mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-19 09:43:08 +00:00
166e5b82a3
All the source code of sdram_n5x.c are from Intel, update the license to use both GPL2.0 and BSD-3 Clause because this copy of code may used for open source and internal project. Signed-off-by: Tien Fong Chee <tien.fong.chee@intel.com>
2298 lines
65 KiB
C
2298 lines
65 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/*
|
|
* Copyright (C) 2020-2022 Intel Corporation <www.intel.com>
|
|
*
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <clk.h>
|
|
#include <div64.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <fdtdec.h>
|
|
#include <hang.h>
|
|
#include <ram.h>
|
|
#include <reset.h>
|
|
#include "sdram_soc64.h"
|
|
#include <wait_bit.h>
|
|
#include <asm/arch/firewall.h>
|
|
#include <asm/arch/handoff_soc64.h>
|
|
#include <asm/arch/misc.h>
|
|
#include <asm/arch/reset_manager.h>
|
|
#include <asm/arch/system_manager.h>
|
|
#include <asm/io.h>
|
|
#include <linux/err.h>
|
|
#include <linux/sizes.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
/* MPFE NOC registers */
|
|
#define FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0 0xF8024050
|
|
|
|
/* Memory reset manager */
|
|
#define MEM_RST_MGR_STATUS 0x8
|
|
|
|
/* Register and bit in memory reset manager */
|
|
#define MEM_RST_MGR_STATUS_RESET_COMPLETE BIT(0)
|
|
#define MEM_RST_MGR_STATUS_PWROKIN_STATUS BIT(1)
|
|
#define MEM_RST_MGR_STATUS_CONTROLLER_RST BIT(2)
|
|
#define MEM_RST_MGR_STATUS_AXI_RST BIT(3)
|
|
|
|
#define TIMEOUT_200MS 200
|
|
#define TIMEOUT_5000MS 5000
|
|
|
|
/* DDR4 umctl2 */
|
|
#define DDR4_MSTR_OFFSET 0x0
|
|
#define DDR4_FREQ_RATIO BIT(22)
|
|
|
|
#define DDR4_STAT_OFFSET 0x4
|
|
#define DDR4_STAT_SELFREF_TYPE GENMASK(5, 4)
|
|
#define DDR4_STAT_SELFREF_TYPE_SHIFT 4
|
|
#define DDR4_STAT_OPERATING_MODE GENMASK(2, 0)
|
|
|
|
#define DDR4_MRCTRL0_OFFSET 0x10
|
|
#define DDR4_MRCTRL0_MR_TYPE BIT(0)
|
|
#define DDR4_MRCTRL0_MPR_EN BIT(1)
|
|
#define DDR4_MRCTRL0_MR_RANK GENMASK(5, 4)
|
|
#define DDR4_MRCTRL0_MR_RANK_SHIFT 4
|
|
#define DDR4_MRCTRL0_MR_ADDR GENMASK(15, 12)
|
|
#define DDR4_MRCTRL0_MR_ADDR_SHIFT 12
|
|
#define DDR4_MRCTRL0_MR_WR BIT(31)
|
|
|
|
#define DDR4_MRCTRL1_OFFSET 0x14
|
|
#define DDR4_MRCTRL1_MR_DATA 0x3FFFF
|
|
|
|
#define DDR4_MRSTAT_OFFSET 0x18
|
|
#define DDR4_MRSTAT_MR_WR_BUSY BIT(0)
|
|
|
|
#define DDR4_MRCTRL2_OFFSET 0x1C
|
|
|
|
#define DDR4_PWRCTL_OFFSET 0x30
|
|
#define DDR4_PWRCTL_SELFREF_EN BIT(0)
|
|
#define DDR4_PWRCTL_POWERDOWN_EN BIT(1)
|
|
#define DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE BIT(3)
|
|
#define DDR4_PWRCTL_SELFREF_SW BIT(5)
|
|
|
|
#define DDR4_PWRTMG_OFFSET 0x34
|
|
#define DDR4_HWLPCTL_OFFSET 0x38
|
|
#define DDR4_RFSHCTL0_OFFSET 0x50
|
|
#define DDR4_RFSHCTL1_OFFSET 0x54
|
|
|
|
#define DDR4_RFSHCTL3_OFFSET 0x60
|
|
#define DDR4_RFSHCTL3_DIS_AUTO_REFRESH BIT(0)
|
|
#define DDR4_RFSHCTL3_REFRESH_MODE GENMASK(6, 4)
|
|
#define DDR4_RFSHCTL3_REFRESH_MODE_SHIFT 4
|
|
|
|
#define DDR4_ECCCFG0_OFFSET 0x70
|
|
#define DDR4_ECC_MODE GENMASK(2, 0)
|
|
#define DDR4_DIS_SCRUB BIT(4)
|
|
#define LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT 30
|
|
#define LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT 8
|
|
|
|
#define DDR4_ECCCFG1_OFFSET 0x74
|
|
#define LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK BIT(4)
|
|
|
|
#define DDR4_CRCPARCTL0_OFFSET 0xC0
|
|
#define DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR BIT(1)
|
|
|
|
#define DDR4_CRCPARCTL1_OFFSET 0xC4
|
|
#define DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE BIT(8)
|
|
#define DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW BIT(9)
|
|
|
|
#define DDR4_CRCPARSTAT_OFFSET 0xCC
|
|
#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT BIT(16)
|
|
#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT BIT(17)
|
|
#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW BIT(19)
|
|
#define DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW BIT(29)
|
|
|
|
#define DDR4_INIT0_OFFSET 0xD0
|
|
#define DDR4_INIT0_SKIP_RAM_INIT GENMASK(31, 30)
|
|
|
|
#define DDR4_RANKCTL_OFFSET 0xF4
|
|
#define DDR4_RANKCTL_DIFF_RANK_RD_GAP GENMASK(7, 4)
|
|
#define DDR4_RANKCTL_DIFF_RANK_WR_GAP GENMASK(11, 8)
|
|
#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB BIT(24)
|
|
#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB BIT(26)
|
|
#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT 4
|
|
#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT 8
