/
|
|
static void scc_mgr_set_hhp_extras(void)
|
|
{
|
|
/*
|
|
* Load the fixed setting in the SCC manager
|
|
* bits: 0:0 = 1'b1 - DQS bypass
|
|
* bits: 1:1 = 1'b1 - DQ bypass
|
|
* bits: 4:2 = 3'b001 - rfifo_mode
|
|
* bits: 6:5 = 2'b01 - rfifo clock_select
|
|
* bits: 7:7 = 1'b0 - separate gating from ungating setting
|
|
* bits: 8:8 = 1'b0 - separate OE from Output delay setting
|
|
*/
|
|
const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
|
|
(1 << 2) | (1 << 1) | (1 << 0);
|
|
const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
|
|
SCC_MGR_HHP_GLOBALS_OFFSET |
|
|
SCC_MGR_HHP_EXTRAS_OFFSET;
|
|
|
|
debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
|
|
__func__, __LINE__);
|
|
writel(value, addr);
|
|
debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
|
|
__func__, __LINE__);
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_zero_all() - Zero all DQS config
|
|
*
|
|
* Zero all DQS config.
|
|
*/
|
|
static void scc_mgr_zero_all(struct socfpga_sdrseq *seq)
|
|
{
|
|
int i, r;
|
|
|
|
/*
|
|
* USER Zero all DQS config settings, across all groups and all
|
|
* shadow registers
|
|
*/
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
|
|
r += NUM_RANKS_PER_SHADOW_REG) {
|
|
for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
|
|
/*
|
|
* The phases actually don't exist on a per-rank basis,
|
|
* but there's no harm updating them several times, so
|
|
* let's keep the code simple.
|
|
*/
|
|
scc_mgr_set_dqs_bus_in_delay(i,
|
|
seq->iocfg->dqs_in_reserve
|
|
);
|
|
scc_mgr_set_dqs_en_phase(i, 0);
|
|
scc_mgr_set_dqs_en_delay(i, 0);
|
|
}
|
|
|
|
for (i = 0; i < seq->rwcfg->mem_if_write_dqs_width; i++) {
|
|
scc_mgr_set_dqdqs_output_phase(i, 0);
|
|
/* Arria V/Cyclone V don't have out2. */
|
|
scc_mgr_set_oct_out1_delay(seq, i,
|
|
seq->iocfg->dqs_out_reserve);
|
|
}
|
|
}
|
|
|
|
/* Multicast to all DQS group enables. */
|
|
writel(0xff, &sdr_scc_mgr->dqs_ena);
|
|
writel(0, &sdr_scc_mgr->update);
|
|
}
|
|
|
|
/**
|
|
* scc_set_bypass_mode() - Set bypass mode and trigger SCC update
|
|
* @write_group: Write group
|
|
*
|
|
* Set bypass mode and trigger SCC update.
|
|
*/
|
|
static void scc_set_bypass_mode(const u32 write_group)
|
|
{
|
|
/* Multicast to all DQ enables. */
|
|
writel(0xff, &sdr_scc_mgr->dq_ena);
|
|
writel(0xff, &sdr_scc_mgr->dm_ena);
|
|
|
|
/* Update current DQS IO enable. */
|
|
writel(0, &sdr_scc_mgr->dqs_io_ena);
|
|
|
|
/* Update the DQS logic. */
|
|
writel(write_group, &sdr_scc_mgr->dqs_ena);
|
|
|
|
/* Hit update. */
|
|
writel(0, &sdr_scc_mgr->update);
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
|
|
* @write_group: Write group
|
|
*
|
|
* Load DQS settings for Write Group, do not trigger SCC update.
|
|
*/
|
|
static void scc_mgr_load_dqs_for_write_group(struct socfpga_sdrseq *seq,
|
|
const u32 write_group)
|
|
{
|
|
const int ratio = seq->rwcfg->mem_if_read_dqs_width /
|
|
seq->rwcfg->mem_if_write_dqs_width;
|
|
const int base = write_group * ratio;
|
|
int i;
|
|
/*
|
|
* Load the setting in the SCC manager
|
|
* Although OCT affects only write data, the OCT delay is controlled
|
|
* by the DQS logic block which is instantiated once per read group.
|
|
* For protocols where a write group consists of multiple read groups,
|
|
* the setting must be set multiple times.
|
|
*/
|
|
for (i = 0; i < ratio; i++)
|
|
writel(base + i, &sdr_scc_mgr->dqs_ena);
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_zero_group() - Zero all configs for a group
|
|
*
|
|
* Zero DQ, DM, DQS and OCT configs for a group.
|
|
*/
|
|
static void scc_mgr_zero_group(struct socfpga_sdrseq *seq,
|
|
const u32 write_group, const int out_only)
|
|
{
|
|
int i, r;
|
|
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
|
|
r += NUM_RANKS_PER_SHADOW_REG) {
|
|
/* Zero all DQ config settings. */
|
|
for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
|
|
scc_mgr_set_dq_out1_delay(i, 0);
|
|
if (!out_only)
|
|
scc_mgr_set_dq_in_delay(i, 0);
|
|
}
|
|
|
|
/* Multicast to all DQ enables. */
|
|
writel(0xff, &sdr_scc_mgr->dq_ena);
|
|
|
|
/* Zero all DM config settings. */
|
|
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
|
|
if (!out_only)
|
|
scc_mgr_set_dm_in_delay(seq, i, 0);
|
|
scc_mgr_set_dm_out1_delay(seq, i, 0);
|
|
}
|
|
|
|
/* Multicast to all DM enables. */
|
|
writel(0xff, &sdr_scc_mgr->dm_ena);
|
|
|
|
/* Zero all DQS IO settings. */
|
|
if (!out_only)
|
|
scc_mgr_set_dqs_io_in_delay(seq, 0);
|
|
|
|
/* Arria V/Cyclone V don't have out2. */
|
|
scc_mgr_set_dqs_out1_delay(seq, seq->iocfg->dqs_out_reserve);
|
|
scc_mgr_set_oct_out1_delay(seq, write_group,
|
|
seq->iocfg->dqs_out_reserve);
|
|
scc_mgr_load_dqs_for_write_group(seq, write_group);
|
|
|
|
/* Multicast to all DQS IO enables (only 1 in total). */
|
|
writel(0, &sdr_scc_mgr->dqs_io_ena);
|
|
|
|
/* Hit update to zero everything. */
|
|
writel(0, &sdr_scc_mgr->update);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* apply and load a particular input delay for the DQ pins in a group
|
|
* group_bgn is the index of the first dq pin (in the write group)
|
|
*/
|
|
static void scc_mgr_apply_group_dq_in_delay(struct socfpga_sdrseq *seq,
|
|
u32 group_bgn, u32 delay)
|
|
{
|
|
u32 i, p;
|
|
|
|
for (i = 0, p = group_bgn; i < seq->rwcfg->mem_dq_per_read_dqs;
|
|
i++, p++) {
|
|
scc_mgr_set_dq_in_delay(p, delay);
|
|
scc_mgr_load_dq(p);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the
|
|
* DQ pins in a group
|
|
* @delay: Delay value
|
|
*
|
|
* Apply and load a particular output delay for the DQ pins in a group.
|
|
*/
|
|
static void scc_mgr_apply_group_dq_out1_delay(struct socfpga_sdrseq *seq,
|
|
const u32 delay)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
|
|
scc_mgr_set_dq_out1_delay(i, delay);
|
|
scc_mgr_load_dq(i);
|
|
}
|
|
}
|
|
|
|
/* apply and load a particular output delay for the DM pins in a group */
|
|
static void scc_mgr_apply_group_dm_out1_delay(struct socfpga_sdrseq *seq,
|
|
u32 delay1)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
|
|
scc_mgr_set_dm_out1_delay(seq, i, delay1);
|
|
scc_mgr_load_dm(i);
|
|
}
|
|
}
|
|
|
|
|
|
/* apply and load delay on both DQS and OCT out1 */
|
|
static void scc_mgr_apply_group_dqs_io_and_oct_out1(struct socfpga_sdrseq *seq,
|
|
u32 write_group, u32 delay)
|
|
{
|
|
scc_mgr_set_dqs_out1_delay(seq, delay);
|
|
scc_mgr_load_dqs_io();
|
|
|
|
scc_mgr_set_oct_out1_delay(seq, write_group, delay);
|
|
scc_mgr_load_dqs_for_write_group(seq, write_group);
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output
|
|
* side: DQ, DM, DQS, OCT
|
|
* @write_group: Write group
|
|
* @delay: Delay value
|
|
*
|
|
* Apply a delay to the entire output side: DQ, DM, DQS, OCT.
|
|
*/
|
|
static void scc_mgr_apply_group_all_out_delay_add(struct socfpga_sdrseq *seq,
|
|
const u32 write_group,
|
|
const u32 delay)
|
|
{
|
|
u32 i, new_delay;
|
|
|
|
/* DQ shift */
|
|
for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++)
|
|
scc_mgr_load_dq(i);
|
|
|
|
/* DM shift */
|
|
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
|
|
scc_mgr_load_dm(i);
|
|
|
|
/* DQS shift */
|
|
new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
|
|
if (new_delay > seq->iocfg->io_out2_delay_max) {
|
|
debug_cond(DLEVEL >= 1,
|
|
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
|
|
__func__, __LINE__, write_group, delay, new_delay,
|
|
seq->iocfg->io_out2_delay_max,
|
|
new_delay - seq->iocfg->io_out2_delay_max);
|
|
new_delay -= seq->iocfg->io_out2_delay_max;
|
|
scc_mgr_set_dqs_out1_delay(seq, new_delay);
|
|
}
|
|
|
|
scc_mgr_load_dqs_io();
|
|
|
|
/* OCT shift */
|
|
new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
|
|
if (new_delay > seq->iocfg->io_out2_delay_max) {
|
|
debug_cond(DLEVEL >= 1,
|
|
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
|
|
__func__, __LINE__, write_group, delay,
|
|
new_delay, seq->iocfg->io_out2_delay_max,
|
|
new_delay - seq->iocfg->io_out2_delay_max);
|
|
new_delay -= seq->iocfg->io_out2_delay_max;
|
|
scc_mgr_set_oct_out1_delay(seq, write_group, new_delay);
|
|
}
|
|
|
|
scc_mgr_load_dqs_for_write_group(seq, write_group);
|
|
}
|
|
|
|
/**
|
|
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output
|
|
* side to all ranks
|
|
* @write_group: Write group
|
|
* @delay: Delay value
|
|
*
|
|
* Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
|
|
*/
|
|
static void
|
|
scc_mgr_apply_group_all_out_delay_add_all_ranks(struct socfpga_sdrseq *seq,
|
|
const u32 write_group,
|
|
const u32 delay)
|
|
{
|
|
int r;
|
|
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
|
|
r += NUM_RANKS_PER_SHADOW_REG) {
|
|
scc_mgr_apply_group_all_out_delay_add(seq, write_group, delay);
|
|
writel(0, &sdr_scc_mgr->update);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* set_jump_as_return() - Return instruction optimization
|
|
*
|
|
* Optimization used to recover some slots in ddr3 inst_rom could be
|
|
* applied to other protocols if we wanted to
|
|
*/
|
|
static void set_jump_as_return(struct socfpga_sdrseq *seq)
|
|
{
|
|
/*
|
|
* To save space, we replace return with jump to special shared
|
|
* RETURN instruction so we set the counter to large value so that
|
|
* we always jump.
|
|
*/
|
|
writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
|
|
writel(seq->rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
|
|
}
|
|
|
|
/**
|
|
* delay_for_n_mem_clocks() - Delay for N memory clocks
|
|
* @clocks: Length of the delay
|
|
*
|
|
* Delay for N memory clocks.
|
|
*/
|
|
static void delay_for_n_mem_clocks(struct socfpga_sdrseq *seq,
|
|
const u32 clocks)
|
|
{
|
|
u32 afi_clocks;
|
|
u16 c_loop;
|
|
u8 inner;
|
|
u8 outer;
|
|
|
|
debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
|
|
|
|
/* Scale (rounding up) to get afi clocks. */
|
|
afi_clocks = DIV_ROUND_UP(clocks, seq->misccfg->afi_rate_ratio);
|
|
if (afi_clocks) /* Temporary underflow protection */
|
|
afi_clocks--;
|
|
|
|
/*
|
|
* Note, we don't bother accounting for being off a little
|
|
* bit because of a few extra instructions in outer loops.
|
|
* Note, the loops have a test at the end, and do the test
|
|
* before the decrement, and so always perform the loop
|
|
* 1 time more than the counter value
|
|
*/
|
|
c_loop = afi_clocks >> 16;
|
|
outer = c_loop ? 0xff : (afi_clocks >> 8);
|
|
inner = outer ? 0xff : afi_clocks;
|
|
|
|
/*
|
|
* rom instructions are structured as follows:
|
|
*
|
|
* IDLE_LOOP2: jnz cntr0, TARGET_A
|
|
* IDLE_LOOP1: jnz cntr1, TARGET_B
|
|
* return
|
|
*
|
|
* so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
|
|
* TARGET_B is set to IDLE_LOOP2 as well
|
|
*
|
|
* if we have no outer loop, though, then we can use IDLE_LOOP1 only,
|
|
* and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
|
|
*
|
|
* a little confusing, but it helps save precious space in the inst_rom
|
|
* and sequencer rom and keeps the delays more accurate and reduces
|
|
* overhead
|
|
*/
|
|
if (afi_clocks < 0x100) {
|
|
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
|
|
&sdr_rw_load_mgr_regs->load_cntr1);
|
|
|
|
writel(seq->rwcfg->idle_loop1,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
|
|
|
|
writel(seq->rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
|
|
} else {
|
|
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
|
|
&sdr_rw_load_mgr_regs->load_cntr0);
|
|
|
|
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
|
|
&sdr_rw_load_mgr_regs->load_cntr1);
|
|
|
|
writel(seq->rwcfg->idle_loop2,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
|
|
|
|
writel(seq->rwcfg->idle_loop2,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
|
|
|
|
do {
|
|
writel(seq->rwcfg->idle_loop2,
|
|
SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
|
|
} while (c_loop-- != 0);
|
|
}
|
|
debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
|
|
}
|
|
|
|
static void delay_for_n_ns(struct socfpga_sdrseq *seq, const u32 ns)
|
|
{
|
|
delay_for_n_mem_clocks(seq, (ns * seq->misccfg->afi_clk_freq *
|
|
seq->misccfg->afi_rate_ratio) / 1000);
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_init_load_regs() - Load instruction registers
|
|
* @cntr0: Counter 0 value
|
|
* @cntr1: Counter 1 value
|
|
* @cntr2: Counter 2 value
|
|
* @jump: Jump instruction value
|
|
*
|
|
* Load instruction registers.
|
|
*/
|
|
static void rw_mgr_mem_init_load_regs(struct socfpga_sdrseq *seq,
|
|
u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
|
|
{
|
|
u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
|
|
|
|
/* Load counters */
|
|
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
|
|
&sdr_rw_load_mgr_regs->load_cntr0);
|
|
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
|
|
&sdr_rw_load_mgr_regs->load_cntr1);
|
|
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
|
|
&sdr_rw_load_mgr_regs->load_cntr2);
|
|
|
|
/* Load jump address */
|
|
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
|
|
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
|
|
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
|
|
|
|
/* Execute count instruction */
|
|
writel(jump, grpaddr);
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_load_user_ddr2() - Load user calibration values for DDR2
|
|
* @handoff: Indicate whether this is initialization or handoff phase
|
|
*
|
|
* Load user calibration values and optionally precharge the banks.
|
|
*/
|
|
static void rw_mgr_mem_load_user_ddr2(struct socfpga_sdrseq *seq,
|
|
const int handoff)
|
|
{
|
|
u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
|
|
u32 r;
|
|
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
|
|
/* set rank */
|
|
set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
|
|
|
|
/* precharge all banks ... */
|
|
writel(seq->rwcfg->precharge_all, grpaddr);
|
|
|
|
writel(seq->rwcfg->emr2, grpaddr);
|
|
writel(seq->rwcfg->emr3, grpaddr);
|
|
writel(seq->rwcfg->emr, grpaddr);
|
|
|
|
if (handoff) {
|
|
writel(seq->rwcfg->mr_user, grpaddr);
|
|
continue;
|
|
}
|
|
|
|
writel(seq->rwcfg->mr_dll_reset, grpaddr);
|
|
|
|
writel(seq->rwcfg->precharge_all, grpaddr);
|
|
|
|
writel(seq->rwcfg->refresh, grpaddr);
|
|
delay_for_n_ns(seq, 200);
|
|
writel(seq->rwcfg->refresh, grpaddr);
|
|
delay_for_n_ns(seq, 200);
|
|
|
|
writel(seq->rwcfg->mr_calib, grpaddr);
|
|
writel(/*seq->rwcfg->*/0x0b, grpaddr); // EMR_OCD_ENABLE
|
|
writel(seq->rwcfg->emr, grpaddr);
|
|
delay_for_n_mem_clocks(seq, 200);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_load_user_ddr3() - Load user calibration values
|
|
* @fin1: Final instruction 1
|
|
* @fin2: Final instruction 2
|
|
* @precharge: If 1, precharge the banks at the end
|
|
*
|
|
* Load user calibration values and optionally precharge the banks.
|
|
*/
|
|
static void rw_mgr_mem_load_user_ddr3(struct socfpga_sdrseq *seq,
|
|
const u32 fin1, const u32 fin2,
|
|
const int precharge)
|
|
{
|
|
u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
|
|
u32 r;
|
|
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
|
|
/* set rank */
|
|
set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
|
|
|
|
/* precharge all banks ... */
|
|
if (precharge)
|
|
writel(seq->rwcfg->precharge_all, grpaddr);
|
|
|
|
/*
|
|
* USER Use Mirror-ed commands for odd ranks if address
|
|
* mirrorring is on
|
|
*/
|
|
if ((seq->rwcfg->mem_address_mirroring >> r) & 0x1) {
|
|
set_jump_as_return(seq);
|
|
writel(seq->rwcfg->mrs2_mirr, grpaddr);
|
|
delay_for_n_mem_clocks(seq, 4);
|
|
set_jump_as_return(seq);
|
|
writel(seq->rwcfg->mrs3_mirr, grpaddr);
|
|
delay_for_n_mem_clocks(seq, 4);
|
|
set_jump_as_return(seq);
|
|
writel(seq->rwcfg->mrs1_mirr, grpaddr);
|
|
delay_for_n_mem_clocks(seq, 4);
|
|
set_jump_as_return(seq);
|
|
writel(fin1, grpaddr);
|
|
} else {
|
|
set_jump_as_return(seq);
|
|
writel(seq->rwcfg->mrs2, grpaddr);
|
|
delay_for_n_mem_clocks(seq, 4);
|
|
set_jump_as_return(seq);
|
|
writel(seq->rwcfg->mrs3, grpaddr);
|
|
delay_for_n_mem_clocks(seq, 4);
|
|
set_jump_as_return(seq);
|
|
writel(seq->rwcfg->mrs1, grpaddr);
|
|
set_jump_as_return(seq);
|
|
writel(fin2, grpaddr);
|
|
}
|
|
|
|
if (precharge)
|
|
continue;
|
|
|
|
set_jump_as_return(seq);
|
|
writel(seq->rwcfg->zqcl, grpaddr);
|
|
|
|
/* tZQinit = tDLLK = 512 ck cycles */
|
|
delay_for_n_mem_clocks(seq, 512);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_load_user() - Load user calibration values
|
|
* @fin1: Final instruction 1
|
|
* @fin2: Final instruction 2
|
|
* @precharge: If 1, precharge the banks at the end
|
|
*
|
|
* Load user calibration values and optionally precharge the banks.
|
|
*/
|
|
static void rw_mgr_mem_load_user(struct socfpga_sdrseq *seq,
|
|
const u32 fin1, const u32 fin2,
|
|
const int precharge)
|
|
{
|
|
if (dram_is_ddr(2))
|
|
rw_mgr_mem_load_user_ddr2(seq, precharge);
|
|
else if (dram_is_ddr(3))
|
|
rw_mgr_mem_load_user_ddr3(seq, fin1, fin2, precharge);
|
|
else
|
|
hang();
|
|
}
|
|
/**
|
|
* rw_mgr_mem_initialize() - Initialize RW Manager
|
|
*
|
|
* Initialize RW Manager.
|
|
*/
|
|
static void rw_mgr_mem_initialize(struct socfpga_sdrseq *seq)
|
|
{
|
|
debug("%s:%d\n", __func__, __LINE__);
|
|
|
|
/* The reset / cke part of initialization is broadcasted to all ranks */
|
|
if (dram_is_ddr(3)) {
|
|
writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
|
|
}
|
|
|
|
/*
|
|
* Here's how you load register for a loop
|
|
* Counters are located @ 0x800
|
|
* Jump address are located @ 0xC00
|
|
* For both, registers 0 to 3 are selected using bits 3 and 2, like
|
|
* in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
|
|
* I know this ain't pretty, but Avalon bus throws away the 2 least
|
|
* significant bits
|
|
*/
|
|
|
|
/* Start with memory RESET activated */
|
|
|
|
/* tINIT = 200us */
|
|
|
|
/*
|
|
* 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
|
|
* If a and b are the number of iteration in 2 nested loops
|
|
* it takes the following number of cycles to complete the operation:
|
|
* number_of_cycles = ((2 + n) * a + 2) * b
|
|
* where n is the number of instruction in the inner loop
|
|
* One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
|
|
* b = 6A
|
|
*/
|
|
rw_mgr_mem_init_load_regs(seq, seq->misccfg->tinit_cntr0_val,
|
|
seq->misccfg->tinit_cntr1_val,
|
|
seq->misccfg->tinit_cntr2_val,
|
|
seq->rwcfg->init_reset_0_cke_0);
|
|
|
|
/* Indicate that memory is stable. */
|
|
writel(1, &phy_mgr_cfg->reset_mem_stbl);
|
|
|
|
if (dram_is_ddr(2)) {
|
|
writel(seq->rwcfg->nop, SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
|
|
|
|
/* Bring up clock enable. */
|
|
|
|
/* tXRP < 400 ck cycles */
|
|
delay_for_n_ns(seq, 400);
|
|
} else if (dram_is_ddr(3)) {
|
|
/*
|
|
* transition the RESET to high
|
|
* Wait for 500us
|
|
*/
|
|
|
|
/*
|
|
* 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
|
|
* If a and b are the number of iteration in 2 nested loops
|
|
* it takes the following number of cycles to complete the
|
|
* operation number_of_cycles = ((2 + n) * a + 2) * b
|
|
* where n is the number of instruction in the inner loop
|
|
* One possible solution is
|
|
* n = 2 , a = 131 , b = 256 => a = 83, b = FF
|
|
*/
|
|
rw_mgr_mem_init_load_regs(seq, seq->misccfg->treset_cntr0_val,
|
|
seq->misccfg->treset_cntr1_val,
|
|
seq->misccfg->treset_cntr2_val,
|
|
seq->rwcfg->init_reset_1_cke_0);
|
|
/* Bring up clock enable. */
|
|
|
|
/* tXRP < 250 ck cycles */
|
|
delay_for_n_mem_clocks(seq, 250);
|
|
}
|
|
|
|
rw_mgr_mem_load_user(seq, seq->rwcfg->mrs0_dll_reset_mirr,
|
|
seq->rwcfg->mrs0_dll_reset, 0);
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_handoff() - Hand off the memory to user
|
|
*
|
|
* At the end of calibration we have to program the user settings in
|
|
* and hand off the memory to the user.
|
|
*/
|
|
static void rw_mgr_mem_handoff(struct socfpga_sdrseq *seq)
|
|
{
|
|
rw_mgr_mem_load_user(seq, seq->rwcfg->mrs0_user_mirr,
|
|
seq->rwcfg->mrs0_user, 1);
|
|
/*
|
|
* Need to wait tMOD (12CK or 15ns) time before issuing other
|
|
* commands, but we will have plenty of NIOS cycles before actual
|
|
* handoff so its okay.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
|
|
* @group: Write Group
|
|
* @use_dm: Use DM
|
|
*
|
|
* Issue write test command. Two variants are provided, one that just tests
|
|
* a write pattern and another that tests datamask functionality.
|
|
*/
|
|
static void rw_mgr_mem_calibrate_write_test_issue(struct socfpga_sdrseq *seq,
|
|
u32 group, u32 test_dm)
|
|
{
|
|
const u32 quick_write_mode =
|
|
(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
|
|
seq->misccfg->enable_super_quick_calibration;
|
|
u32 mcc_instruction;
|
|
u32 rw_wl_nop_cycles;
|
|
|
|
/*
|
|
* Set counter and jump addresses for the right
|
|
* number of NOP cycles.
|
|
* The number of supported NOP cycles can range from -1 to infinity
|
|
* Three different cases are handled:
|
|
*
|
|
* 1. For a number of NOP cycles greater than 0, the RW Mgr looping
|
|
* mechanism will be used to insert the right number of NOPs
|
|
*
|
|
* 2. For a number of NOP cycles equals to 0, the micro-instruction
|
|
* issuing the write command will jump straight to the
|
|
* micro-instruction that turns on DQS (for DDRx), or outputs write
|
|
* data (for RLD), skipping
|
|
* the NOP micro-instruction all together
|
|
*
|
|
* 3. A number of NOP cycles equal to -1 indicates that DQS must be
|
|
* turned on in the same micro-instruction that issues the write
|
|
* command. Then we need
|
|
* to directly jump to the micro-instruction that sends out the data
|
|
*
|
|
* NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
|
|
* (2 and 3). One jump-counter (0) is used to perform multiple
|
|
* write-read operations.
|
|
* one counter left to issue this command in "multiple-group" mode
|
|
*/
|
|
|
|
rw_wl_nop_cycles = seq->gbl.rw_wl_nop_cycles;
|
|
|
|
if (rw_wl_nop_cycles == -1) {
|
|
/*
|
|
* CNTR 2 - We want to execute the special write operation that
|
|
* turns on DQS right away and then skip directly to the
|
|
* instruction that sends out the data. We set the counter to a
|
|
* large number so that the jump is always taken.
|
|
*/
|
|
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
|
|
|
|
/* CNTR 3 - Not used */
|
|
if (test_dm) {
|
|
mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
|
|
writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_data,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
|
|
writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_nop,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
|
|
} else {
|
|
mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0_wl_1;
|
|
writel(seq->rwcfg->lfsr_wr_rd_bank_0_data,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
|
|
writel(seq->rwcfg->lfsr_wr_rd_bank_0_nop,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
|
|
}
|
|
} else if (rw_wl_nop_cycles == 0) {
|
|
/*
|
|
* CNTR 2 - We want to skip the NOP operation and go straight
|
|
* to the DQS enable instruction. We set the counter to a large
|
|
* number so that the jump is always taken.
|
|
*/
|
|
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
|
|
|
|
/* CNTR 3 - Not used */
|
|
if (test_dm) {
|
|
mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0;
|
|
writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
|
|
} else {
|
|
mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0;
|
|
writel(seq->rwcfg->lfsr_wr_rd_bank_0_dqs,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
|
|
}
|
|
} else {
|
|
/*
|
|
* CNTR 2 - In this case we want to execute the next instruction
|
|
* and NOT take the jump. So we set the counter to 0. The jump
|
|
* address doesn't count.
|
|
*/
|
|
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
|
|
writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
|
|
|
|
/*
|
|
* CNTR 3 - Set the nop counter to the number of cycles we
|
|
* need to loop for, minus 1.
|
|
*/
|
|
writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
|
|
if (test_dm) {
|
|
mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0;
|
|
writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_nop,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
|
|
} else {
|
|
mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0;
|
|
writel(seq->rwcfg->lfsr_wr_rd_bank_0_nop,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
|
|
}
|
|
}
|
|
|
|
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RESET_READ_DATAPATH_OFFSET);
|
|
|
|
if (quick_write_mode)
|
|
writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
|
|
else
|
|
writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
|
|
|
|
writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
|
|
|
|
/*
|
|
* CNTR 1 - This is used to ensure enough time elapses
|
|
* for read data to come back.
|
|
*/
|
|
writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
|
|
|
|
if (test_dm) {
|
|
writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_wait,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
|
|
} else {
|
|
writel(seq->rwcfg->lfsr_wr_rd_bank_0_wait,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
|
|
}
|
|
|
|
writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
|
|
(group << 2));
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple
|
|
* pass
|
|
* @rank_bgn: Rank number
|
|
* @write_group: Write Group
|
|
* @use_dm: Use DM
|
|
* @all_correct: All bits must be correct in the mask
|
|
* @bit_chk: Resulting bit mask after the test
|
|
* @all_ranks: Test all ranks
|
|
*
|
|
* Test writes, can check for a single bit pass or multiple bit pass.
|
|
*/
|
|
static int
|
|
rw_mgr_mem_calibrate_write_test(struct socfpga_sdrseq *seq,
|
|
const u32 rank_bgn, const u32 write_group,
|
|
const u32 use_dm, const u32 all_correct,
|
|
u32 *bit_chk, const u32 all_ranks)
|
|
{
|
|
const u32 rank_end = all_ranks ?
|
|
seq->rwcfg->mem_number_of_ranks :
|
|
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
|
|
const u32 shift_ratio = seq->rwcfg->mem_dq_per_write_dqs /
|
|
seq->rwcfg->mem_virtual_groups_per_write_dqs;
|
|
const u32 correct_mask_vg = seq->param.write_correct_mask_vg;
|
|
|
|
u32 tmp_bit_chk, base_rw_mgr, group;
|
|
int vg, r;
|
|
|
|
*bit_chk = seq->param.write_correct_mask;
|
|
|
|
for (r = rank_bgn; r < rank_end; r++) {
|
|
/* Set rank */
|
|
set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
|
|
|
|
tmp_bit_chk = 0;
|
|
for (vg = seq->rwcfg->mem_virtual_groups_per_write_dqs - 1;
|
|
vg >= 0; vg--) {
|
|
/* Reset the FIFOs to get pointers to known state. */
|
|
writel(0, &phy_mgr_cmd->fifo_reset);
|
|
|
|
group = write_group *
|
|
seq->rwcfg->mem_virtual_groups_per_write_dqs
|
|
+ vg;
|
|
rw_mgr_mem_calibrate_write_test_issue(seq, group,
|
|
use_dm);
|
|
|
|
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
|
|
tmp_bit_chk <<= shift_ratio;
|
|
tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
|
|
}
|
|
|
|
*bit_chk &= tmp_bit_chk;
|
|
}
|
|
|
|
set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
|
|
if (all_correct) {
|
|
debug_cond(DLEVEL >= 2,
|
|
"write_test(%u,%u,ALL) : %u == %u => %i\n",
|
|
write_group, use_dm, *bit_chk,
|
|
seq->param.write_correct_mask,
|
|
*bit_chk == seq->param.write_correct_mask);
|
|
return *bit_chk == seq->param.write_correct_mask;
|
|
} else {
|
|
debug_cond(DLEVEL >= 2,
|
|
"write_test(%u,%u,ONE) : %u != %i => %i\n",
|
|
write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
|
|
return *bit_chk != 0x00;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
|
|
* @rank_bgn: Rank number
|
|
* @group: Read/Write Group
|
|
* @all_ranks: Test all ranks
|
|
*
|
|
* Performs a guaranteed read on the patterns we are going to use during a
|
|
* read test to ensure memory works.
|
|
*/
|
|
static int
|
|
rw_mgr_mem_calibrate_read_test_patterns(struct socfpga_sdrseq *seq,
|
|
const u32 rank_bgn, const u32 group,
|
|
const u32 all_ranks)
|
|
{
|
|
const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
|
|
const u32 addr_offset =
|
|
(group * seq->rwcfg->mem_virtual_groups_per_read_dqs)
|
|
<< 2;
|
|
const u32 rank_end = all_ranks ?