|
|
#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB_SHIFT 24
|
|
#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB_SHIFT 26
|
|
|
|
#define DDR4_RANKCTL1_OFFSET 0xF8
|
|
#define DDR4_RANKCTL1_WR2RD_DR GENMASK(5, 0)
|
|
|
|
#define DDR4_DRAMTMG2_OFFSET 0x108
|
|
#define DDR4_DRAMTMG2_WR2RD GENMASK(5, 0)
|
|
#define DDR4_DRAMTMG2_RD2WR GENMASK(13, 8)
|
|
#define DDR4_DRAMTMG2_RD2WR_SHIFT 8
|
|
|
|
#define DDR4_DRAMTMG9_OFFSET 0x124
|
|
#define DDR4_DRAMTMG9_W2RD_S GENMASK(5, 0)
|
|
|
|
#define DDR4_DFITMG1_OFFSET 0x194
|
|
#define DDR4_DFITMG1_DFI_T_WRDATA_DELAY GENMASK(20, 16)
|
|
#define DDR4_DFITMG1_DFI_T_WRDATA_SHIFT 16
|
|
|
|
#define DDR4_DFIMISC_OFFSET 0x1B0
|
|
#define DDR4_DFIMISC_DFI_INIT_COMPLETE_EN BIT(0)
|
|
#define DDR4_DFIMISC_DFI_INIT_START BIT(5)
|
|
|
|
#define DDR4_DFISTAT_OFFSET 0x1BC
|
|
#define DDR4_DFI_INIT_COMPLETE BIT(0)
|
|
|
|
#define DDR4_DBG0_OFFSET 0x300
|
|
|
|
#define DDR4_DBG1_OFFSET 0x304
|
|
#define DDR4_DBG1_DISDQ BIT(0)
|
|
#define DDR4_DBG1_DIS_HIF BIT(1)
|
|
|
|
#define DDR4_DBGCAM_OFFSET 0x308
|
|
#define DDR4_DBGCAM_DBG_RD_Q_EMPTY BIT(25)
|
|
#define DDR4_DBGCAM_DBG_WR_Q_EMPTY BIT(26)
|
|
#define DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY BIT(28)
|
|
#define DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY BIT(29)
|
|
|
|
#define DDR4_SWCTL_OFFSET 0x320
|
|
#define DDR4_SWCTL_SW_DONE BIT(0)
|
|
|
|
#define DDR4_SWSTAT_OFFSET 0x324
|
|
#define DDR4_SWSTAT_SW_DONE_ACK BIT(0)
|
|
|
|
#define DDR4_PSTAT_OFFSET 0x3FC
|
|
#define DDR4_PSTAT_RD_PORT_BUSY_0 BIT(0)
|
|
#define DDR4_PSTAT_WR_PORT_BUSY_0 BIT(16)
|
|
|
|
#define DDR4_PCTRL0_OFFSET 0x490
|
|
#define DDR4_PCTRL0_PORT_EN BIT(0)
|
|
|
|
#define DDR4_SBRCTL_OFFSET 0xF24
|
|
#define DDR4_SBRCTL_SCRUB_INTERVAL 0x1FFF00
|
|
#define DDR4_SBRCTL_SCRUB_EN BIT(0)
|
|
#define DDR4_SBRCTL_SCRUB_WRITE BIT(2)
|
|
#define DDR4_SBRCTL_SCRUB_BURST_1 BIT(4)
|
|
|
|
#define DDR4_SBRSTAT_OFFSET 0xF28
|
|
#define DDR4_SBRSTAT_SCRUB_BUSY BIT(0)
|
|
#define DDR4_SBRSTAT_SCRUB_DONE BIT(1)
|
|
|
|
#define DDR4_SBRWDATA0_OFFSET 0xF2C
|
|
#define DDR4_SBRWDATA1_OFFSET 0xF30
|
|
#define DDR4_SBRSTART0_OFFSET 0xF38
|
|
#define DDR4_SBRSTART1_OFFSET 0xF3C
|
|
#define DDR4_SBRRANGE0_OFFSET 0xF40
|
|
#define DDR4_SBRRANGE1_OFFSET 0xF44
|
|
|
|
/* DDR PHY */
|
|
#define DDR_PHY_TXODTDRVSTREN_B0_P0 0x2009A
|
|
#define DDR_PHY_RXPBDLYTG0_R0 0x200D0
|
|
#define DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0 0x201A0
|
|
|
|
#define DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0 0x203A0
|
|
#define DDR_PHY_DBYTE1_TXDQDLYTG0_U0_P0 0x221A0
|
|
#define DDR_PHY_DBYTE1_TXDQDLYTG0_U1_P0 0x223A0
|
|
#define DDR_PHY_TXDQDLYTG0_COARSE_DELAY GENMASK(9, 6)
|
|
#define DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT 6
|
|
|
|
#define DDR_PHY_CALRATE_OFFSET 0x40110
|
|
#define DDR_PHY_CALZAP_OFFSET 0x40112
|
|
#define DDR_PHY_SEQ0BDLY0_P0_OFFSET 0x40016
|
|
#define DDR_PHY_SEQ0BDLY1_P0_OFFSET 0x40018
|
|
#define DDR_PHY_SEQ0BDLY2_P0_OFFSET 0x4001A
|
|
#define DDR_PHY_SEQ0BDLY3_P0_OFFSET 0x4001C
|
|
|
|
#define DDR_PHY_MEMRESETL_OFFSET 0x400C0
|
|
#define DDR_PHY_MEMRESETL_VALUE BIT(0)
|
|
#define DDR_PHY_PROTECT_MEMRESET BIT(1)
|
|
|
|
#define DDR_PHY_CALBUSY_OFFSET 0x4012E
|
|
#define DDR_PHY_CALBUSY BIT(0)
|
|
|
|
#define DDR_PHY_TRAIN_IMEM_OFFSET 0xA0000
|
|
#define DDR_PHY_TRAIN_DMEM_OFFSET 0xA8000
|
|
|
|
#define DMEM_MB_CDD_RR_1_0_OFFSET 0xA802C
|
|
#define DMEM_MB_CDD_RR_0_1_OFFSET 0xA8030
|
|
#define DMEM_MB_CDD_WW_1_0_OFFSET 0xA8038
|
|
#define DMEM_MB_CDD_WW_0_1_OFFSET 0xA803C
|
|
#define DMEM_MB_CDD_RW_1_1_OFFSET 0xA8046
|
|
#define DMEM_MB_CDD_RW_1_0_OFFSET 0xA8048
|
|
#define DMEM_MB_CDD_RW_0_1_OFFSET 0xA804A
|
|
#define DMEM_MB_CDD_RW_0_0_OFFSET 0xA804C
|
|
|
|
#define DMEM_MB_CDD_CHA_RR_1_0_OFFSET 0xA8026
|
|
#define DMEM_MB_CDD_CHA_RR_0_1_OFFSET 0xA8026
|
|
#define DMEM_MB_CDD_CHB_RR_1_0_OFFSET 0xA8058
|
|
#define DMEM_MB_CDD_CHB_RR_0_1_OFFSET 0xA805A
|
|
#define DMEM_MB_CDD_CHA_WW_1_0_OFFSET 0xA8030
|
|
#define DMEM_MB_CDD_CHA_WW_0_1_OFFSET 0xA8030
|
|
#define DMEM_MB_CDD_CHB_WW_1_0_OFFSET 0xA8062
|
|
#define DMEM_MB_CDD_CHB_WW_0_1_OFFSET 0xA8064
|
|
|
|
#define DMEM_MB_CDD_CHA_RW_1_1_OFFSET 0xA8028
|
|
#define DMEM_MB_CDD_CHA_RW_1_0_OFFSET 0xA8028
|
|
#define DMEM_MB_CDD_CHA_RW_0_1_OFFSET 0xA802A
|
|
#define DMEM_MB_CDD_CHA_RW_0_0_OFFSET 0xA802A
|
|
|
|
#define DMEM_MB_CDD_CHB_RW_1_1_OFFSET 0xA805A
|
|
#define DMEM_MB_CDD_CHB_RW_1_0_OFFSET 0xA805C