|
|
seq->rwcfg->mem_number_of_ranks :
|
|
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
|
|
const u32 shift_ratio = seq->rwcfg->mem_dq_per_read_dqs /
|
|
seq->rwcfg->mem_virtual_groups_per_read_dqs;
|
|
const u32 correct_mask_vg = seq->param.read_correct_mask_vg;
|
|
|
|
u32 tmp_bit_chk, base_rw_mgr, bit_chk;
|
|
int vg, r;
|
|
int ret = 0;
|
|
|
|
bit_chk = seq->param.read_correct_mask;
|
|
|
|
for (r = rank_bgn; r < rank_end; r++) {
|
|
/* Set rank */
|
|
set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
|
|
|
|
/* Load up a constant bursts of read commands */
|
|
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
|
|
writel(seq->rwcfg->guaranteed_read,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
|
|
|
|
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
|
|
writel(seq->rwcfg->guaranteed_read_cont,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
|
|
|
|
tmp_bit_chk = 0;
|
|
for (vg = seq->rwcfg->mem_virtual_groups_per_read_dqs - 1;
|
|
vg >= 0; vg--) {
|
|
/* Reset the FIFOs to get pointers to known state. */
|
|
writel(0, &phy_mgr_cmd->fifo_reset);
|
|
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RESET_READ_DATAPATH_OFFSET);
|
|
writel(seq->rwcfg->guaranteed_read,
|
|
addr + addr_offset + (vg << 2));
|
|
|
|
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
|
|
tmp_bit_chk <<= shift_ratio;
|
|
tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
|
|
}
|
|
|
|
bit_chk &= tmp_bit_chk;
|
|
}
|
|
|
|
writel(seq->rwcfg->clear_dqs_enable, addr + (group << 2));
|
|
|
|
set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
|
|
|
|
if (bit_chk != seq->param.read_correct_mask)
|
|
ret = -EIO;
|
|
|
|
debug_cond(DLEVEL >= 1,
|
|
"%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
|
|
__func__, __LINE__, group, bit_chk,
|
|
seq->param.read_correct_mask, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read
|
|
* test
|
|
* @rank_bgn: Rank number
|
|
* @all_ranks: Test all ranks
|
|
*
|
|
* Load up the patterns we are going to use during a read test.
|
|
*/
|
|
static void rw_mgr_mem_calibrate_read_load_patterns(struct socfpga_sdrseq *seq,
|
|
const u32 rank_bgn,
|
|
const int all_ranks)
|
|
{
|
|
const u32 rank_end = all_ranks ?
|
|
seq->rwcfg->mem_number_of_ranks :
|
|
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
|
|
u32 r;
|
|
|
|
debug("%s:%d\n", __func__, __LINE__);
|
|
|
|
for (r = rank_bgn; r < rank_end; r++) {
|
|
/* set rank */
|
|
set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
|
|
|
|
/* Load up a constant bursts */
|
|
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
|
|
|
|
writel(seq->rwcfg->guaranteed_write_wait0,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
|
|
|
|
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
|
|
|
|
writel(seq->rwcfg->guaranteed_write_wait1,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
|
|
|
|
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
|
|
|
|
writel(seq->rwcfg->guaranteed_write_wait2,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
|
|
|
|
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
|
|
|
|
writel(seq->rwcfg->guaranteed_write_wait3,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
|
|
|
|
writel(seq->rwcfg->guaranteed_write,
|
|
SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
|
|
}
|
|
|
|
set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
|
|
* @rank_bgn: Rank number
|
|
* @group: Read/Write group
|
|
* @num_tries: Number of retries of the test
|
|
* @all_correct: All bits must be correct in the mask
|
|
* @bit_chk: Resulting bit mask after the test
|
|
* @all_groups: Test all R/W groups
|
|
* @all_ranks: Test all ranks
|
|
*
|
|
* Try a read and see if it returns correct data back. Test has dummy reads
|
|
* inserted into the mix used to align DQS enable. Test has more thorough
|
|
* checks than the regular read test.
|
|
*/
|
|
static int
|
|
rw_mgr_mem_calibrate_read_test(struct socfpga_sdrseq *seq,
|
|
const u32 rank_bgn, const u32 group,
|
|
const u32 num_tries, const u32 all_correct,
|
|
u32 *bit_chk,
|
|
const u32 all_groups, const u32 all_ranks)
|
|
{
|
|
const u32 rank_end = all_ranks ? seq->rwcfg->mem_number_of_ranks :
|
|
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
|
|
const u32 quick_read_mode =
|
|
((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
|
|
seq->misccfg->enable_super_quick_calibration);
|
|
u32 correct_mask_vg = seq->param.read_correct_mask_vg;
|
|
u32 tmp_bit_chk;
|
|
u32 base_rw_mgr;
|
|
u32 addr;
|
|
|
|
int r, vg, ret;
|
|
|
|
*bit_chk = seq->param.read_correct_mask;
|
|
|
|
for (r = rank_bgn; r < rank_end; r++) {
|
|
/* set rank */
|
|
set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
|
|
|
|
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
|
|
|
|
writel(seq->rwcfg->read_b2b_wait1,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
|
|
|
|
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
|
|
writel(seq->rwcfg->read_b2b_wait2,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
|
|
|
|
if (quick_read_mode)
|
|
writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
|
|
/* need at least two (1+1) reads to capture failures */
|
|
else if (all_groups)
|
|
writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
|
|
else
|
|
writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
|
|
|
|
writel(seq->rwcfg->read_b2b,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
|
|
if (all_groups)
|
|
writel(seq->rwcfg->mem_if_read_dqs_width *
|
|
seq->rwcfg->mem_virtual_groups_per_read_dqs - 1,
|
|
&sdr_rw_load_mgr_regs->load_cntr3);
|
|
else
|
|
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
|
|
|
|
writel(seq->rwcfg->read_b2b,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
|
|
|
|
tmp_bit_chk = 0;
|
|
for (vg = seq->rwcfg->mem_virtual_groups_per_read_dqs - 1;
|
|
vg >= 0; vg--) {
|
|
/* Reset the FIFOs to get pointers to known state. */
|
|
writel(0, &phy_mgr_cmd->fifo_reset);
|
|
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RESET_READ_DATAPATH_OFFSET);
|
|
|
|
if (all_groups) {
|
|
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_ALL_GROUPS_OFFSET;
|
|
} else {
|
|
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
|
|
}
|
|
|
|
writel(seq->rwcfg->read_b2b, addr +
|
|
((group *
|
|
seq->rwcfg->mem_virtual_groups_per_read_dqs +
|
|
vg) << 2));
|
|
|
|
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
|
|
tmp_bit_chk <<=
|
|
seq->rwcfg->mem_dq_per_read_dqs /
|
|
seq->rwcfg->mem_virtual_groups_per_read_dqs;
|
|
tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
|
|
}
|
|
|
|
*bit_chk &= tmp_bit_chk;
|
|
}
|
|
|
|
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
|
|
writel(seq->rwcfg->clear_dqs_enable, addr + (group << 2));
|
|
|
|
set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
|
|
|
|
if (all_correct) {
|
|
ret = (*bit_chk == seq->param.read_correct_mask);
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
|
|
__func__, __LINE__, group, all_groups, *bit_chk,
|
|
seq->param.read_correct_mask, ret);
|
|
} else {
|
|
ret = (*bit_chk != 0x00);
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
|
|
__func__, __LINE__, group, all_groups, *bit_chk,
|
|
0, ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
|
|
* @grp: Read/Write group
|
|
* @num_tries: Number of retries of the test
|
|
* @all_correct: All bits must be correct in the mask
|
|
* @all_groups: Test all R/W groups
|
|
*
|
|
* Perform a READ test across all memory ranks.
|
|
*/
|
|
static int
|
|
rw_mgr_mem_calibrate_read_test_all_ranks(struct socfpga_sdrseq *seq,
|
|
const u32 grp, const u32 num_tries,
|
|
const u32 all_correct,
|
|
const u32 all_groups)
|
|
{
|
|
u32 bit_chk;
|
|
return rw_mgr_mem_calibrate_read_test(seq, 0, grp, num_tries,
|
|
all_correct, &bit_chk, all_groups,
|
|
1);
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_incr_vfifo() - Increase VFIFO value
|
|
* @grp: Read/Write group
|
|
*
|
|
* Increase VFIFO value.
|
|
*/
|
|
static void rw_mgr_incr_vfifo(const u32 grp)
|
|
{
|
|
writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_decr_vfifo() - Decrease VFIFO value
|
|
* @grp: Read/Write group
|
|
*
|
|
* Decrease VFIFO value.
|
|
*/
|
|
static void rw_mgr_decr_vfifo(struct socfpga_sdrseq *seq, const u32 grp)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < seq->misccfg->read_valid_fifo_size - 1; i++)
|
|
rw_mgr_incr_vfifo(grp);
|
|
}
|
|
|
|
/**
|
|
* find_vfifo_failing_read() - Push VFIFO to get a failing read
|
|
* @grp: Read/Write group
|
|
*
|
|
* Push VFIFO until a failing read happens.
|
|
*/
|
|
static int find_vfifo_failing_read(struct socfpga_sdrseq *seq,
|
|
const u32 grp)
|
|
{
|
|
u32 v, ret, fail_cnt = 0;
|
|
|
|
for (v = 0; v < seq->misccfg->read_valid_fifo_size; v++) {
|
|
debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
|
|
__func__, __LINE__, v);
|
|
ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
|
|
PASS_ONE_BIT, 0);
|
|
if (!ret) {
|
|
fail_cnt++;
|
|
|
|
if (fail_cnt == 2)
|
|
return v;
|
|
}
|
|
|
|
/* Fiddle with FIFO. */
|
|
rw_mgr_incr_vfifo(grp);
|
|
}
|
|
|
|
/* No failing read found! Something must have gone wrong. */
|
|
debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sdr_find_phase_delay() - Find DQS enable phase or delay
|
|
* @working: If 1, look for working phase/delay, if 0, look for non-working
|
|
* @delay: If 1, look for delay, if 0, look for phase
|
|
* @grp: Read/Write group
|
|
* @work: Working window position
|
|
* @work_inc: Working window increment
|
|
* @pd: DQS Phase/Delay Iterator
|
|
*
|
|
* Find working or non-working DQS enable phase setting.
|
|
*/
|
|
static int sdr_find_phase_delay(struct socfpga_sdrseq *seq, int working,
|
|
int delay, const u32 grp, u32 *work,
|
|
const u32 work_inc, u32 *pd)
|
|
{
|
|
const u32 max = delay ? seq->iocfg->dqs_en_delay_max :
|
|
seq->iocfg->dqs_en_phase_max;
|
|
u32 ret;
|
|
|
|
for (; *pd <= max; (*pd)++) {
|
|
if (delay)
|
|
scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, *pd);
|
|
else
|
|
scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, *pd);
|
|
|
|
ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
|
|
PASS_ONE_BIT, 0);
|
|
if (!working)
|
|
ret = !ret;
|
|
|
|
if (ret)
|
|
return 0;
|
|
|
|
if (work)
|
|
*work += work_inc;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
/**
|
|
* sdr_find_phase() - Find DQS enable phase
|
|
* @working: If 1, look for working phase, if 0, look for non-working phase
|
|
* @grp: Read/Write group
|
|
* @work: Working window position
|
|
* @i: Iterator
|
|
* @p: DQS Phase Iterator
|
|
*
|
|
* Find working or non-working DQS enable phase setting.
|
|
*/
|
|
static int sdr_find_phase(struct socfpga_sdrseq *seq, int working,
|
|
const u32 grp, u32 *work, u32 *i, u32 *p)
|
|
{
|
|
const u32 end = seq->misccfg->read_valid_fifo_size + (working ? 0 : 1);
|
|
int ret;
|
|
|
|
for (; *i < end; (*i)++) {
|
|
if (working)
|
|
*p = 0;
|
|
|
|
ret = sdr_find_phase_delay(seq, working, 0, grp, work,
|
|
seq->iocfg->delay_per_opa_tap, p);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
if (*p > seq->iocfg->dqs_en_phase_max) {
|
|
/* Fiddle with FIFO. */
|
|
rw_mgr_incr_vfifo(grp);
|
|
if (!working)
|
|
*p = 0;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* sdr_working_phase() - Find working DQS enable phase
|
|
* @grp: Read/Write group
|
|
* @work_bgn: Working window start position
|
|
* @d: dtaps output value
|
|
* @p: DQS Phase Iterator
|
|
* @i: Iterator
|
|
*
|
|
* Find working DQS enable phase setting.
|
|
*/
|
|
static int sdr_working_phase(struct socfpga_sdrseq *seq, const u32 grp,
|
|
u32 *work_bgn, u32 *d, u32 *p, u32 *i)
|
|
{
|
|
const u32 dtaps_per_ptap = seq->iocfg->delay_per_opa_tap /
|
|
seq->iocfg->delay_per_dqs_en_dchain_tap;
|
|
int ret;
|
|
|
|
*work_bgn = 0;
|
|
|
|
for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
|
|
*i = 0;
|
|
scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, *d);
|
|
ret = sdr_find_phase(seq, 1, grp, work_bgn, i, p);
|
|
if (!ret)
|
|
return 0;
|
|
*work_bgn += seq->iocfg->delay_per_dqs_en_dchain_tap;
|
|
}
|
|
|
|
/* Cannot find working solution */
|
|
debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
|
|
__func__, __LINE__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* sdr_backup_phase() - Find DQS enable backup phase
|
|
* @grp: Read/Write group
|
|
* @work_bgn: Working window start position
|
|
* @p: DQS Phase Iterator
|
|
*
|
|
* Find DQS enable backup phase setting.
|
|
*/
|
|
static void sdr_backup_phase(struct socfpga_sdrseq *seq, const u32 grp,
|
|
u32 *work_bgn, u32 *p)
|
|
{
|
|
u32 tmp_delay, d;
|
|
int ret;
|
|
|
|
/* Special case code for backing up a phase */
|
|
if (*p == 0) {
|
|
*p = seq->iocfg->dqs_en_phase_max;
|
|
rw_mgr_decr_vfifo(seq, grp);
|
|
} else {
|
|
(*p)--;
|
|
}
|
|
tmp_delay = *work_bgn - seq->iocfg->delay_per_opa_tap;
|
|
scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, *p);
|
|
|
|
for (d = 0; d <= seq->iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
|
|
d++) {
|
|
scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, d);
|
|
|
|
ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
|
|
PASS_ONE_BIT, 0);
|
|
if (ret) {
|
|
*work_bgn = tmp_delay;
|
|
break;
|
|
}
|
|
|
|
tmp_delay += seq->iocfg->delay_per_dqs_en_dchain_tap;
|
|
}
|
|
|
|
/* Restore VFIFO to old state before we decremented it (if needed). */
|
|
(*p)++;
|
|
if (*p > seq->iocfg->dqs_en_phase_max) {
|
|
*p = 0;
|
|
rw_mgr_incr_vfifo(grp);
|
|
}
|
|
|
|
scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, 0);
|
|
}
|
|
|
|
/**
|
|
* sdr_nonworking_phase() - Find non-working DQS enable phase
|
|
* @grp: Read/Write group
|
|
* @work_end: Working window end position
|
|
* @p: DQS Phase Iterator
|
|
* @i: Iterator
|
|
*
|
|
* Find non-working DQS enable phase setting.
|
|
*/
|
|
static int sdr_nonworking_phase(struct socfpga_sdrseq *seq,
|
|
const u32 grp, u32 *work_end, u32 *p, u32 *i)
|
|
{
|
|
int ret;
|
|
|
|
(*p)++;
|
|
*work_end += seq->iocfg->delay_per_opa_tap;
|
|
if (*p > seq->iocfg->dqs_en_phase_max) {
|
|
/* Fiddle with FIFO. */
|
|
*p = 0;
|
|
rw_mgr_incr_vfifo(grp);
|
|
}
|
|
|
|
ret = sdr_find_phase(seq, 0, grp, work_end, i, p);
|
|
if (ret) {
|
|
/* Cannot see edge of failing read. */
|
|
debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
|
|
__func__, __LINE__);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sdr_find_window_center() - Find center of the working DQS window.