|
|
#define DMEM_MB_CDD_CHB_RW_0_1_OFFSET 0xA805c
|
|
#define DMEM_MB_CDD_CHB_RW_0_0_OFFSET 0xA805E
|
|
|
|
#define DDR_PHY_SEQ0DISABLEFLAG0_OFFSET 0x120018
|
|
#define DDR_PHY_SEQ0DISABLEFLAG1_OFFSET 0x12001A
|
|
#define DDR_PHY_SEQ0DISABLEFLAG2_OFFSET 0x12001C
|
|
#define DDR_PHY_SEQ0DISABLEFLAG3_OFFSET 0x12001E
|
|
#define DDR_PHY_SEQ0DISABLEFLAG4_OFFSET 0x120020
|
|
#define DDR_PHY_SEQ0DISABLEFLAG5_OFFSET 0x120022
|
|
#define DDR_PHY_SEQ0DISABLEFLAG6_OFFSET 0x120024
|
|
#define DDR_PHY_SEQ0DISABLEFLAG7_OFFSET 0x120026
|
|
|
|
#define DDR_PHY_UCCLKHCLKENABLES_OFFSET 0x180100
|
|
#define DDR_PHY_UCCLKHCLKENABLES_UCCLKEN BIT(0)
|
|
#define DDR_PHY_UCCLKHCLKENABLES_HCLKEN BIT(1)
|
|
|
|
#define DDR_PHY_UCTWRITEPROT_OFFSET 0x180066
|
|
#define DDR_PHY_UCTWRITEPROT BIT(0)
|
|
|
|
#define DDR_PHY_APBONLY0_OFFSET 0x1A0000
|
|
#define DDR_PHY_MICROCONTMUXSEL BIT(0)
|
|
|
|
#define DDR_PHY_UCTSHADOWREGS_OFFSET 0x1A0008
|
|
#define DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW BIT(0)
|
|
|
|
#define DDR_PHY_DCTWRITEPROT_OFFSET 0x1A0062
|
|
#define DDR_PHY_DCTWRITEPROT BIT(0)
|
|
|
|
#define DDR_PHY_UCTWRITEONLYSHADOW_OFFSET 0x1A0064
|
|
#define DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET 0x1A0068
|
|
|
|
#define DDR_PHY_MICRORESET_OFFSET 0x1A0132
|
|
#define DDR_PHY_MICRORESET_STALL BIT(0)
|
|
#define DDR_PHY_MICRORESET_RESET BIT(3)
|
|
|
|
#define DDR_PHY_TXODTDRVSTREN_B0_P1 0x22009A
|
|
|
|
/* For firmware training */
|
|
#define HW_DBG_TRACE_CONTROL_OFFSET 0x18
|
|
#define FW_TRAINING_COMPLETED_STAT 0x07
|
|
#define FW_TRAINING_FAILED_STAT 0xFF
|
|
#define FW_COMPLETION_MSG_ONLY_MODE 0xFF
|
|
#define FW_STREAMING_MSG_ID 0x08
|
|
#define GET_LOWHW_DATA(x) ((x) & 0xFFFF)
|
|
#define GET_LOWB_DATA(x) ((x) & 0xFF)
|
|
#define GET_HIGHB_DATA(x) (((x) & 0xFF00) >> 8)
|
|
|
|
/* Operating mode */
|
|
#define OPM_INIT 0x000
|
|
#define OPM_NORMAL 0x001
|
|
#define OPM_PWR_D0WN 0x010
|
|
#define OPM_SELF_SELFREF 0x011
|
|
#define OPM_DDR4_DEEP_PWR_DOWN 0x100
|
|
|
|
/* Refresh mode */
|
|
#define FIXED_1X 0
|
|
#define FIXED_2X BIT(0)
|
|
#define FIXED_4X BIT(4)
|
|
|
|
/* Address of mode register */
|
|
#define MR0 0x0000
|
|
#define MR1 0x0001
|
|
#define MR2 0x0010
|
|
#define MR3 0x0011
|
|
#define MR4 0x0100
|
|
#define MR5 0x0101
|
|
#define MR6 0x0110
|
|
#define MR7 0x0111
|
|
|
|
/* MR rank */
|
|
#define RANK0 0x1
|
|
#define RANK1 0x2
|
|
#define ALL_RANK 0x3
|
|
|
|
#define MR5_BIT4 BIT(4)
|
|
|
|
/* Value for ecc_region_map */
|
|
#define ALL_PROTECTED 0x7F
|
|
|
|
/* Region size for ECCCFG0.ecc_region_map */
|
|
enum region_size {
|
|
ONE_EIGHT,
|
|
ONE_SIXTEENTH,
|
|
ONE_THIRTY_SECOND,
|
|
ONE_SIXTY_FOURTH
|
|
};
|
|
|
|
enum ddr_type {
|
|
DDRTYPE_LPDDR4_0,
|
|
DDRTYPE_LPDDR4_1,
|
|
DDRTYPE_DDR4,
|
|
DDRTYPE_UNKNOWN
|
|
};
|
|
|
|
/* Reset type */
|
|
enum reset_type {
|
|
POR_RESET,
|
|
WARM_RESET,
|
|
COLD_RESET
|
|
};
|
|
|
|
/* DDR handoff structure */
|
|
struct ddr_handoff {
|
|
/* Memory reset manager base */
|
|
phys_addr_t mem_reset_base;
|
|
|
|
/* First controller attributes */
|
|
phys_addr_t cntlr_handoff_base;
|
|
phys_addr_t cntlr_base;
|
|
size_t cntlr_total_length;
|
|
enum ddr_type cntlr_t;
|
|
size_t cntlr_handoff_length;
|
|
|
|
/* Second controller attributes*/
|
|
phys_addr_t cntlr2_handoff_base;
|
|
phys_addr_t cntlr2_base;
|
|
size_t cntlr2_total_length;
|
|
enum ddr_type cntlr2_t;
|
|
size_t cntlr2_handoff_length;
|
|
|
|
/* PHY attributes */
|
|
phys_addr_t phy_handoff_base;
|
|
phys_addr_t phy_base;
|
|
size_t phy_total_length;
|
|
size_t phy_handoff_length;
|
|
|
|
/* PHY engine attributes */
|
|
phys_addr_t phy_engine_handoff_base;
|
|
size_t phy_engine_total_length;
|
|
size_t phy_engine_handoff_length;
|
|
|
|
/* Calibration attributes */
|
|
phys_addr_t train_imem_base;
|
|
phys_addr_t train_dmem_base;
|
|
size_t train_imem_length;
|
|
size_t train_dmem_length;
|
|
};
|
|
|
|
/* Message mode */
|
|
enum message_mode {
|
|
MAJOR_MESSAGE,
|
|
STREAMING_MESSAGE
|
|
};
|
|
|
|
static int clr_ca_parity_error_status(phys_addr_t umctl2_base)
|
|
{
|
|
int ret;
|
|
|
|
debug("%s: Clear C/A parity error status in MR5[4]\n", __func__);
|
|
|
|
/* Set mode register MRS */
|
|
clrbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MPR_EN);
|
|
|
|
/* Set mode register to write operation */
|
|
setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MR_TYPE);
|
|
|
|
/* Set the address of mode rgister to 0x101(MR5) */