|
|
* @grp: Read/Write group
|
|
* @work_bgn: First working settings
|
|
* @work_end: Last working settings
|
|
*
|
|
* Find center of the working DQS enable window.
|
|
*/
|
|
static int sdr_find_window_center(struct socfpga_sdrseq *seq,
|
|
const u32 grp, const u32 work_bgn,
|
|
const u32 work_end)
|
|
{
|
|
u32 work_mid;
|
|
int tmp_delay = 0;
|
|
int i, p, d;
|
|
|
|
work_mid = (work_bgn + work_end) / 2;
|
|
|
|
debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
|
|
work_bgn, work_end, work_mid);
|
|
/* Get the middle delay to be less than a VFIFO delay */
|
|
tmp_delay = (seq->iocfg->dqs_en_phase_max + 1)
|
|
* seq->iocfg->delay_per_opa_tap;
|
|
|
|
debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
|
|
work_mid %= tmp_delay;
|
|
debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
|
|
|
|
tmp_delay = rounddown(work_mid, seq->iocfg->delay_per_opa_tap);
|
|
if (tmp_delay > seq->iocfg->dqs_en_phase_max
|
|
* seq->iocfg->delay_per_opa_tap) {
|
|
tmp_delay = seq->iocfg->dqs_en_phase_max
|
|
* seq->iocfg->delay_per_opa_tap;
|
|
}
|
|
p = tmp_delay / seq->iocfg->delay_per_opa_tap;
|
|
|
|
debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
|
|
|
|
d = DIV_ROUND_UP(work_mid - tmp_delay,
|
|
seq->iocfg->delay_per_dqs_en_dchain_tap);
|
|
if (d > seq->iocfg->dqs_en_delay_max)
|
|
d = seq->iocfg->dqs_en_delay_max;
|
|
tmp_delay += d * seq->iocfg->delay_per_dqs_en_dchain_tap;
|
|
|
|
debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
|
|
|
|
scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
|
|
scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, d);
|
|
|
|
/*
|
|
* push vfifo until we can successfully calibrate. We can do this
|
|
* because the largest possible margin in 1 VFIFO cycle.
|
|
*/
|
|
for (i = 0; i < seq->misccfg->read_valid_fifo_size; i++) {
|
|
debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
|
|
if (rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
|
|
PASS_ONE_BIT,
|
|
0)) {
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d center: found: ptap=%u dtap=%u\n",
|
|
__func__, __LINE__, p, d);
|
|
return 0;
|
|
}
|
|
|
|
/* Fiddle with FIFO. */
|
|
rw_mgr_incr_vfifo(grp);
|
|
}
|
|
|
|
debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
|
|
__func__, __LINE__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to
|
|
* use
|
|
* @grp: Read/Write Group
|
|
*
|
|
* Find a good DQS enable to use.
|
|
*/
|
|
static int
|
|
rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(struct socfpga_sdrseq *seq,
|
|
const u32 grp)
|
|
{
|
|
u32 d, p, i;
|
|
u32 dtaps_per_ptap;
|
|
u32 work_bgn, work_end;
|
|
u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
|
|
int ret;
|
|
|
|
debug("%s:%d %u\n", __func__, __LINE__, grp);
|
|
|
|
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
|
|
|
|
scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, 0);
|
|
scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, 0);
|
|
|
|
/* Step 0: Determine number of delay taps for each phase tap. */
|
|
dtaps_per_ptap = seq->iocfg->delay_per_opa_tap /
|
|
seq->iocfg->delay_per_dqs_en_dchain_tap;
|
|
|
|
/* Step 1: First push vfifo until we get a failing read. */
|
|
find_vfifo_failing_read(seq, grp);
|
|
|
|
/* Step 2: Find first working phase, increment in ptaps. */
|
|
work_bgn = 0;
|
|
ret = sdr_working_phase(seq, grp, &work_bgn, &d, &p, &i);
|
|
if (ret)
|
|
return ret;
|
|
|
|
work_end = work_bgn;
|
|
|
|
/*
|
|
* If d is 0 then the working window covers a phase tap and we can
|
|
* follow the old procedure. Otherwise, we've found the beginning
|
|
* and we need to increment the dtaps until we find the end.
|
|
*/
|
|
if (d == 0) {
|
|
/*
|
|
* Step 3a: If we have room, back off by one and
|
|
* increment in dtaps.
|
|
*/
|
|
sdr_backup_phase(seq, grp, &work_bgn, &p);
|
|
|
|
/*
|
|
* Step 4a: go forward from working phase to non working
|
|
* phase, increment in ptaps.
|
|
*/
|
|
ret = sdr_nonworking_phase(seq, grp, &work_end, &p, &i);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Step 5a: Back off one from last, increment in dtaps. */
|
|
|
|
/* Special case code for backing up a phase */
|
|
if (p == 0) {
|
|
p = seq->iocfg->dqs_en_phase_max;
|
|
rw_mgr_decr_vfifo(seq, grp);
|
|
} else {
|
|
p = p - 1;
|
|
}
|
|
|
|
work_end -= seq->iocfg->delay_per_opa_tap;
|
|
scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
|
|
|
|
d = 0;
|
|
|
|
debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
|
|
__func__, __LINE__, p);
|
|
}
|
|
|
|
/* The dtap increment to find the failing edge is done here. */
|
|
sdr_find_phase_delay(seq, 0, 1, grp, &work_end,
|
|
seq->iocfg->delay_per_dqs_en_dchain_tap, &d);
|
|
|
|
/* Go back to working dtap */
|
|
if (d != 0)
|
|
work_end -= seq->iocfg->delay_per_dqs_en_dchain_tap;
|
|
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d p/d: ptap=%u dtap=%u end=%u\n",
|
|
__func__, __LINE__, p, d - 1, work_end);
|
|
|
|
if (work_end < work_bgn) {
|
|
/* nil range */
|
|
debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
|
|
__func__, __LINE__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
|
|
__func__, __LINE__, work_bgn, work_end);
|
|
|
|
/*
|
|
* We need to calculate the number of dtaps that equal a ptap.
|
|
* To do that we'll back up a ptap and re-find the edge of the
|
|
* window using dtaps
|
|
*/
|
|
debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
|
|
__func__, __LINE__);
|
|
|
|
/* Special case code for backing up a phase */
|
|
if (p == 0) {
|
|
p = seq->iocfg->dqs_en_phase_max;
|
|
rw_mgr_decr_vfifo(seq, grp);
|
|
debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
|
|
__func__, __LINE__, p);
|
|
} else {
|
|
p = p - 1;
|
|
debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
|
|
__func__, __LINE__, p);
|
|
}
|
|
|
|
scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
|
|
|
|
/*
|
|
* Increase dtap until we first see a passing read (in case the
|
|
* window is smaller than a ptap), and then a failing read to
|
|
* mark the edge of the window again.
|
|
*/
|
|
|
|
/* Find a passing read. */
|
|
debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
|
|
__func__, __LINE__);
|
|
|
|
initial_failing_dtap = d;
|
|
|
|
found_passing_read = !sdr_find_phase_delay(seq, 1, 1, grp, NULL, 0, &d);
|
|
if (found_passing_read) {
|
|
/* Find a failing read. */
|
|
debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
|
|
__func__, __LINE__);
|
|
d++;
|
|
found_failing_read = !sdr_find_phase_delay(seq, 0, 1, grp, NULL,
|
|
0, &d);
|
|
} else {
|
|
debug_cond(DLEVEL >= 1,
|
|
"%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
|
|
__func__, __LINE__);
|
|
}
|
|
|
|
/*
|
|
* The dynamically calculated dtaps_per_ptap is only valid if we
|
|
* found a passing/failing read. If we didn't, it means d hit the max
|
|
* (seq->iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
|
|
* statically calculated value.
|
|
*/
|
|
if (found_passing_read && found_failing_read)
|
|
dtaps_per_ptap = d - initial_failing_dtap;
|
|
|
|
writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
|
|
debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
|
|
__func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
|
|
|
|
/* Step 6: Find the centre of the window. */
|
|
ret = sdr_find_window_center(seq, grp, work_bgn, work_end);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* search_stop_check() - Check if the detected edge is valid
|
|
* @write: Perform read (Stage 2) or write (Stage 3) calibration
|
|
* @d: DQS delay
|
|
* @rank_bgn: Rank number
|
|
* @write_group: Write Group
|
|
* @read_group: Read Group
|
|
* @bit_chk: Resulting bit mask after the test
|
|
* @sticky_bit_chk: Resulting sticky bit mask after the test
|
|
* @use_read_test: Perform read test
|
|
*
|
|
* Test if the found edge is valid.
|
|
*/
|
|
static u32 search_stop_check(struct socfpga_sdrseq *seq, const int write,
|
|
const int d, const int rank_bgn,
|
|
const u32 write_group, const u32 read_group,
|
|
u32 *bit_chk, u32 *sticky_bit_chk,
|
|
const u32 use_read_test)
|
|
{
|
|
const u32 ratio = seq->rwcfg->mem_if_read_dqs_width /
|
|
seq->rwcfg->mem_if_write_dqs_width;
|
|
const u32 correct_mask = write ? seq->param.write_correct_mask :
|
|
seq->param.read_correct_mask;
|
|
const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
|
|
seq->rwcfg->mem_dq_per_read_dqs;
|
|
u32 ret;
|
|
/*
|
|
* Stop searching when the read test doesn't pass AND when
|
|
* we've seen a passing read on every bit.
|
|
*/
|
|
if (write) { /* WRITE-ONLY */
|
|
ret = !rw_mgr_mem_calibrate_write_test(seq, rank_bgn,
|
|
write_group, 0,
|
|
PASS_ONE_BIT, bit_chk,
|
|
0);
|
|
} else if (use_read_test) { /* READ-ONLY */
|
|
ret = !rw_mgr_mem_calibrate_read_test(seq, rank_bgn, read_group,
|
|
NUM_READ_PB_TESTS,
|
|
PASS_ONE_BIT, bit_chk,
|
|
0, 0);
|
|
} else { /* READ-ONLY */
|
|
rw_mgr_mem_calibrate_write_test(seq, rank_bgn, write_group, 0,
|
|
PASS_ONE_BIT, bit_chk, 0);
|
|
*bit_chk = *bit_chk >> (per_dqs *
|
|
(read_group - (write_group * ratio)));
|
|
ret = (*bit_chk == 0);
|
|
}
|
|
*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
|
|
ret = ret && (*sticky_bit_chk == correct_mask);
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d center(left): dtap=%u => %u == %u && %u",
|
|
__func__, __LINE__, d,
|
|
*sticky_bit_chk, correct_mask, ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* search_left_edge() - Find left edge of DQ/DQS working phase
|
|
* @write: Perform read (Stage 2) or write (Stage 3) calibration
|
|
* @rank_bgn: Rank number
|
|
* @write_group: Write Group
|
|
* @read_group: Read Group
|
|
* @test_bgn: Rank number to begin the test
|
|
* @sticky_bit_chk: Resulting sticky bit mask after the test
|
|
* @left_edge: Left edge of the DQ/DQS phase
|
|
* @right_edge: Right edge of the DQ/DQS phase
|
|
* @use_read_test: Perform read test
|
|
*
|
|
* Find left edge of DQ/DQS working phase.
|
|
*/
|
|
static void search_left_edge(struct socfpga_sdrseq *seq, const int write,
|
|
const int rank_bgn, const u32 write_group,
|
|
const u32 read_group, const u32 test_bgn,
|
|
u32 *sticky_bit_chk, int *left_edge,
|
|
int *right_edge, const u32 use_read_test)
|
|
{
|
|
const u32 delay_max = write ? seq->iocfg->io_out1_delay_max :
|
|
seq->iocfg->io_in_delay_max;
|
|
const u32 dqs_max = write ? seq->iocfg->io_out1_delay_max :
|
|
seq->iocfg->dqs_in_delay_max;
|
|
const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
|
|
seq->rwcfg->mem_dq_per_read_dqs;
|
|
u32 stop, bit_chk;
|
|
int i, d;
|
|
|
|
for (d = 0; d <= dqs_max; d++) {
|
|
if (write)
|
|
scc_mgr_apply_group_dq_out1_delay(seq, d);
|
|
else
|
|
scc_mgr_apply_group_dq_in_delay(seq, test_bgn, d);
|
|
|
|
writel(0, &sdr_scc_mgr->update);
|
|
|
|
stop = search_stop_check(seq, write, d, rank_bgn, write_group,
|
|
read_group, &bit_chk, sticky_bit_chk,
|
|
use_read_test);
|
|
if (stop == 1)
|
|
break;
|
|
|
|
/* stop != 1 */
|
|
for (i = 0; i < per_dqs; i++) {
|
|
if (bit_chk & 1) {
|
|
/*
|
|
* Remember a passing test as
|
|
* the left_edge.
|
|
*/
|
|
left_edge[i] = d;
|
|
} else {
|
|
/*
|
|
* If a left edge has not been seen
|
|
* yet, then a future passing test
|
|
* will mark this edge as the right
|
|
* edge.
|
|
*/
|
|
if (left_edge[i] == delay_max + 1)
|
|
right_edge[i] = -(d + 1);
|
|
}
|
|
bit_chk >>= 1;
|
|
}
|
|
}
|
|
|
|
/* Reset DQ delay chains to 0 */
|
|
if (write)
|
|
scc_mgr_apply_group_dq_out1_delay(seq, 0);
|
|
else
|
|
scc_mgr_apply_group_dq_in_delay(seq, test_bgn, 0);
|
|
|
|
*sticky_bit_chk = 0;
|
|
for (i = per_dqs - 1; i >= 0; i--) {
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
|
|
__func__, __LINE__, i, left_edge[i],
|
|
i, right_edge[i]);
|
|
|
|
/*
|
|
* Check for cases where we haven't found the left edge,
|
|
* which makes our assignment of the the right edge invalid.
|
|
* Reset it to the illegal value.
|
|
*/
|
|
if ((left_edge[i] == delay_max + 1) &&
|
|
(right_edge[i] != delay_max + 1)) {
|
|
right_edge[i] = delay_max + 1;
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d vfifo_center: reset right_edge[%u]: %d\n",
|
|
__func__, __LINE__, i, right_edge[i]);
|
|
}
|
|
|
|
/*
|
|
* Reset sticky bit
|
|
* READ: except for bits where we have seen both
|
|
* the left and right edge.
|
|
* WRITE: except for bits where we have seen the
|
|
* left edge.
|
|
*/
|
|
*sticky_bit_chk <<= 1;
|
|
if (write) {
|
|
if (left_edge[i] != delay_max + 1)
|
|
*sticky_bit_chk |= 1;
|
|
} else {
|
|
if ((left_edge[i] != delay_max + 1) &&
|
|
(right_edge[i] != delay_max + 1))
|
|
*sticky_bit_chk |= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* search_right_edge() - Find right edge of DQ/DQS working phase
|
|
* @write: Perform read (Stage 2) or write (Stage 3) calibration
|
|
* @rank_bgn: Rank number
|
|
* @write_group: Write Group
|
|
* @read_group: Read Group
|
|
* @start_dqs: DQS start phase
|
|
* @start_dqs_en: DQS enable start phase
|
|
* @sticky_bit_chk: Resulting sticky bit mask after the test
|
|
* @left_edge: Left edge of the DQ/DQS phase
|
|
* @right_edge: Right edge of the DQ/DQS phase
|
|
* @use_read_test: Perform read test
|
|
*
|
|
* Find right edge of DQ/DQS working phase.