|
|
setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET,
|
|
(MR5 << DDR4_MRCTRL0_MR_ADDR_SHIFT) &
|
|
DDR4_MRCTRL0_MR_ADDR);
|
|
|
|
/* Set MR rank to rank 1 */
|
|
setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET,
|
|
(RANK1 << DDR4_MRCTRL0_MR_RANK_SHIFT) &
|
|
DDR4_MRCTRL0_MR_RANK);
|
|
|
|
/* Clear C/A parity error status in MR5[4] */
|
|
clrbits_le32(umctl2_base + DDR4_MRCTRL1_OFFSET, MR5_BIT4);
|
|
|
|
/* Trigger mode register read or write operation */
|
|
setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MR_WR);
|
|
|
|
/* Wait for retry done */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_MRSTAT_OFFSET), DDR4_MRSTAT_MR_WR_BUSY,
|
|
false, TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" no outstanding MR transaction\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ddr_retry_software_sequence(phys_addr_t umctl2_base)
|
|
{
|
|
u32 value;
|
|
int ret;
|
|
|
|
/* Check software can perform MRS/MPR/PDA? */
|
|
value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
|
|
DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW;
|
|
|
|
if (value) {
|
|
/* Clear interrupt bit for DFI alert error */
|
|
setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET,
|
|
DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR);
|
|
}
|
|
|
|
debug("%s: Software can perform MRS/MPR/PDA\n", __func__);
|
|
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_MRSTAT_OFFSET),
|
|
DDR4_MRSTAT_MR_WR_BUSY,
|
|
false, TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" no outstanding MR transaction\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = clr_ca_parity_error_status(umctl2_base);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!value) {
|
|
/* Clear interrupt bit for DFI alert error */
|
|
setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET,
|
|
DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ensure_retry_procedure_complete(phys_addr_t umctl2_base)
|
|
{
|
|
u32 value;
|
|
u32 start = get_timer(0);
|
|
int ret;
|
|
|
|
/* Check parity/crc/error window is emptied ? */
|
|
value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
|
|
DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW;
|
|
|
|
/* Polling until parity/crc/error window is emptied */
|
|
while (value) {
|
|
if (get_timer(start) > TIMEOUT_200MS) {
|
|
debug("%s: Timeout while waiting for",
|
|
__func__);
|
|
debug(" parity/crc/error window empty\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Check software intervention is enabled? */
|
|
value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) &
|
|
DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW;
|
|
if (value) {
|
|
debug("%s: Software intervention is enabled\n",
|
|
__func__);
|
|
|
|
/* Check dfi alert error interrupt is set? */
|
|
value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
|
|
DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT;
|
|
|
|
if (value) {
|
|
ret = ddr_retry_software_sequence(umctl2_base);
|
|
debug("%s: DFI alert error interrupt ",
|
|
__func__);
|
|
debug("is set\n");
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check fatal parity error interrupt is set?
|
|
*/
|
|
value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
|
|
DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT;
|
|
if (value) {
|
|
printf("%s: Fatal parity error ",
|
|
__func__);
|
|
printf("interrupt is set, Hang it!!\n");
|
|
hang();
|
|
}
|
|
}
|
|
|
|
value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) &
|
|
DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW;
|
|
|
|
udelay(1);
|
|
WATCHDOG_RESET();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int enable_quasi_dynamic_reg_grp3(phys_addr_t umctl2_base,
|
|
enum ddr_type umctl2_type)
|
|
{
|
|
u32 i, value, backup;
|
|
int ret = 0;
|
|
|
|
/* Disable input traffic per port */
|
|
clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN);
|
|
|
|
/* Polling AXI port until idle */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_PSTAT_OFFSET),
|
|
DDR4_PSTAT_WR_PORT_BUSY_0 |
|
|
DDR4_PSTAT_RD_PORT_BUSY_0, false,
|
|
TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" controller idle\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Backup user setting */
|
|
backup = readl(umctl2_base + DDR4_DBG1_OFFSET);
|
|
|
|
/* Disable input traffic to the controller */
|
|
setbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DIS_HIF);
|
|
|
|
/*
|
|
* Ensure CAM/data pipelines are empty.