|
|
*/
|
|
static int search_right_edge(struct socfpga_sdrseq *seq, const int write,
|
|
const int rank_bgn, const u32 write_group,
|
|
const u32 read_group, const int start_dqs,
|
|
const int start_dqs_en, u32 *sticky_bit_chk,
|
|
int *left_edge, int *right_edge,
|
|
const u32 use_read_test)
|
|
{
|
|
const u32 delay_max = write ? seq->iocfg->io_out1_delay_max :
|
|
seq->iocfg->io_in_delay_max;
|
|
const u32 dqs_max = write ? seq->iocfg->io_out1_delay_max :
|
|
seq->iocfg->dqs_in_delay_max;
|
|
const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
|
|
seq->rwcfg->mem_dq_per_read_dqs;
|
|
u32 stop, bit_chk;
|
|
int i, d;
|
|
|
|
for (d = 0; d <= dqs_max - start_dqs; d++) {
|
|
if (write) { /* WRITE-ONLY */
|
|
scc_mgr_apply_group_dqs_io_and_oct_out1(seq,
|
|
write_group,
|
|
d + start_dqs);
|
|
} else { /* READ-ONLY */
|
|
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
|
|
if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
|
|
u32 delay = d + start_dqs_en;
|
|
if (delay > seq->iocfg->dqs_en_delay_max)
|
|
delay = seq->iocfg->dqs_en_delay_max;
|
|
scc_mgr_set_dqs_en_delay(read_group, delay);
|
|
}
|
|
scc_mgr_load_dqs(read_group);
|
|
}
|
|
|
|
writel(0, &sdr_scc_mgr->update);
|
|
|
|
stop = search_stop_check(seq, write, d, rank_bgn, write_group,
|
|
read_group, &bit_chk, sticky_bit_chk,
|
|
use_read_test);
|
|
if (stop == 1) {
|
|
if (write && (d == 0)) { /* WRITE-ONLY */
|
|
for (i = 0;
|
|
i < seq->rwcfg->mem_dq_per_write_dqs;
|
|
i++) {
|
|
/*
|
|
* d = 0 failed, but it passed when
|
|
* testing the left edge, so it must be
|
|
* marginal, set it to -1
|
|
*/
|
|
if (right_edge[i] == delay_max + 1 &&
|
|
left_edge[i] != delay_max + 1)
|
|
right_edge[i] = -1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* stop != 1 */
|
|
for (i = 0; i < per_dqs; i++) {
|
|
if (bit_chk & 1) {
|
|
/*
|
|
* Remember a passing test as
|
|
* the right_edge.
|
|
*/
|
|
right_edge[i] = d;
|
|
} else {
|
|
if (d != 0) {
|
|
/*
|
|
* If a right edge has not
|
|
* been seen yet, then a future
|
|
* passing test will mark this
|
|
* edge as the left edge.
|
|
*/
|
|
if (right_edge[i] == delay_max + 1)
|
|
left_edge[i] = -(d + 1);
|
|
} else {
|
|
/*
|
|
* d = 0 failed, but it passed
|
|
* when testing the left edge,
|
|
* so it must be marginal, set
|
|
* it to -1
|
|
*/
|
|
if (right_edge[i] == delay_max + 1 &&
|
|
left_edge[i] != delay_max + 1)
|
|
right_edge[i] = -1;
|
|
/*
|
|
* If a right edge has not been
|
|
* seen yet, then a future
|
|
* passing test will mark this
|
|
* edge as the left edge.
|
|
*/
|
|
else if (right_edge[i] == delay_max + 1)
|
|
left_edge[i] = -(d + 1);
|
|
}
|
|
}
|
|
|
|
debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
|
|
__func__, __LINE__, d);
|
|
debug_cond(DLEVEL >= 2,
|
|
"bit_chk_test=%i left_edge[%u]: %d ",
|
|
bit_chk & 1, i, left_edge[i]);
|
|
debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
|
|
right_edge[i]);
|
|
bit_chk >>= 1;
|
|
}
|
|
}
|
|
|
|
/* Check that all bits have a window */
|
|
for (i = 0; i < per_dqs; i++) {
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
|
|
__func__, __LINE__, i, left_edge[i],
|
|
i, right_edge[i]);
|
|
if ((left_edge[i] == dqs_max + 1) ||
|
|
(right_edge[i] == dqs_max + 1))
|
|
return i + 1; /* FIXME: If we fail, retval > 0 */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* get_window_mid_index() - Find the best middle setting of DQ/DQS phase
|
|
* @write: Perform read (Stage 2) or write (Stage 3) calibration
|
|
* @left_edge: Left edge of the DQ/DQS phase
|
|
* @right_edge: Right edge of the DQ/DQS phase
|
|
* @mid_min: Best DQ/DQS phase middle setting
|
|
*
|
|
* Find index and value of the middle of the DQ/DQS working phase.
|
|
*/
|
|
static int get_window_mid_index(struct socfpga_sdrseq *seq,
|
|
const int write, int *left_edge,
|
|
int *right_edge, int *mid_min)
|
|
{
|
|
const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
|
|
seq->rwcfg->mem_dq_per_read_dqs;
|
|
int i, mid, min_index;
|
|
|
|
/* Find middle of window for each DQ bit */
|
|
*mid_min = left_edge[0] - right_edge[0];
|
|
min_index = 0;
|
|
for (i = 1; i < per_dqs; i++) {
|
|
mid = left_edge[i] - right_edge[i];
|
|
if (mid < *mid_min) {
|
|
*mid_min = mid;
|
|
min_index = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* -mid_min/2 represents the amount that we need to move DQS.
|
|
* If mid_min is odd and positive we'll need to add one to make
|
|
* sure the rounding in further calculations is correct (always
|
|
* bias to the right), so just add 1 for all positive values.
|
|
*/
|
|
if (*mid_min > 0)
|
|
(*mid_min)++;
|
|
*mid_min = *mid_min / 2;
|
|
|
|
debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
|
|
__func__, __LINE__, *mid_min, min_index);
|
|
return min_index;
|
|
}
|
|
|
|
/**
|
|
* center_dq_windows() - Center the DQ/DQS windows
|
|
* @write: Perform read (Stage 2) or write (Stage 3) calibration
|
|
* @left_edge: Left edge of the DQ/DQS phase
|
|
* @right_edge: Right edge of the DQ/DQS phase
|
|
* @mid_min: Adjusted DQ/DQS phase middle setting
|
|
* @orig_mid_min: Original DQ/DQS phase middle setting
|
|
* @min_index: DQ/DQS phase middle setting index
|
|
* @test_bgn: Rank number to begin the test
|
|
* @dq_margin: Amount of shift for the DQ
|
|
* @dqs_margin: Amount of shift for the DQS
|
|
*
|
|
* Align the DQ/DQS windows in each group.
|
|
*/
|
|
static void center_dq_windows(struct socfpga_sdrseq *seq,
|
|
const int write, int *left_edge, int *right_edge,
|
|
const int mid_min, const int orig_mid_min,
|
|
const int min_index, const int test_bgn,
|
|
int *dq_margin, int *dqs_margin)
|
|
{
|
|
const s32 delay_max = write ? seq->iocfg->io_out1_delay_max :
|
|
seq->iocfg->io_in_delay_max;
|
|
const s32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
|
|
seq->rwcfg->mem_dq_per_read_dqs;
|
|
const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
|
|
SCC_MGR_IO_IN_DELAY_OFFSET;
|
|
const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
|
|
|
|
s32 temp_dq_io_delay1;
|
|
int shift_dq, i, p;
|
|
|
|
/* Initialize data for export structures */
|
|
*dqs_margin = delay_max + 1;
|
|
*dq_margin = delay_max + 1;
|
|
|
|
/* add delay to bring centre of all DQ windows to the same "level" */
|
|
for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
|
|
/* Use values before divide by 2 to reduce round off error */
|
|
shift_dq = (left_edge[i] - right_edge[i] -
|
|
(left_edge[min_index] - right_edge[min_index]))/2 +
|
|
(orig_mid_min - mid_min);
|
|
|
|
debug_cond(DLEVEL >= 2,
|
|
"vfifo_center: before: shift_dq[%u]=%d\n",
|
|
i, shift_dq);
|
|
|
|
temp_dq_io_delay1 = readl(addr + (i << 2));
|
|
|
|
if (shift_dq + temp_dq_io_delay1 > delay_max)
|
|
shift_dq = delay_max - temp_dq_io_delay1;
|
|
else if (shift_dq + temp_dq_io_delay1 < 0)
|
|
shift_dq = -temp_dq_io_delay1;
|
|
|
|
debug_cond(DLEVEL >= 2,
|
|
"vfifo_center: after: shift_dq[%u]=%d\n",
|
|
i, shift_dq);
|
|
|
|
if (write)
|
|
scc_mgr_set_dq_out1_delay(i,
|
|
temp_dq_io_delay1 + shift_dq);
|
|
else
|
|
scc_mgr_set_dq_in_delay(p,
|
|
temp_dq_io_delay1 + shift_dq);
|
|
|
|
scc_mgr_load_dq(p);
|
|
|
|
debug_cond(DLEVEL >= 2,
|
|
"vfifo_center: margin[%u]=[%d,%d]\n", i,
|
|
left_edge[i] - shift_dq + (-mid_min),
|
|
right_edge[i] + shift_dq - (-mid_min));
|
|
|
|
/* To determine values for export structures */
|
|
if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
|
|
*dq_margin = left_edge[i] - shift_dq + (-mid_min);
|
|
|
|
if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
|
|
*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
|
|
* @rank_bgn: Rank number
|
|
* @rw_group: Read/Write Group
|
|
* @test_bgn: Rank at which the test begins
|
|
* @use_read_test: Perform a read test
|
|
* @update_fom: Update FOM
|
|
*
|
|
* Per-bit deskew DQ and centering.
|
|
*/
|
|
static int rw_mgr_mem_calibrate_vfifo_center(struct socfpga_sdrseq *seq,
|
|
const u32 rank_bgn,
|
|
const u32 rw_group,
|
|
const u32 test_bgn,
|
|
const int use_read_test,
|
|
const int update_fom)
|
|
{
|
|
const u32 addr =
|
|
SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
|
|
(rw_group << 2);
|
|
/*
|
|
* Store these as signed since there are comparisons with
|
|
* signed numbers.
|
|
*/
|
|
u32 sticky_bit_chk;
|
|
s32 left_edge[seq->rwcfg->mem_dq_per_read_dqs];
|
|
s32 right_edge[seq->rwcfg->mem_dq_per_read_dqs];
|
|
s32 orig_mid_min, mid_min;
|
|
s32 new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
|
|
s32 dq_margin, dqs_margin;
|
|
int i, min_index;
|
|
int ret;
|
|
|
|
debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
|
|
|
|
start_dqs = readl(addr);
|
|
if (seq->iocfg->shift_dqs_en_when_shift_dqs)
|
|
start_dqs_en = readl(addr - seq->iocfg->dqs_en_delay_offset);
|
|
|
|
/* set the left and right edge of each bit to an illegal value */
|
|
/* use (seq->iocfg->io_in_delay_max + 1) as an illegal value */
|
|
sticky_bit_chk = 0;
|
|
for (i = 0; i < seq->rwcfg->mem_dq_per_read_dqs; i++) {
|
|
left_edge[i] = seq->iocfg->io_in_delay_max + 1;
|
|
right_edge[i] = seq->iocfg->io_in_delay_max + 1;
|
|
}
|
|
|
|
/* Search for the left edge of the window for each bit */
|
|
search_left_edge(seq, 0, rank_bgn, rw_group, rw_group, test_bgn,
|
|
&sticky_bit_chk,
|
|
left_edge, right_edge, use_read_test);
|
|
|
|
|
|
/* Search for the right edge of the window for each bit */
|
|
ret = search_right_edge(seq, 0, rank_bgn, rw_group, rw_group,
|
|
start_dqs, start_dqs_en,
|
|
&sticky_bit_chk,
|
|
left_edge, right_edge, use_read_test);
|
|
if (ret) {
|
|
/*
|
|
* Restore delay chain settings before letting the loop
|
|
* in rw_mgr_mem_calibrate_vfifo to retry different
|
|
* dqs/ck relationships.
|
|
*/
|
|
scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
|
|
if (seq->iocfg->shift_dqs_en_when_shift_dqs)
|
|
scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
|
|
|
|
scc_mgr_load_dqs(rw_group);
|
|
writel(0, &sdr_scc_mgr->update);
|
|
|
|
debug_cond(DLEVEL >= 1,
|
|
"%s:%d vfifo_center: failed to find edge [%u]: %d %d",
|
|
__func__, __LINE__, i, left_edge[i], right_edge[i]);
|
|
if (use_read_test) {
|
|
set_failing_group_stage(seq, rw_group *
|
|
seq->rwcfg->mem_dq_per_read_dqs + i,
|
|
CAL_STAGE_VFIFO,
|
|
CAL_SUBSTAGE_VFIFO_CENTER);
|
|
} else {
|
|
set_failing_group_stage(seq, rw_group *
|
|
seq->rwcfg->mem_dq_per_read_dqs + i,
|
|
CAL_STAGE_VFIFO_AFTER_WRITES,
|
|
CAL_SUBSTAGE_VFIFO_CENTER);
|
|
}
|
|
return -EIO;
|
|
}
|
|
|
|
min_index = get_window_mid_index(seq, 0, left_edge, right_edge,
|
|
&mid_min);
|
|
|
|
/* Determine the amount we can change DQS (which is -mid_min) */
|
|
orig_mid_min = mid_min;
|
|
new_dqs = start_dqs - mid_min;
|
|
if (new_dqs > seq->iocfg->dqs_in_delay_max)
|
|
new_dqs = seq->iocfg->dqs_in_delay_max;
|
|
else if (new_dqs < 0)
|
|
new_dqs = 0;
|
|
|
|
mid_min = start_dqs - new_dqs;
|
|
debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
|
|
mid_min, new_dqs);
|
|
|
|
if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
|
|
if (start_dqs_en - mid_min > seq->iocfg->dqs_en_delay_max)
|
|
mid_min += start_dqs_en - mid_min -
|
|
seq->iocfg->dqs_en_delay_max;
|
|
else if (start_dqs_en - mid_min < 0)
|
|
mid_min += start_dqs_en - mid_min;
|
|
}
|
|
new_dqs = start_dqs - mid_min;
|
|
|
|
debug_cond(DLEVEL >= 1,
|
|
"vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
|
|
start_dqs,
|
|
seq->iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
|
|
new_dqs, mid_min);
|
|
|
|
/* Add delay to bring centre of all DQ windows to the same "level". */
|
|
center_dq_windows(seq, 0, left_edge, right_edge, mid_min, orig_mid_min,
|
|
min_index, test_bgn, &dq_margin, &dqs_margin);
|
|
|
|
/* Move DQS-en */
|
|
if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
|
|
final_dqs_en = start_dqs_en - mid_min;
|
|
scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
|
|
scc_mgr_load_dqs(rw_group);
|
|
}
|
|
|
|
/* Move DQS */
|
|
scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
|
|
scc_mgr_load_dqs(rw_group);
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
|
|
__func__, __LINE__, dq_margin, dqs_margin);
|
|
|
|
/*
|
|
* Do not remove this line as it makes sure all of our decisions
|
|
* have been applied. Apply the update bit.
|
|
*/
|
|
writel(0, &sdr_scc_mgr->update);
|
|
|
|
if ((dq_margin < 0) || (dqs_margin < 0))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the
|
|
* device
|
|
* @rw_group: Read/Write Group
|
|
* @phase: DQ/DQS phase
|
|
*
|
|
* Because initially no communication ca be reliably performed with the memory
|
|
* device, the sequencer uses a guaranteed write mechanism to write data into
|
|
* the memory device.