|
|
* Poll until CAM/data pipelines are set at least twice,
|
|
* timeout at 200ms
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_DBGCAM_OFFSET),
|
|
DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY |
|
|
DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY |
|
|
DDR4_DBGCAM_DBG_WR_Q_EMPTY |
|
|
DDR4_DBGCAM_DBG_RD_Q_EMPTY, true,
|
|
TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: loop(%u): Timeout while waiting for",
|
|
__func__, i + 1);
|
|
debug(" CAM/data pipelines are empty\n");
|
|
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (umctl2_type == DDRTYPE_DDR4) {
|
|
/* Check DDR4 retry is enabled ? */
|
|
value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) &
|
|
DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE;
|
|
|
|
if (value) {
|
|
debug("%s: DDR4 retry is enabled\n", __func__);
|
|
|
|
ret = ensure_retry_procedure_complete(umctl2_base);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for",
|
|
__func__);
|
|
debug(" retry procedure complete\n");
|
|
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
debug("%s: Quasi-dynamic group 3 registers are enabled\n", __func__);
|
|
|
|
out:
|
|
/* Restore user setting */
|
|
writel(backup, umctl2_base + DDR4_DBG1_OFFSET);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static enum ddr_type get_ddr_type(phys_addr_t ddr_type_location)
|
|
{
|
|
u32 ddr_type_magic = readl(ddr_type_location);
|
|
|
|
if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_DDR4_TYPE)
|
|
return DDRTYPE_DDR4;
|
|
|
|
if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_0_TYPE)
|
|
return DDRTYPE_LPDDR4_0;
|
|
|
|
if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_1_TYPE)
|
|
return DDRTYPE_LPDDR4_1;
|
|
|
|
return DDRTYPE_UNKNOWN;
|
|
}
|
|
|
|
static void use_lpddr4_interleaving(bool set)
|
|
{
|
|
if (set) {
|
|
printf("Starting LPDDR4 interleaving configuration ...\n");
|
|
setbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0,
|
|
BIT(5));
|
|
} else {
|
|
printf("Starting LPDDR4 non-interleaving configuration ...\n");
|
|
clrbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0,
|
|
BIT(5));
|
|
}
|
|
}
|
|
|
|
static void use_ddr4(enum ddr_type type)
|
|
{
|
|
if (type == DDRTYPE_DDR4) {
|
|
printf("Starting DDR4 configuration ...\n");
|
|
setbits_le32(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_DDR_MODE,
|
|
SYSMGR_SOC64_DDR_MODE_MSK);
|
|
} else if (type == DDRTYPE_LPDDR4_0) {
|
|
printf("Starting LPDDR4 configuration ...\n");
|
|
clrbits_le32(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_DDR_MODE,
|
|
SYSMGR_SOC64_DDR_MODE_MSK);
|
|
|
|
use_lpddr4_interleaving(false);
|
|
}
|
|
}
|
|
|
|
static int scrubber_ddr_config(phys_addr_t umctl2_base,
|
|
enum ddr_type umctl2_type)
|
|
{
|
|
u32 backup[9];
|
|
int ret;
|
|
|
|
/* Reset to default value, prevent scrubber stop due to lower power */
|
|
writel(0, umctl2_base + DDR4_PWRCTL_OFFSET);
|
|
|
|
/* Backup user settings */
|
|
backup[0] = readl(umctl2_base + DDR4_SBRCTL_OFFSET);
|
|
backup[1] = readl(umctl2_base + DDR4_SBRWDATA0_OFFSET);
|
|
backup[2] = readl(umctl2_base + DDR4_SBRSTART0_OFFSET);
|
|
if (umctl2_type == DDRTYPE_DDR4) {
|
|
backup[3] = readl(umctl2_base + DDR4_SBRWDATA1_OFFSET);
|
|
backup[4] = readl(umctl2_base + DDR4_SBRSTART1_OFFSET);
|
|
}
|
|
backup[5] = readl(umctl2_base + DDR4_SBRRANGE0_OFFSET);
|
|
backup[6] = readl(umctl2_base + DDR4_SBRRANGE1_OFFSET);
|
|
backup[7] = readl(umctl2_base + DDR4_ECCCFG0_OFFSET);
|
|
backup[8] = readl(umctl2_base + DDR4_ECCCFG1_OFFSET);
|
|
|
|
if (umctl2_type != DDRTYPE_DDR4) {
|
|
/* Lock ECC region, ensure this regions is not being accessed */
|
|
setbits_le32(umctl2_base + DDR4_ECCCFG1_OFFSET,
|
|
LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK);
|
|
}
|
|
/* Disable input traffic per port */
|
|
clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN);
|
|
/* Disables scrubber */
|
|
clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN);
|
|
/* Polling all scrub writes data have been sent */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_BUSY,
|
|
false, TIMEOUT_5000MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" sending all scrub data\n");
|
|
return ret;
|
|
}
|
|
|
|
/* LPDDR4 supports inline ECC only */
|
|
if (umctl2_type != DDRTYPE_DDR4) {
|
|
/*
|
|
* Setting all regions for protected, this is required for
|
|
* srubber to init whole LPDDR4 expect ECC region
|
|
*/
|
|
writel(((ONE_EIGHT <<
|
|
LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT) |
|
|
(ALL_PROTECTED << LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT)),
|
|
umctl2_base + DDR4_ECCCFG0_OFFSET);
|
|
}
|
|
|
|
/* Scrub_burst = 1, scrub_mode = 1(performs writes) */
|
|
writel(DDR4_SBRCTL_SCRUB_BURST_1 | DDR4_SBRCTL_SCRUB_WRITE,
|
|
umctl2_base + DDR4_SBRCTL_OFFSET);
|
|
|
|
/* Zeroing whole DDR */
|
|
writel(0, umctl2_base + DDR4_SBRWDATA0_OFFSET);
|
|
writel(0, umctl2_base + DDR4_SBRSTART0_OFFSET);
|
|
if (umctl2_type == DDRTYPE_DDR4) {
|
|
writel(0, umctl2_base + DDR4_SBRWDATA1_OFFSET);
|
|
writel(0, umctl2_base + DDR4_SBRSTART1_OFFSET);
|
|
}
|
|
writel(0, umctl2_base + DDR4_SBRRANGE0_OFFSET);
|
|
writel(0, umctl2_base + DDR4_SBRRANGE1_OFFSET);
|
|
|
|
/* Enables scrubber */
|
|
setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN);
|
|
/* Polling all scrub writes commands have been sent */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_DONE,
|
|
true, TIMEOUT_5000MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" sending all scrub commands\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Polling all scrub writes data have been sent */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_BUSY,
|
|
false, TIMEOUT_5000MS, false);
|
|
if (ret) {
|
|
printf("%s: Timeout while waiting for", __func__);
|
|
printf(" sending all scrub data\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Disables scrubber */
|
|
clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN);
|
|
|
|
/* Restore user settings */
|
|
writel(backup[0], umctl2_base + DDR4_SBRCTL_OFFSET);
|
|
writel(backup[1], umctl2_base + DDR4_SBRWDATA0_OFFSET);
|
|
writel(backup[2], umctl2_base + DDR4_SBRSTART0_OFFSET);
|
|
if (umctl2_type == DDRTYPE_DDR4) {
|
|
writel(backup[3], umctl2_base + DDR4_SBRWDATA1_OFFSET);
|
|
writel(backup[4], umctl2_base + DDR4_SBRSTART1_OFFSET);
|
|
}
|
|
writel(backup[5], umctl2_base + DDR4_SBRRANGE0_OFFSET);
|
|
writel(backup[6], umctl2_base + DDR4_SBRRANGE1_OFFSET);
|
|
writel(backup[7], umctl2_base + DDR4_ECCCFG0_OFFSET);
|
|
writel(backup[8], umctl2_base + DDR4_ECCCFG1_OFFSET);
|
|
|
|
/* Enables ECC scrub on scrubber */
|
|
if (!(readl(umctl2_base + DDR4_SBRCTL_OFFSET) &
|
|
DDR4_SBRCTL_SCRUB_WRITE)) {
|
|
/* Enables scrubber */
|
|
setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET,
|
|
DDR4_SBRCTL_SCRUB_EN);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void handoff_process(struct ddr_handoff *ddr_handoff_info,
|
|
phys_addr_t handoff_base, size_t length,
|
|
phys_addr_t base)
|
|
{
|
|
u32 handoff_table[length];
|
|
u32 i, value = 0;
|
|
|
|
/* Execute configuration handoff */
|
|
socfpga_handoff_read((void *)handoff_base, handoff_table, length);
|
|
|
|
for (i = 0; i < length; i = i + 2) {
|
|
debug("%s: wr = 0x%08x ", __func__, handoff_table[i + 1]);
|
|
if (ddr_handoff_info && base == ddr_handoff_info->phy_base) {
|
|
/*
|
|
* Convert PHY odd offset to even offset that
|
|
* supported by ARM processor.
|
|
*/
|
|
value = handoff_table[i] << 1;
|
|
|
|
writew(handoff_table[i + 1],
|
|
(uintptr_t)(value + base));
|
|
debug("rd = 0x%08x ",
|
|
readw((uintptr_t)(value + base)));
|
|
debug("PHY offset: 0x%08x ", handoff_table[i + 1]);
|
|
} else {
|
|
value = handoff_table[i];
|
|
writel(handoff_table[i + 1], (uintptr_t)(value +
|
|
base));
|
|
debug("rd = 0x%08x ",
|
|
readl((uintptr_t)(value + base)));
|
|
}
|
|
|
|
debug("Absolute addr: 0x%08llx, APB offset: 0x%08x\n",
|
|
value + base, value);
|
|
}
|
|
}
|
|
|
|
static int init_umctl2(phys_addr_t umctl2_handoff_base,
|
|
phys_addr_t umctl2_base, enum ddr_type umctl2_type,
|
|
size_t umctl2_handoff_length,
|
|
u32 *user_backup)
|
|
{
|
|
int ret;
|
|
|
|
if (umctl2_type == DDRTYPE_DDR4)
|
|
printf("Initializing DDR4 controller ...\n");
|
|
else if (umctl2_type == DDRTYPE_LPDDR4_0)
|
|
printf("Initializing LPDDR4_0 controller ...\n");
|
|
else if (umctl2_type == DDRTYPE_LPDDR4_1)
|
|
printf("Initializing LPDDR4_1 controller ...\n");
|
|
|
|
/* Prevent controller from issuing read/write to SDRAM */
|
|
setbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DISDQ);
|
|
|
|
/* Put SDRAM into self-refresh */
|
|
setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_EN);
|
|
|
|
/* Enable quasi-dynamic programing of the controller registers */
|
|
clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
/* Ensure the controller is in initialization mode */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base + DDR4_STAT_OFFSET),
|
|
DDR4_STAT_OPERATING_MODE, false, TIMEOUT_200MS,
|
|
false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" init operating mode\n");
|
|
return ret;
|
|
}
|
|
|
|
debug("%s: UMCTL2 handoff base address = 0x%p table length = 0x%08x\n",
|
|
__func__, (u32 *)umctl2_handoff_base,
|
|
(u32)umctl2_handoff_length);
|
|
|
|
handoff_process(NULL, umctl2_handoff_base, umctl2_handoff_length,
|
|
umctl2_base);
|
|
|
|
/* Backup user settings, restore after DDR up running */
|
|
*user_backup = readl(umctl2_base + DDR4_PWRCTL_OFFSET);
|
|
|
|
/* Disable self resfresh */
|
|
clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_EN);
|
|
|
|
if (umctl2_type == DDRTYPE_LPDDR4_0 ||
|
|
umctl2_type == DDRTYPE_LPDDR4_1) {
|
|
/* Setting selfref_sw to 1, based on lpddr4 requirement */
|
|
setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET,
|
|
DDR4_PWRCTL_SELFREF_SW);
|
|
|
|
/* Backup user settings, restore after DDR up running */
|
|
user_backup++;
|
|
*user_backup = readl(umctl2_base + DDR4_INIT0_OFFSET) &
|
|
DDR4_INIT0_SKIP_RAM_INIT;
|
|
|
|
/*
|
|
* Setting INIT0.skip_dram_init to 0x3, based on lpddr4
|
|
* requirement
|
|
*/
|
|
setbits_le32(umctl2_base + DDR4_INIT0_OFFSET,
|
|
DDR4_INIT0_SKIP_RAM_INIT);
|
|
}
|
|
|
|
/* Complete quasi-dynamic register programming */
|
|
setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
/* Enable controller from issuing read/write to SDRAM */
|
|
clrbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DISDQ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int phy_pre_handoff_config(phys_addr_t umctl2_base,
|
|
enum ddr_type umctl2_type)
|
|
{
|
|
int ret;
|
|
u32 value;
|
|
|
|
if (umctl2_type == DDRTYPE_DDR4) {
|
|
/* Check DDR4 retry is enabled ? */
|
|
value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) &
|
|
DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE;
|
|
|
|
if (value) {
|
|
debug("%s: DDR4 retry is enabled\n", __func__);
|
|
debug("%s: Disable auto refresh is not supported\n",
|
|
__func__);
|
|
} else {
|
|
/* Disable auto refresh */
|
|
setbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET,
|
|
DDR4_RFSHCTL3_DIS_AUTO_REFRESH);
|
|
}
|
|
}
|
|
|
|
/* Disable selfref_en & powerdown_en, nvr disable dfi dram clk */
|
|
clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET,
|
|
DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE |
|
|
DDR4_PWRCTL_POWERDOWN_EN | DDR4_PWRCTL_SELFREF_EN);
|
|
|
|
/* Enable quasi-dynamic programing of the controller registers */
|
|
clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Masking dfi init complete */
|
|
clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
|
|
DDR4_DFIMISC_DFI_INIT_COMPLETE_EN);
|
|
|
|
/* Complete quasi-dynamic register programming */
|
|
setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
/* Polling programming done */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_SWSTAT_OFFSET), DDR4_SWSTAT_SW_DONE_ACK,
|
|
true, TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" programming done\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int init_phy(struct ddr_handoff *ddr_handoff_info)
|
|
{
|
|
int ret;
|
|
|
|
printf("Initializing DDR PHY ...\n");
|
|
|
|
if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 ||
|
|
ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) {
|
|
ret = phy_pre_handoff_config(ddr_handoff_info->cntlr_base,
|
|
ddr_handoff_info->cntlr_t);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) {
|
|
ret = phy_pre_handoff_config
|
|
(ddr_handoff_info->cntlr2_base,
|
|
ddr_handoff_info->cntlr2_t);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Execute PHY configuration handoff */
|
|
handoff_process(ddr_handoff_info, ddr_handoff_info->phy_handoff_base,
|
|
ddr_handoff_info->phy_handoff_length,
|
|
ddr_handoff_info->phy_base);
|
|
|
|
printf("DDR PHY configuration is completed\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void phy_init_engine(struct ddr_handoff *handoff)
|
|
{
|
|
printf("Load PHY Init Engine ...\n");
|
|
|
|