|
|
*/
|
|
static int rw_mgr_mem_calibrate_guaranteed_write(struct socfpga_sdrseq *seq,
|
|
const u32 rw_group,
|
|
const u32 phase)
|
|
{
|
|
int ret;
|
|
|
|
/* Set a particular DQ/DQS phase. */
|
|
scc_mgr_set_dqdqs_output_phase_all_ranks(seq, rw_group, phase);
|
|
|
|
debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
|
|
__func__, __LINE__, rw_group, phase);
|
|
|
|
/*
|
|
* Altera EMI_RM 2015.05.04 :: Figure 1-25
|
|
* Load up the patterns used by read calibration using the
|
|
* current DQDQS phase.
|
|
*/
|
|
rw_mgr_mem_calibrate_read_load_patterns(seq, 0, 1);
|
|
|
|
if (seq->gbl.phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
|
|
return 0;
|
|
|
|
/*
|
|
* Altera EMI_RM 2015.05.04 :: Figure 1-26
|
|
* Back-to-Back reads of the patterns used for calibration.
|
|
*/
|
|
ret = rw_mgr_mem_calibrate_read_test_patterns(seq, 0, rw_group, 1);
|
|
if (ret)
|
|
debug_cond(DLEVEL >= 1,
|
|
"%s:%d Guaranteed read test failed: g=%u p=%u\n",
|
|
__func__, __LINE__, rw_group, phase);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
|
|
* @rw_group: Read/Write Group
|
|
* @test_bgn: Rank at which the test begins
|
|
*
|
|
* DQS enable calibration ensures reliable capture of the DQ signal without
|
|
* glitches on the DQS line.
|
|
*/
|
|
static int
|
|
rw_mgr_mem_calibrate_dqs_enable_calibration(struct socfpga_sdrseq *seq,
|
|
const u32 rw_group,
|
|
const u32 test_bgn)
|
|
{
|
|
/*
|
|
* Altera EMI_RM 2015.05.04 :: Figure 1-27
|
|
* DQS and DQS Eanble Signal Relationships.
|
|
*/
|
|
|
|
/* We start at zero, so have one less dq to devide among */
|
|
const u32 delay_step = seq->iocfg->io_in_delay_max /
|
|
(seq->rwcfg->mem_dq_per_read_dqs - 1);
|
|
int ret;
|
|
u32 i, p, d, r;
|
|
|
|
debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
|
|
|
|
/* Try different dq_in_delays since the DQ path is shorter than DQS. */
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
|
|
r += NUM_RANKS_PER_SHADOW_REG) {
|
|
for (i = 0, p = test_bgn, d = 0;
|
|
i < seq->rwcfg->mem_dq_per_read_dqs;
|
|
i++, p++, d += delay_step) {
|
|
debug_cond(DLEVEL >= 1,
|
|
"%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
|
|
__func__, __LINE__, rw_group, r, i, p, d);
|
|
|
|
scc_mgr_set_dq_in_delay(p, d);
|
|
scc_mgr_load_dq(p);
|
|
}
|
|
|
|
writel(0, &sdr_scc_mgr->update);
|
|
}
|
|
|
|
/*
|
|
* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
|
|
* dq_in_delay values
|
|
*/
|
|
ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(seq, rw_group);
|
|
|
|
debug_cond(DLEVEL >= 1,
|
|
"%s:%d: g=%u found=%u; Resetting delay chain to zero\n",
|
|
__func__, __LINE__, rw_group, !ret);
|
|
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
|
|
r += NUM_RANKS_PER_SHADOW_REG) {
|
|
scc_mgr_apply_group_dq_in_delay(seq, test_bgn, 0);
|
|
writel(0, &sdr_scc_mgr->update);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
|
|
* @rw_group: Read/Write Group
|
|
* @test_bgn: Rank at which the test begins
|
|
* @use_read_test: Perform a read test
|
|
* @update_fom: Update FOM
|
|
*
|
|
* The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
|
|
* within a group.
|
|
*/
|
|
static int
|
|
rw_mgr_mem_calibrate_dq_dqs_centering(struct socfpga_sdrseq *seq,
|
|
const u32 rw_group, const u32 test_bgn,
|
|
const int use_read_test,
|
|
const int update_fom)
|
|
|
|
{
|
|
int ret, grp_calibrated;
|
|
u32 rank_bgn, sr;
|
|
|
|
/*
|
|
* Altera EMI_RM 2015.05.04 :: Figure 1-28
|
|
* Read per-bit deskew can be done on a per shadow register basis.
|
|
*/
|
|
grp_calibrated = 1;
|
|
for (rank_bgn = 0, sr = 0;
|
|
rank_bgn < seq->rwcfg->mem_number_of_ranks;
|
|
rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
|
|
ret = rw_mgr_mem_calibrate_vfifo_center(seq, rank_bgn, rw_group,
|
|
test_bgn,
|
|
use_read_test,
|
|
update_fom);
|
|
if (!ret)
|
|
continue;
|
|
|
|
grp_calibrated = 0;
|
|
}
|
|
|
|
if (!grp_calibrated)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
|
|
* @rw_group: Read/Write Group
|
|
* @test_bgn: Rank at which the test begins
|
|
*
|
|
* Stage 1: Calibrate the read valid prediction FIFO.
|
|
*
|
|
* This function implements UniPHY calibration Stage 1, as explained in
|
|
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
|
|
*
|
|
* - read valid prediction will consist of finding:
|
|
* - DQS enable phase and DQS enable delay (DQS Enable Calibration)
|
|
* - DQS input phase and DQS input delay (DQ/DQS Centering)
|
|
* - we also do a per-bit deskew on the DQ lines.
|
|
*/
|
|
static int rw_mgr_mem_calibrate_vfifo(struct socfpga_sdrseq *seq,
|
|
const u32 rw_group, const u32 test_bgn)
|
|
{
|
|
u32 p, d;
|
|
u32 dtaps_per_ptap;
|
|
u32 failed_substage;
|
|
|
|
int ret;
|
|
|
|
debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
|
|
|
|
/* Update info for sims */
|
|
reg_file_set_group(rw_group);
|
|
reg_file_set_stage(CAL_STAGE_VFIFO);
|
|
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
|
|
|
|
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
|
|
|
|
/* USER Determine number of delay taps for each phase tap. */
|
|
dtaps_per_ptap = DIV_ROUND_UP(seq->iocfg->delay_per_opa_tap,
|
|
seq->iocfg->delay_per_dqs_en_dchain_tap)
|
|
- 1;
|
|
|
|
for (d = 0; d <= dtaps_per_ptap; d += 2) {
|
|
/*
|
|
* In RLDRAMX we may be messing the delay of pins in
|
|
* the same write rw_group but outside of the current read
|
|
* the rw_group, but that's ok because we haven't calibrated
|
|
* output side yet.
|
|
*/
|
|
if (d > 0) {
|
|
scc_mgr_apply_group_all_out_delay_add_all_ranks(seq,
|
|
rw_group,
|
|
d);
|
|
}
|
|
|
|
for (p = 0; p <= seq->iocfg->dqdqs_out_phase_max; p++) {
|
|
/* 1) Guaranteed Write */
|
|
ret = rw_mgr_mem_calibrate_guaranteed_write(seq,
|
|
rw_group,
|
|
p);
|
|
if (ret)
|
|
break;
|
|
|
|
/* 2) DQS Enable Calibration */
|
|
ret = rw_mgr_mem_calibrate_dqs_enable_calibration(seq,
|
|
rw_group,
|
|
test_bgn);
|
|
if (ret) {
|
|
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
|
|
continue;
|
|
}
|
|
|
|
/* 3) Centering DQ/DQS */
|
|
/*
|
|
* If doing read after write calibration, do not update
|
|
* FOM now. Do it then.
|
|
*/
|
|
ret = rw_mgr_mem_calibrate_dq_dqs_centering(seq,
|
|
rw_group,
|
|
test_bgn,
|
|
1, 0);
|
|
if (ret) {
|
|
failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
|
|
continue;
|
|
}
|
|
|
|
/* All done. */
|
|
goto cal_done_ok;
|
|
}
|
|
}
|
|
|
|
/* Calibration Stage 1 failed. */
|
|
set_failing_group_stage(seq, rw_group, CAL_STAGE_VFIFO,
|
|
failed_substage);
|
|
return 0;
|
|
|
|
/* Calibration Stage 1 completed OK. */
|
|
cal_done_ok:
|
|
/*
|
|
* Reset the delay chains back to zero if they have moved > 1
|
|
* (check for > 1 because loop will increase d even when pass in
|
|
* first case).
|
|
*/
|
|
if (d > 2)
|
|
scc_mgr_zero_group(seq, rw_group, 1);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
|
|
* @rw_group: Read/Write Group
|
|
* @test_bgn: Rank at which the test begins
|
|
*
|
|
* Stage 3: DQ/DQS Centering.
|
|
*
|
|
* This function implements UniPHY calibration Stage 3, as explained in
|
|
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
|
|
*/
|
|
static int rw_mgr_mem_calibrate_vfifo_end(struct socfpga_sdrseq *seq,
|
|
const u32 rw_group,
|
|
const u32 test_bgn)
|
|
{
|
|
int ret;
|
|
|
|
debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
|
|
|
|
/* Update info for sims. */
|
|
reg_file_set_group(rw_group);
|
|
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
|
|
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
|
|
|
|
ret = rw_mgr_mem_calibrate_dq_dqs_centering(seq, rw_group, test_bgn, 0,
|
|
1);
|
|
if (ret)
|
|
set_failing_group_stage(seq, rw_group,
|
|
CAL_STAGE_VFIFO_AFTER_WRITES,
|
|
CAL_SUBSTAGE_VFIFO_CENTER);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_lfifo() - Minimize latency
|
|
*
|
|
* Stage 4: Minimize latency.
|
|
*
|
|
* This function implements UniPHY calibration Stage 4, as explained in
|
|
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
|
|
* Calibrate LFIFO to find smallest read latency.
|
|
*/
|
|
static u32 rw_mgr_mem_calibrate_lfifo(struct socfpga_sdrseq *seq)
|
|
{
|
|
int found_one = 0;
|
|
|
|
debug("%s:%d\n", __func__, __LINE__);
|
|
|
|
/* Update info for sims. */
|
|
reg_file_set_stage(CAL_STAGE_LFIFO);
|
|
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
|
|
|
|
/* Load up the patterns used by read calibration for all ranks */
|
|
rw_mgr_mem_calibrate_read_load_patterns(seq, 0, 1);
|
|
|
|
do {
|
|
writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
|
|
debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
|
|
__func__, __LINE__, seq->gbl.curr_read_lat);
|
|
|
|
if (!rw_mgr_mem_calibrate_read_test_all_ranks(seq, 0,
|
|
NUM_READ_TESTS,
|
|
PASS_ALL_BITS, 1))
|
|
break;
|
|
|
|
found_one = 1;
|
|
/*
|
|
* Reduce read latency and see if things are
|
|
* working correctly.
|
|
*/
|
|
seq->gbl.curr_read_lat--;
|
|
} while (seq->gbl.curr_read_lat > 0);
|
|
|
|
/* Reset the fifos to get pointers to known state. */
|
|
writel(0, &phy_mgr_cmd->fifo_reset);
|
|
|
|
if (found_one) {
|
|
/* Add a fudge factor to the read latency that was determined */
|
|
seq->gbl.curr_read_lat += 2;
|
|
writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d lfifo: success: using read_lat=%u\n",
|
|
__func__, __LINE__, seq->gbl.curr_read_lat);
|
|
} else {
|
|
set_failing_group_stage(seq, 0xff, CAL_STAGE_LFIFO,
|
|
CAL_SUBSTAGE_READ_LATENCY);
|
|
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d lfifo: failed at initial read_lat=%u\n",
|
|
__func__, __LINE__, seq->gbl.curr_read_lat);
|
|
}
|
|
|
|
return found_one;
|
|
}
|
|
|
|
/**
|
|
* search_window() - Search for the/part of the window with DM/DQS shift
|
|
* @search_dm: If 1, search for the DM shift, if 0, search for DQS
|
|
* shift
|
|
* @rank_bgn: Rank number
|
|
* @write_group: Write Group
|
|
* @bgn_curr: Current window begin
|
|
* @end_curr: Current window end
|
|
* @bgn_best: Current best window begin
|
|
* @end_best: Current best window end
|
|
* @win_best: Size of the best window
|
|
* @new_dqs: New DQS value (only applicable if search_dm = 0).
|
|
*
|
|
* Search for the/part of the window with DM/DQS shift.
|
|
*/
|
|
static void search_window(struct socfpga_sdrseq *seq,
|
|
const int search_dm, const u32 rank_bgn,
|
|
const u32 write_group, int *bgn_curr, int *end_curr,
|
|
int *bgn_best, int *end_best, int *win_best,
|
|
int new_dqs)
|
|
{
|
|
u32 bit_chk;
|
|
const int max = seq->iocfg->io_out1_delay_max - new_dqs;
|
|
int d, di;
|
|
|
|
/* Search for the/part of the window with DM/DQS shift. */
|
|
for (di = max; di >= 0; di -= DELTA_D) {
|
|
if (search_dm) {
|
|
d = di;
|
|
scc_mgr_apply_group_dm_out1_delay(seq, d);
|
|
} else {
|
|
/* For DQS, we go from 0...max */
|
|
d = max - di;
|
|
/*
|
|
* Note: This only shifts DQS, so are we limiting
|
|
* ourselves to width of DQ unnecessarily.
|
|
*/
|
|
scc_mgr_apply_group_dqs_io_and_oct_out1(seq,
|
|
write_group,
|
|
d + new_dqs);
|
|
}
|
|
|
|
writel(0, &sdr_scc_mgr->update);
|
|
|
|
if (rw_mgr_mem_calibrate_write_test(seq, rank_bgn, write_group,
|
|
1, PASS_ALL_BITS, &bit_chk,
|
|
0)) {
|
|
/* Set current end of the window. */
|
|
*end_curr = search_dm ? -d : d;
|
|
|
|
/*
|
|
* If a starting edge of our window has not been seen
|
|
* this is our current start of the DM window.
|
|
*/
|
|
if (*bgn_curr == seq->iocfg->io_out1_delay_max + 1)
|
|
*bgn_curr = search_dm ? -d : d;
|
|
|
|
/*
|
|
* If current window is bigger than best seen.
|
|
* Set best seen to be current window.
|
|
*/
|
|
if ((*end_curr - *bgn_curr + 1) > *win_best) {
|
|
*win_best = *end_curr - *bgn_curr + 1;
|
|
*bgn_best = *bgn_curr;
|
|
*end_best = *end_curr;
|
|
}
|
|
} else {
|
|
/* We just saw a failing test. Reset temp edge. */
|
|
*bgn_curr = seq->iocfg->io_out1_delay_max + 1;
|
|
*end_curr = seq->iocfg->io_out1_delay_max + 1;
|
|
|
|
/* Early exit is only applicable to DQS. */
|
|
if (search_dm)
|
|
continue;
|
|
|
|
/*
|
|
* Early exit optimization: if the remaining delay
|
|
* chain space is less than already seen largest
|
|
* window we can exit.
|
|
*/
|
|
if (*win_best - 1 > seq->iocfg->io_out1_delay_max
|
|
- new_dqs - d)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rw_mgr_mem_calibrate_writes_center() - Center all windows
|
|
* @rank_bgn: Rank number
|
|
* @write_group: Write group
|
|
* @test_bgn: Rank at which the test begins
|
|
*
|
|
* Center all windows. Do per-bit-deskew to possibly increase size of
|
|
* certain windows.