/* Execute PIE production code handoff */
|
|
handoff_process(handoff, handoff->phy_engine_handoff_base,
|
|
handoff->phy_engine_handoff_length, handoff->phy_base);
|
|
|
|
printf("End of loading PHY Init Engine\n");
|
|
}
|
|
|
|
int populate_ddr_handoff(struct ddr_handoff *handoff)
|
|
{
|
|
phys_addr_t next_section_header;
|
|
|
|
/* DDR handoff */
|
|
handoff->mem_reset_base = SOC64_HANDOFF_DDR_MEMRESET_BASE;
|
|
debug("%s: DDR memory reset base = 0x%x\n", __func__,
|
|
(u32)handoff->mem_reset_base);
|
|
debug("%s: DDR memory reset address = 0x%x\n", __func__,
|
|
readl(handoff->mem_reset_base));
|
|
|
|
/* Beginning of DDR controller handoff */
|
|
handoff->cntlr_handoff_base = SOC64_HANDOFF_DDR_UMCTL2_SECTION;
|
|
debug("%s: cntlr handoff base = 0x%x\n", __func__,
|
|
(u32)handoff->cntlr_handoff_base);
|
|
|
|
/* Get 1st DDR type */
|
|
handoff->cntlr_t = get_ddr_type(handoff->cntlr_handoff_base +
|
|
SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET);
|
|
if (handoff->cntlr_t == DDRTYPE_LPDDR4_1 ||
|
|
handoff->cntlr_t == DDRTYPE_UNKNOWN) {
|
|
debug("%s: Wrong DDR handoff format, the 1st DDR ", __func__);
|
|
debug("type must be DDR4 or LPDDR4_0\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* 1st cntlr base physical address */
|
|
handoff->cntlr_base = readl(handoff->cntlr_handoff_base +
|
|
SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET);
|
|
debug("%s: cntlr base = 0x%x\n", __func__, (u32)handoff->cntlr_base);
|
|
|
|
/* Get the total length of DDR cntlr handoff section */
|
|
handoff->cntlr_total_length = readl(handoff->cntlr_handoff_base +
|
|
SOC64_HANDOFF_OFFSET_LENGTH);
|
|
debug("%s: Umctl2 total length in byte = 0x%x\n", __func__,
|
|
(u32)handoff->cntlr_total_length);
|
|
|
|
/* Get the length of user setting data in DDR cntlr handoff section */
|
|
handoff->cntlr_handoff_length = socfpga_get_handoff_size((void *)
|
|
handoff->cntlr_handoff_base);
|
|
debug("%s: Umctl2 handoff length in word(32-bit) = 0x%x\n", __func__,
|
|
(u32)handoff->cntlr_handoff_length);
|
|
|
|
/* Wrong format on user setting data */
|
|
if (handoff->cntlr_handoff_length < 0) {
|
|
debug("%s: Wrong format on user setting data\n", __func__);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* Get the next handoff section address */
|
|
next_section_header = handoff->cntlr_handoff_base +
|
|
handoff->cntlr_total_length;
|
|
debug("%s: Next handoff section header location = 0x%llx\n", __func__,
|
|
next_section_header);
|
|
|
|
/*
|
|
* Checking next section handoff is cntlr or PHY, and changing
|
|
* subsequent implementation accordingly
|
|
*/
|
|
if (readl(next_section_header) == SOC64_HANDOFF_DDR_UMCTL2_MAGIC) {
|
|
/* Get the next cntlr handoff section address */
|
|
handoff->cntlr2_handoff_base = next_section_header;
|
|
debug("%s: umctl2 2nd handoff base = 0x%x\n", __func__,
|
|
(u32)handoff->cntlr2_handoff_base);
|
|
|
|
/* Get 2nd DDR type */
|
|
handoff->cntlr2_t = get_ddr_type(handoff->cntlr2_handoff_base +
|
|
SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET);
|
|
if (handoff->cntlr2_t == DDRTYPE_LPDDR4_0 ||
|
|
handoff->cntlr2_t == DDRTYPE_UNKNOWN) {
|
|
debug("%s: Wrong DDR handoff format, the 2nd DDR ",
|
|
__func__);
|
|
debug("type must be LPDDR4_1\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* 2nd umctl2 base physical address */
|
|
handoff->cntlr2_base =
|
|
readl(handoff->cntlr2_handoff_base +
|
|
SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET);
|
|
debug("%s: cntlr2 base = 0x%x\n", __func__,
|
|
(u32)handoff->cntlr2_base);
|
|
|
|
/* Get the total length of 2nd DDR umctl2 handoff section */
|
|
handoff->cntlr2_total_length =
|
|
readl(handoff->cntlr2_handoff_base +
|
|
SOC64_HANDOFF_OFFSET_LENGTH);
|
|
debug("%s: Umctl2_2nd total length in byte = 0x%x\n", __func__,
|
|
(u32)handoff->cntlr2_total_length);
|
|
|
|
/*
|
|
* Get the length of user setting data in DDR umctl2 handoff
|
|
* section
|
|
*/
|
|
handoff->cntlr2_handoff_length =
|
|
socfpga_get_handoff_size((void *)
|
|
handoff->cntlr2_handoff_base);
|
|
debug("%s: cntlr2 handoff length in word(32-bit) = 0x%x\n",
|
|
__func__,
|
|
(u32)handoff->cntlr2_handoff_length);
|
|
|
|
/* Wrong format on user setting data */
|
|
if (handoff->cntlr2_handoff_length < 0) {
|
|
debug("%s: Wrong format on umctl2 user setting data\n",
|
|
__func__);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* Get the next handoff section address */
|
|
next_section_header = handoff->cntlr2_handoff_base +
|
|
handoff->cntlr2_total_length;
|
|
debug("%s: Next handoff section header location = 0x%llx\n",
|
|
__func__, next_section_header);
|
|
}
|
|
|
|
/* Checking next section handoff is PHY ? */
|
|
if (readl(next_section_header) == SOC64_HANDOFF_DDR_PHY_MAGIC) {
|
|
/* DDR PHY handoff */
|
|
handoff->phy_handoff_base = next_section_header;
|
|
debug("%s: PHY handoff base = 0x%x\n", __func__,
|
|
(u32)handoff->phy_handoff_base);
|
|
|
|
/* PHY base physical address */
|
|
handoff->phy_base = readl(handoff->phy_handoff_base +
|
|
SOC64_HANDOFF_DDR_PHY_BASE_OFFSET);
|
|
debug("%s: PHY base = 0x%x\n", __func__,
|
|
(u32)handoff->phy_base);
|
|
|
|
/* Get the total length of PHY handoff section */
|
|
handoff->phy_total_length = readl(handoff->phy_handoff_base +
|
|
SOC64_HANDOFF_OFFSET_LENGTH);
|
|
debug("%s: PHY total length in byte = 0x%x\n", __func__,
|
|
(u32)handoff->phy_total_length);
|
|
|
|
/*
|
|
* Get the length of user setting data in DDR PHY handoff
|
|
* section
|
|
*/
|
|
handoff->phy_handoff_length = socfpga_get_handoff_size((void *)