|
|
*/
|
|
static int
|
|
rw_mgr_mem_calibrate_writes_center(struct socfpga_sdrseq *seq,
|
|
const u32 rank_bgn, const u32 write_group,
|
|
const u32 test_bgn)
|
|
{
|
|
int i;
|
|
u32 sticky_bit_chk;
|
|
u32 min_index;
|
|
int left_edge[seq->rwcfg->mem_dq_per_write_dqs];
|
|
int right_edge[seq->rwcfg->mem_dq_per_write_dqs];
|
|
int mid;
|
|
int mid_min, orig_mid_min;
|
|
int new_dqs, start_dqs;
|
|
int dq_margin, dqs_margin, dm_margin;
|
|
int bgn_curr = seq->iocfg->io_out1_delay_max + 1;
|
|
int end_curr = seq->iocfg->io_out1_delay_max + 1;
|
|
int bgn_best = seq->iocfg->io_out1_delay_max + 1;
|
|
int end_best = seq->iocfg->io_out1_delay_max + 1;
|
|
int win_best = 0;
|
|
|
|
int ret;
|
|
|
|
debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
|
|
|
|
dm_margin = 0;
|
|
|
|
start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
|
|
SCC_MGR_IO_OUT1_DELAY_OFFSET) +
|
|
(seq->rwcfg->mem_dq_per_write_dqs << 2));
|
|
|
|
/* Per-bit deskew. */
|
|
|
|
/*
|
|
* Set the left and right edge of each bit to an illegal value.
|
|
* Use (seq->iocfg->io_out1_delay_max + 1) as an illegal value.
|
|
*/
|
|
sticky_bit_chk = 0;
|
|
for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
|
|
left_edge[i] = seq->iocfg->io_out1_delay_max + 1;
|
|
right_edge[i] = seq->iocfg->io_out1_delay_max + 1;
|
|
}
|
|
|
|
/* Search for the left edge of the window for each bit. */
|
|
search_left_edge(seq, 1, rank_bgn, write_group, 0, test_bgn,
|
|
&sticky_bit_chk,
|
|
left_edge, right_edge, 0);
|
|
|
|
/* Search for the right edge of the window for each bit. */
|
|
ret = search_right_edge(seq, 1, rank_bgn, write_group, 0,
|
|
start_dqs, 0,
|
|
&sticky_bit_chk,
|
|
left_edge, right_edge, 0);
|
|
if (ret) {
|
|
set_failing_group_stage(seq, test_bgn + ret - 1,
|
|
CAL_STAGE_WRITES,
|
|
CAL_SUBSTAGE_WRITES_CENTER);
|
|
return -EINVAL;
|
|
}
|
|
|
|
min_index = get_window_mid_index(seq, 1, left_edge, right_edge,
|
|
&mid_min);
|
|
|
|
/* Determine the amount we can change DQS (which is -mid_min). */
|
|
orig_mid_min = mid_min;
|
|
new_dqs = start_dqs;
|
|
mid_min = 0;
|
|
debug_cond(DLEVEL >= 1,
|
|
"%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
|
|
__func__, __LINE__, start_dqs, new_dqs, mid_min);
|
|
|
|
/* Add delay to bring centre of all DQ windows to the same "level". */
|
|
center_dq_windows(seq, 1, left_edge, right_edge, mid_min, orig_mid_min,
|
|
min_index, 0, &dq_margin, &dqs_margin);
|
|
|
|
/* Move DQS */
|
|
scc_mgr_apply_group_dqs_io_and_oct_out1(seq, write_group, new_dqs);
|
|
writel(0, &sdr_scc_mgr->update);
|
|
|
|
/* Centre DM */
|
|
debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
|
|
|
|
/* Search for the/part of the window with DM shift. */
|
|
search_window(seq, 1, rank_bgn, write_group, &bgn_curr, &end_curr,
|
|
&bgn_best, &end_best, &win_best, 0);
|
|
|
|
/* Reset DM delay chains to 0. */
|
|
scc_mgr_apply_group_dm_out1_delay(seq, 0);
|
|
|
|
/*
|
|
* Check to see if the current window nudges up aganist 0 delay.
|
|
* If so we need to continue the search by shifting DQS otherwise DQS
|
|
* search begins as a new search.
|
|
*/
|
|
if (end_curr != 0) {
|
|
bgn_curr = seq->iocfg->io_out1_delay_max + 1;
|
|
end_curr = seq->iocfg->io_out1_delay_max + 1;
|
|
}
|
|
|
|
/* Search for the/part of the window with DQS shifts. */
|
|
search_window(seq, 0, rank_bgn, write_group, &bgn_curr, &end_curr,
|
|
&bgn_best, &end_best, &win_best, new_dqs);
|
|
|
|
/* Assign left and right edge for cal and reporting. */
|
|
left_edge[0] = -1 * bgn_best;
|
|
right_edge[0] = end_best;
|
|
|
|
debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
|
|
__func__, __LINE__, left_edge[0], right_edge[0]);
|
|
|
|
/* Move DQS (back to orig). */
|
|
scc_mgr_apply_group_dqs_io_and_oct_out1(seq, write_group, new_dqs);
|
|
|
|
/* Move DM */
|
|
|
|
/* Find middle of window for the DM bit. */
|
|
mid = (left_edge[0] - right_edge[0]) / 2;
|
|
|
|
/* Only move right, since we are not moving DQS/DQ. */
|
|
if (mid < 0)
|
|
mid = 0;
|
|
|
|
/* dm_marign should fail if we never find a window. */
|
|
if (win_best == 0)
|
|
dm_margin = -1;
|
|
else
|
|
dm_margin = left_edge[0] - mid;
|
|
|
|
scc_mgr_apply_group_dm_out1_delay(seq, mid);
|
|
writel(0, &sdr_scc_mgr->update);
|
|
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
|
|
__func__, __LINE__, left_edge[0], right_edge[0],
|
|
mid, dm_margin);
|
|
/* Export values. */
|
|
seq->gbl.fom_out += dq_margin + dqs_margin;
|
|
|
|
debug_cond(DLEVEL >= 2,
|
|
"%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
|
|
__func__, __LINE__, dq_margin, dqs_margin, dm_margin);
|
|
|
|
/*
|
|
* Do not remove this line as it makes sure all of our
|
|
* decisions have been applied.
|
|
*/
|
|
writel(0, &sdr_scc_mgr->update);
|
|
|
|
if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rw_mgr_mem_calibrate_writes() - Write Calibration Part One
|
|
* @rank_bgn: Rank number
|
|
* @group: Read/Write Group
|
|
* @test_bgn: Rank at which the test begins
|
|
*
|
|
* Stage 2: Write Calibration Part One.
|
|
*
|
|
* This function implements UniPHY calibration Stage 2, as explained in
|
|
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
|
|
*/
|
|
static int rw_mgr_mem_calibrate_writes(struct socfpga_sdrseq *seq,
|
|
const u32 rank_bgn, const u32 group,
|
|
const u32 test_bgn)
|
|
{
|
|
int ret;
|
|
|
|
/* Update info for sims */
|
|
debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
|
|
|
|
reg_file_set_group(group);
|
|
reg_file_set_stage(CAL_STAGE_WRITES);
|
|
reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
|
|
|
|
ret = rw_mgr_mem_calibrate_writes_center(seq, rank_bgn, group,
|
|
test_bgn);
|
|
if (ret)
|
|
set_failing_group_stage(seq, group, CAL_STAGE_WRITES,
|
|
CAL_SUBSTAGE_WRITES_CENTER);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mem_precharge_and_activate() - Precharge all banks and activate
|
|
*
|
|
* Precharge all banks and activate row 0 in bank "000..." and bank "111...".
|
|
*/
|
|
static void mem_precharge_and_activate(struct socfpga_sdrseq *seq)
|
|
{
|
|
int r;
|
|
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
|
|
/* Set rank. */
|
|
set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
|
|
|
|
/* Precharge all banks. */
|
|
writel(seq->rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
|
|
|
|
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
|
|
writel(seq->rwcfg->activate_0_and_1_wait1,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
|
|
|
|
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
|
|
writel(seq->rwcfg->activate_0_and_1_wait2,
|
|
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
|
|
|
|
/* Activate rows. */
|
|
writel(seq->rwcfg->activate_0_and_1,
|
|
SDR_PHYGRP_RWMGRGRP_ADDRESS |
|
|
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mem_init_latency() - Configure memory RLAT and WLAT settings
|
|
*
|
|
* Configure memory RLAT and WLAT parameters.
|
|
*/
|
|
static void mem_init_latency(struct socfpga_sdrseq *seq)
|
|
{
|
|
/*
|
|
* For AV/CV, LFIFO is hardened and always runs at full rate
|
|
* so max latency in AFI clocks, used here, is correspondingly
|
|
* smaller.
|
|
*/
|
|
const u32 max_latency = (1 << seq->misccfg->max_latency_count_width)
|
|
- 1;
|
|
u32 rlat, wlat;
|
|
|
|
debug("%s:%d\n", __func__, __LINE__);
|
|
|
|
/*
|
|
* Read in write latency.
|
|
* WL for Hard PHY does not include additive latency.
|
|
*/
|
|
wlat = readl(&data_mgr->t_wl_add);
|
|
wlat += readl(&data_mgr->mem_t_add);
|
|
|
|
seq->gbl.rw_wl_nop_cycles = wlat - 1;
|
|
|
|
/* Read in readl latency. */
|
|
rlat = readl(&data_mgr->t_rl_add);
|
|
|
|
/* Set a pretty high read latency initially. */
|
|
seq->gbl.curr_read_lat = rlat + 16;
|
|
if (seq->gbl.curr_read_lat > max_latency)
|
|
seq->gbl.curr_read_lat = max_latency;
|
|
|
|
writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
|
|
|
|
/* Advertise write latency. */
|
|
writel(wlat, &phy_mgr_cfg->afi_wlat);
|
|
}
|
|
|
|
/**
|
|
* @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
|
|
*
|
|
* Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
|
|
*/
|
|
static void mem_skip_calibrate(struct socfpga_sdrseq *seq)
|
|
{
|
|
u32 vfifo_offset;
|
|
u32 i, j, r;
|
|
|
|
debug("%s:%d\n", __func__, __LINE__);
|
|
/* Need to update every shadow register set used by the interface */
|
|
for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
|
|
r += NUM_RANKS_PER_SHADOW_REG) {
|
|
/*
|
|
* Set output phase alignment settings appropriate for
|
|
* skip calibration.
|
|
*/
|
|
for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
|
|
scc_mgr_set_dqs_en_phase(i, 0);
|
|
if (seq->iocfg->dll_chain_length == 6)
|
|
scc_mgr_set_dqdqs_output_phase(i, 6);
|
|
else
|
|
scc_mgr_set_dqdqs_output_phase(i, 7);
|
|
/*
|
|
* Case:33398
|
|
*
|
|
* Write data arrives to the I/O two cycles before write
|
|
* latency is reached (720 deg).
|
|
* -> due to bit-slip in a/c bus
|
|
* -> to allow board skew where dqs is longer than ck
|
|
* -> how often can this happen!?
|
|
* -> can claim back some ptaps for high freq
|
|
* support if we can relax this, but i digress...
|
|
*
|
|
* The write_clk leads mem_ck by 90 deg
|
|
* The minimum ptap of the OPA is 180 deg
|
|
* Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
|
|
* The write_clk is always delayed by 2 ptaps
|
|
*
|
|
* Hence, to make DQS aligned to CK, we need to delay
|
|
* DQS by:
|
|
* (720 - 90 - 180 - 2) *
|
|
* (360 / seq->iocfg->dll_chain_length)
|
|
*
|
|
* Dividing the above by
|
|
(360 / seq->iocfg->dll_chain_length)
|
|
* gives us the number of ptaps, which simplies to:
|
|
*
|
|
* (1.25 * seq->iocfg->dll_chain_length - 2)
|
|
*/
|
|
scc_mgr_set_dqdqs_output_phase(i,
|
|
((125 * seq->iocfg->dll_chain_length)
|
|
/ 100) - 2);
|
|
}
|
|
writel(0xff, &sdr_scc_mgr->dqs_ena);
|
|
writel(0xff, &sdr_scc_mgr->dqs_io_ena);
|
|
|
|
for (i = 0; i < seq->rwcfg->mem_if_write_dqs_width; i++) {
|
|
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
|
|
SCC_MGR_GROUP_COUNTER_OFFSET);
|
|
}
|
|
writel(0xff, &sdr_scc_mgr->dq_ena);
|
|
writel(0xff, &sdr_scc_mgr->dm_ena);
|
|
writel(0, &sdr_scc_mgr->update);
|
|
}
|
|
|
|
/* Compensate for simulation model behaviour */
|
|
for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
|
|
scc_mgr_set_dqs_bus_in_delay(i, 10);
|
|
scc_mgr_load_dqs(i);
|
|
}
|
|
writel(0, &sdr_scc_mgr->update);
|
|
|
|
/*
|
|
* ArriaV has hard FIFOs that can only be initialized by incrementing
|
|
* in sequencer.
|
|
*/
|
|
vfifo_offset = seq->misccfg->calib_vfifo_offset;
|
|
for (j = 0; j < vfifo_offset; j++)
|
|
writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
|
|
writel(0, &phy_mgr_cmd->fifo_reset);
|
|
|
|
/*
|
|
* For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
|
|
* setting from generation-time constant.
|
|
*/
|
|
seq->gbl.curr_read_lat = seq->misccfg->calib_lfifo_offset;
|
|
writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
|
|
}
|
|
|
|
/**
|
|
* mem_calibrate() - Memory calibration entry point.
|
|
*
|
|
* Perform memory calibration.
|
|
*/
|
|
static u32 mem_calibrate(struct socfpga_sdrseq *seq)
|
|
{
|
|
u32 i;
|
|
u32 rank_bgn, sr;
|
|
u32 write_group, write_test_bgn;
|
|
u32 read_group, read_test_bgn;
|
|
u32 run_groups, current_run;
|
|
u32 failing_groups = 0;
|
|
u32 group_failed = 0;
|
|
|
|
const u32 rwdqs_ratio = seq->rwcfg->mem_if_read_dqs_width /
|
|
seq->rwcfg->mem_if_write_dqs_width;
|
|
|
|
debug("%s:%d\n", __func__, __LINE__);
|
|
|
|
/* Initialize the data settings */
|
|
seq->gbl.error_substage = CAL_SUBSTAGE_NIL;
|
|
seq->gbl.error_stage = CAL_STAGE_NIL;
|
|
seq->gbl.error_group = 0xff;
|
|
seq->gbl.fom_in = 0;
|
|
seq->gbl.fom_out = 0;
|
|
|
|
/* Initialize WLAT and RLAT. */
|
|
mem_init_latency(seq);
|
|
|
|
/* Initialize bit slips. */
|
|
mem_precharge_and_activate(seq);
|
|
|
|
for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
|
|
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
|
|
SCC_MGR_GROUP_COUNTER_OFFSET);
|
|
/* Only needed once to set all groups, pins, DQ, DQS, DM. */
|
|
if (i == 0)
|
|
scc_mgr_set_hhp_extras();
|
|
|
|
scc_set_bypass_mode(i);
|
|
}
|
|
|
|
/* Calibration is skipped. */
|
|
if ((seq->dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
|
|
/*
|
|
* Set VFIFO and LFIFO to instant-on settings in skip
|
|
* calibration mode.
|
|
*/
|
|
mem_skip_calibrate(seq);
|
|
|
|
/*
|
|
* Do not remove this line as it makes sure all of our
|
|
* decisions have been applied.
|
|
*/
|
|
writel(0, &sdr_scc_mgr->update);
|
|
return 1;
|
|
}
|
|
|
|
/* Calibration is not skipped. */
|
|
for (i = 0; i < NUM_CALIB_REPEAT; i++) {
|
|
/*
|
|
* Zero all delay chain/phase settings for all
|
|
* groups and all shadow register sets.
|
|
*/
|
|
scc_mgr_zero_all(seq);
|
|
|
|
run_groups = ~0;
|
|
|
|
for (write_group = 0, write_test_bgn = 0; write_group
|
|
< seq->rwcfg->mem_if_write_dqs_width; write_group++,
|
|
write_test_bgn += seq->rwcfg->mem_dq_per_write_dqs) {
|
|
/* Initialize the group failure */
|
|
group_failed = 0;
|
|
|
|
current_run = run_groups & ((1 <<
|
|
RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
|
|
run_groups = run_groups >>
|
|
RW_MGR_NUM_DQS_PER_WRITE_GROUP;
|
|
|
|
if (current_run == 0)
|
|
continue;
|
|
|
|
writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
|
|
SCC_MGR_GROUP_COUNTER_OFFSET);
|
|
scc_mgr_zero_group(seq, write_group, 0);
|
|
|
|
for (read_group = write_group * rwdqs_ratio,
|
|
read_test_bgn = 0;
|
|
read_group < (write_group + 1) * rwdqs_ratio;
|
|
read_group++,
|
|
read_test_bgn += seq->rwcfg->mem_dq_per_read_dqs) {
|
|
if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
|
|
continue;
|
|
|
|
/* Calibrate the VFIFO */
|
|
if (rw_mgr_mem_calibrate_vfifo(seq, read_group,
|
|
read_test_bgn))
|
|
continue;
|
|
|
|
if (!(seq->gbl.phy_debug_mode_flags &
|
|
PHY_DEBUG_SWEEP_ALL_GROUPS))
|
|
return 0;
|
|
|
|
/* The group failed, we're done. */
|
|
goto grp_failed;
|
|
}
|
|
|
|
/* Calibrate the output side */
|
|
for (rank_bgn = 0, sr = 0;
|
|
rank_bgn < seq->rwcfg->mem_number_of_ranks;
|
|
rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
|
|
if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
|
|
continue;
|
|
|
|
/* Not needed in quick mode! */
|
|
if (STATIC_CALIB_STEPS &
|
|
CALIB_SKIP_DELAY_SWEEPS)
|
|
continue;
|
|
|
|
/* Calibrate WRITEs */
|
|
if (!rw_mgr_mem_calibrate_writes(seq, rank_bgn,
|
|
write_group,
|
|
write_test_bgn))
|
|
continue;
|
|
|
|
group_failed = 1;
|
|
if (!(seq->gbl.phy_debug_mode_flags &
|
|
PHY_DEBUG_SWEEP_ALL_GROUPS))
|
|
return 0;
|
|
}
|
|
|
|
/* Some group failed, we're done. */
|
|
if (group_failed)
|
|
goto grp_failed;
|
|
|
|
for (read_group = write_group * rwdqs_ratio,
|
|
read_test_bgn = 0;
|
|
read_group < (write_group + 1) * rwdqs_ratio;
|
|
read_group++,
|
|
read_test_bgn += seq->rwcfg->mem_dq_per_read_dqs) {
|
|
if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
|
|
continue;
|
|
|
|
if (!rw_mgr_mem_calibrate_vfifo_end(seq,
|
|
read_group,
|
|
read_test_bgn))
|
|
continue;
|
|
|
|
if (!(seq->gbl.phy_debug_mode_flags &
|
|
PHY_DEBUG_SWEEP_ALL_GROUPS))
|
|
return 0;
|
|
|
|
/* The group failed, we're done. */
|
|
goto grp_failed;
|
|
}
|
|
|
|
/* No group failed, continue as usual. */
|
|
continue;
|
|
|
|
grp_failed: /* A group failed, increment the counter. */
|
|
failing_groups++;
|
|
}
|
|
|
|
/*
|
|
* USER If there are any failing groups then report
|
|
* the failure.
|
|
*/
|
|
if (failing_groups != 0)
|
|
return 0;
|
|
|
|
if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
|
|
continue;
|
|
|
|
/* Calibrate the LFIFO */
|
|
if (!rw_mgr_mem_calibrate_lfifo(seq))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do not remove this line as it makes sure all of our decisions
|
|
* have been applied.
|
|
*/
|
|
writel(0, &sdr_scc_mgr->update);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* run_mem_calibrate() - Perform memory calibration
|
|
*
|
|
* This function triggers the entire memory calibration procedure.
|
|
*/
|
|
static int run_mem_calibrate(struct socfpga_sdrseq *seq)
|
|
{
|
|
int pass;
|
|
u32 ctrl_cfg;
|
|
|
|
debug("%s:%d\n", __func__, __LINE__);
|
|
|
|
/* Reset pass/fail status shown on afi_cal_success/fail */
|
|
writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
|
|
|
|
/* Stop tracking manager. */
|
|
ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
|
|
writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
|
|
&sdr_ctrl->ctrl_cfg);
|
|
|
|
phy_mgr_initialize(seq);
|
|
rw_mgr_mem_initialize(seq);
|
|
|
|
/* Perform the actual memory calibration. */
|
|
pass = mem_calibrate(seq);
|
|
|
|
mem_precharge_and_activate(seq);
|
|
writel(0, &phy_mgr_cmd->fifo_reset);
|
|
|
|
/* Handoff. */
|
|
rw_mgr_mem_handoff(seq);
|
|
/*
|
|
* In Hard PHY this is a 2-bit control:
|
|
* 0: AFI Mux Select
|
|
* 1: DDIO Mux Select
|
|
*/
|
|
writel(0x2, &phy_mgr_cfg->mux_sel);
|
|
|
|
/* Start tracking manager. */
|
|
writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
|
|
|
|
return pass;
|
|
}
|
|
|
|
/**
|
|
* debug_mem_calibrate() - Report result of memory calibration
|
|
* @pass: Value indicating whether calibration passed or failed
|
|
*
|
|
* This function reports the results of the memory calibration
|
|
* and writes debug information into the register file.
|
|
*/
|
|
static void debug_mem_calibrate(struct socfpga_sdrseq *seq, int pass)
|
|
{
|
|
u32 debug_info;
|
|
|
|
if (pass) {
|
|
debug(KBUILD_BASENAME ": CALIBRATION PASSED\n");
|
|
|
|
seq->gbl.fom_in /= 2;
|
|
seq->gbl.fom_out /= 2;
|
|
|
|
if (seq->gbl.fom_in > 0xff)
|
|
seq->gbl.fom_in = 0xff;
|
|
|
|
if (seq->gbl.fom_out > 0xff)
|
|
seq->gbl.fom_out = 0xff;
|
|
|
|
/* Update the FOM in the register file */
|
|
debug_info = seq->gbl.fom_in;
|
|
debug_info |= seq->gbl.fom_out << 8;
|
|
writel(debug_info, &sdr_reg_file->fom);
|
|
|
|
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
|
|
writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
|
|
} else {
|
|
debug(KBUILD_BASENAME ": CALIBRATION FAILED\n");
|
|
|
|
debug_info = seq->gbl.error_stage;
|
|
debug_info |= seq->gbl.error_substage << 8;
|
|
debug_info |= seq->gbl.error_group << 16;
|
|
|
|
writel(debug_info, &sdr_reg_file->failing_stage);
|
|
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
|
|
writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
|
|
|
|
/* Update the failing group/stage in the register file */
|
|
debug_info = seq->gbl.error_stage;
|
|
debug_info |= seq->gbl.error_substage << 8;
|
|
debug_info |= seq->gbl.error_group << 16;
|
|
writel(debug_info, &sdr_reg_file->failing_stage);
|
|
}
|
|
|
|
debug(KBUILD_BASENAME ": Calibration complete\n");
|
|
}
|
|
|
|
/**
|
|
* hc_initialize_rom_data() - Initialize ROM data
|
|
*
|
|
* Initialize ROM data.
|
|
*/
|
|
static void hc_initialize_rom_data(void)
|
|
{
|
|
unsigned int nelem = 0;
|
|
const u32 *rom_init;
|
|
u32 i, addr;
|
|
|
|
socfpga_get_seq_inst_init(&rom_init, &nelem);
|
|
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
|
|
for (i = 0; i < nelem; i++)
|
|
writel(rom_init[i], addr + (i << 2));
|
|
|
|
socfpga_get_seq_ac_init(&rom_init, &nelem);
|
|
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
|
|
for (i = 0; i < nelem; i++)
|
|
writel(rom_init[i], addr + (i << 2));
|
|
}
|
|
|
|
/**
|
|
* initialize_reg_file() - Initialize SDR register file
|
|
*
|
|
* Initialize SDR register file.
|
|
*/
|
|
static void initialize_reg_file(struct socfpga_sdrseq *seq)
|
|
{
|
|
/* Initialize the register file with the correct data */
|
|
writel(seq->misccfg->reg_file_init_seq_signature,
|
|
&sdr_reg_file->signature);
|
|
writel(0, &sdr_reg_file->debug_data_addr);
|
|
writel(0, &sdr_reg_file->cur_stage);
|
|
writel(0, &sdr_reg_file->fom);
|
|
writel(0, &sdr_reg_file->failing_stage);
|
|
writel(0, &sdr_reg_file->debug1);
|
|
writel(0, &sdr_reg_file->debug2);
|
|
}
|
|
|
|
/**
|
|
* initialize_hps_phy() - Initialize HPS PHY
|
|
*
|
|
* Initialize HPS PHY.
|
|
*/
|
|
static void initialize_hps_phy(void)
|
|
{
|
|
u32 reg;
|
|
/*
|
|
* Tracking also gets configured here because it's in the
|
|
* same register.
|
|
*/
|
|
u32 trk_sample_count = 7500;
|
|
u32 trk_long_idle_sample_count = (10 << 16) | 100;
|
|
/*
|
|
* Format is number of outer loops in the 16 MSB, sample
|
|
* count in 16 LSB.
|
|
*/
|
|
|
|
reg = 0;
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
|
|
/*
|
|
* This field selects the intrinsic latency to RDATA_EN/FULL path.
|
|
* 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
|
|
*/
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
|
|
trk_sample_count);
|
|
writel(reg, &sdr_ctrl->phy_ctrl0);
|
|
|
|
reg = 0;
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
|
|
trk_sample_count >>
|
|
SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
|
|
trk_long_idle_sample_count);
|
|
writel(reg, &sdr_ctrl->phy_ctrl1);
|
|
|
|
reg = 0;
|
|
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
|
|
trk_long_idle_sample_count >>
|
|
SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
|
|
writel(reg, &sdr_ctrl->phy_ctrl2);
|
|
}
|
|
|
|
/**
|
|
* initialize_tracking() - Initialize tracking
|
|
*
|
|
* Initialize the register file with usable initial data.
|
|
*/
|
|
static void initialize_tracking(struct socfpga_sdrseq *seq)
|
|
{
|
|
/*
|
|
* Initialize the register file with the correct data.
|
|
* Compute usable version of value in case we skip full
|
|
* computation later.
|
|
*/
|
|
writel(DIV_ROUND_UP(seq->iocfg->delay_per_opa_tap,
|
|
seq->iocfg->delay_per_dchain_tap) - 1,
|
|
&sdr_reg_file->dtaps_per_ptap);
|
|
|
|
/* trk_sample_count */
|
|
writel(7500, &sdr_reg_file->trk_sample_count);
|
|
|
|
/* longidle outer loop [15:0] */
|
|
writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
|
|
|
|
/*
|
|
* longidle sample count [31:24]
|
|
* trfc, worst case of 933Mhz 4Gb [23:16]
|
|
* trcd, worst case [15:8]
|
|
* vfifo wait [7:0]
|
|
*/
|
|
writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
|
|
&sdr_reg_file->delays);
|
|
|
|
/* mux delay */
|
|
if (dram_is_ddr(2)) {
|
|
writel(0, &sdr_reg_file->trk_rw_mgr_addr);
|
|
} else if (dram_is_ddr(3)) {
|
|
writel((seq->rwcfg->idle << 24) |
|
|
(seq->rwcfg->activate_1 << 16) |
|
|
(seq->rwcfg->sgle_read << 8) |
|
|
(seq->rwcfg->precharge_all << 0),
|
|
&sdr_reg_file->trk_rw_mgr_addr);
|
|
}
|
|
|
|
writel(seq->rwcfg->mem_if_read_dqs_width,
|
|
&sdr_reg_file->trk_read_dqs_width);
|
|
|
|
/* trefi [7:0] */
|
|
if (dram_is_ddr(2)) {
|
|
writel(1000 << 0, &sdr_reg_file->trk_rfsh);
|
|
} else if (dram_is_ddr(3)) {
|
|
writel((seq->rwcfg->refresh_all << 24) | (1000 << 0),
|
|
&sdr_reg_file->trk_rfsh);
|
|
}
|
|
}
|
|
|
|
int sdram_calibration_full(struct socfpga_sdr *sdr)
|
|
{
|
|
u32 pass;
|
|
struct socfpga_sdrseq seq;
|
|
|
|
/*
|
|
* For size reasons, this file uses hard coded addresses.
|
|
* Check if we are called with the correct address.
|
|
*/
|
|
if (sdr != (struct socfpga_sdr *)SOCFPGA_SDR_ADDRESS)
|
|
return -ENODEV;
|
|
|
|
memset(&seq, 0, sizeof(seq));
|
|
|
|
seq.rwcfg = socfpga_get_sdram_rwmgr_config();
|
|
seq.iocfg = socfpga_get_sdram_io_config();
|
|
seq.misccfg = socfpga_get_sdram_misc_config();
|
|
|
|
/* Set the calibration enabled by default */
|
|
seq.gbl.phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
|
|
/*
|
|
* Only sweep all groups (regardless of fail state) by default
|
|
* Set enabled read test by default.
|
|
*/
|
|
#if DISABLE_GUARANTEED_READ
|
|
seq.gbl.phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
|
|
#endif
|
|
/* Initialize the register file */
|
|
initialize_reg_file(&seq);
|
|
|
|
/* Initialize any PHY CSR */
|
|
initialize_hps_phy();
|
|
|
|
scc_mgr_initialize();
|
|
|
|
initialize_tracking(&seq);
|
|
|
|
debug(KBUILD_BASENAME ": Preparing to start memory calibration\n");
|
|
|
|
debug("%s:%d\n", __func__, __LINE__);
|
|
debug_cond(DLEVEL >= 1,
|
|
"DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
|
|
seq.rwcfg->mem_number_of_ranks,
|
|
seq.rwcfg->mem_number_of_cs_per_dimm,
|
|
seq.rwcfg->mem_dq_per_read_dqs,
|
|
seq.rwcfg->mem_dq_per_write_dqs,
|
|
seq.rwcfg->mem_virtual_groups_per_read_dqs,
|
|
seq.rwcfg->mem_virtual_groups_per_write_dqs);
|
|
debug_cond(DLEVEL >= 1,
|
|
"dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
|
|
seq.rwcfg->mem_if_read_dqs_width,
|
|
seq.rwcfg->mem_if_write_dqs_width,
|
|
seq.rwcfg->mem_data_width, seq.rwcfg->mem_data_mask_width,
|
|
seq.iocfg->delay_per_opa_tap,
|
|
seq.iocfg->delay_per_dchain_tap);
|
|
debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
|
|
seq.iocfg->delay_per_dqs_en_dchain_tap,
|
|
seq.iocfg->dll_chain_length);
|
|
debug_cond(DLEVEL >= 1,
|
|
"max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
|
|
seq.iocfg->dqs_en_phase_max, seq.iocfg->dqdqs_out_phase_max,
|
|
seq.iocfg->dqs_en_delay_max, seq.iocfg->dqs_in_delay_max);
|
|
debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
|
|
seq.iocfg->io_in_delay_max, seq.iocfg->io_out1_delay_max,
|
|
seq.iocfg->io_out2_delay_max);
|
|
debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
|
|
seq.iocfg->dqs_in_reserve, seq.iocfg->dqs_out_reserve);
|
|
|
|
hc_initialize_rom_data();
|
|
|
|
/* update info for sims */
|
|
reg_file_set_stage(CAL_STAGE_NIL);
|
|
reg_file_set_group(0);
|
|
|
|
/*
|
|
* Load global needed for those actions that require
|
|
* some dynamic calibration support.
|
|
*/
|
|
seq.dyn_calib_steps = STATIC_CALIB_STEPS;
|
|
/*
|
|
* Load global to allow dynamic selection of delay loop settings
|
|
* based on calibration mode.
|
|
*/
|
|
if (!(seq.dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
|
|
seq.skip_delay_mask = 0xff;
|
|
else
|
|
seq.skip_delay_mask = 0x0;
|
|
|
|
pass = run_mem_calibrate(&seq);
|
|
debug_mem_calibrate(&seq, pass);
|
|
return pass;
|
|
}
|