|
|
handoff->phy_handoff_base);
|
|
debug("%s: PHY handoff length in word(32-bit) = 0x%x\n",
|
|
__func__, (u32)handoff->phy_handoff_length);
|
|
|
|
/* Wrong format on PHY user setting data */
|
|
if (handoff->phy_handoff_length < 0) {
|
|
debug("%s: Wrong format on PHY user setting data\n",
|
|
__func__);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* Get the next handoff section address */
|
|
next_section_header = handoff->phy_handoff_base +
|
|
handoff->phy_total_length;
|
|
debug("%s: Next handoff section header location = 0x%llx\n",
|
|
__func__, next_section_header);
|
|
} else {
|
|
debug("%s: Wrong format for DDR handoff, expect PHY",
|
|
__func__);
|
|
debug(" handoff section after umctl2 handoff section\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* Checking next section handoff is PHY init Engine ? */
|
|
if (readl(next_section_header) ==
|
|
SOC64_HANDOFF_DDR_PHY_INIT_ENGINE_MAGIC) {
|
|
/* DDR PHY Engine handoff */
|
|
handoff->phy_engine_handoff_base = next_section_header;
|
|
debug("%s: PHY init engine handoff base = 0x%x\n", __func__,
|
|
(u32)handoff->phy_engine_handoff_base);
|
|
|
|
/* Get the total length of PHY init engine handoff section */
|
|
handoff->phy_engine_total_length =
|
|
readl(handoff->phy_engine_handoff_base +
|
|
SOC64_HANDOFF_OFFSET_LENGTH);
|
|
debug("%s: PHY engine total length in byte = 0x%x\n", __func__,
|
|
(u32)handoff->phy_engine_total_length);
|
|
|
|
/*
|
|
* Get the length of user setting data in DDR PHY init engine
|
|
* handoff section
|
|
*/
|
|
handoff->phy_engine_handoff_length =
|
|
socfpga_get_handoff_size((void *)
|
|
handoff->phy_engine_handoff_base);
|
|
debug("%s: PHY engine handoff length in word(32-bit) = 0x%x\n",
|
|
__func__, (u32)handoff->phy_engine_handoff_length);
|
|
|
|
/* Wrong format on PHY init engine setting data */
|
|
if (handoff->phy_engine_handoff_length < 0) {
|
|
debug("%s: Wrong format on PHY init engine ",
|
|
__func__);
|
|
debug("user setting data\n");
|
|
return -ENOEXEC;
|
|
}
|
|
} else {
|
|
debug("%s: Wrong format for DDR handoff, expect PHY",
|
|
__func__);
|
|
debug(" init engine handoff section after PHY handoff\n");
|
|
debug(" section\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
handoff->train_imem_base = handoff->phy_base +
|
|
DDR_PHY_TRAIN_IMEM_OFFSET;
|
|
debug("%s: PHY train IMEM base = 0x%x\n",
|
|
__func__, (u32)handoff->train_imem_base);
|
|
|
|
handoff->train_dmem_base = handoff->phy_base +
|
|
DDR_PHY_TRAIN_DMEM_OFFSET;
|
|
debug("%s: PHY train DMEM base = 0x%x\n",
|
|
__func__, (u32)handoff->train_dmem_base);
|
|
|
|
handoff->train_imem_length = SOC64_HANDOFF_DDR_TRAIN_IMEM_LENGTH;
|
|
debug("%s: PHY train IMEM length = 0x%x\n",
|
|
__func__, (u32)handoff->train_imem_length);
|
|
|
|
handoff->train_dmem_length = SOC64_HANDOFF_DDR_TRAIN_DMEM_LENGTH;
|
|
debug("%s: PHY train DMEM length = 0x%x\n",
|
|
__func__, (u32)handoff->train_dmem_length);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int enable_ddr_clock(struct udevice *dev)
|
|
{
|
|
struct clk *ddr_clk;
|
|
int ret;
|
|
|
|
/* Enable clock before init DDR */
|
|
ddr_clk = devm_clk_get(dev, "mem_clk");
|
|
if (!IS_ERR(ddr_clk)) {
|
|
ret = clk_enable(ddr_clk);
|
|
if (ret) {
|
|
printf("%s: Failed to enable DDR clock\n", __func__);
|
|
return ret;
|
|
}
|
|
} else {
|
|
ret = PTR_ERR(ddr_clk);
|
|
debug("%s: Failed to get DDR clock from dts\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
printf("%s: DDR clock is enabled\n", __func__);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ddr_start_dfi_init(phys_addr_t umctl2_base,
|
|
enum ddr_type umctl2_type)
|
|
{
|
|
int ret;
|
|
|
|
debug("%s: Start DFI init\n", __func__);
|
|
|
|
/* Enable quasi-dynamic programing of controller registers */
|
|
clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Start DFI init sequence */
|
|
setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
|
|
DDR4_DFIMISC_DFI_INIT_START);
|
|
|
|
/* Complete quasi-dynamic register programming */
|
|
setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
/* Polling programming done */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_SWSTAT_OFFSET),
|
|
DDR4_SWSTAT_SW_DONE_ACK, true,
|
|
TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" programming done\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ddr_check_dfi_init_complete(phys_addr_t umctl2_base,
|
|
enum ddr_type umctl2_type)
|
|
{
|
|
int ret;
|
|
|
|
/* Polling DFI init complete */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_DFISTAT_OFFSET),
|
|
DDR4_DFI_INIT_COMPLETE, true,
|
|
TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" DFI init done\n");
|
|
return ret;
|
|
}
|
|
|
|
debug("%s: DFI init completed.\n", __func__);
|
|
|
|
/* Enable quasi-dynamic programing of controller registers */
|
|
clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Stop DFI init sequence */
|
|
clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
|
|
DDR4_DFIMISC_DFI_INIT_START);
|
|
|
|
/* Complete quasi-dynamic register programming */
|
|
setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
/* Polling programming done */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_SWSTAT_OFFSET),
|
|
DDR4_SWSTAT_SW_DONE_ACK, true,
|
|
TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" programming done\n");
|
|
return ret;
|
|
}
|
|
|
|
debug("%s:DDR programming done\n", __func__);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ddr_trigger_sdram_init(phys_addr_t umctl2_base,
|
|
enum ddr_type umctl2_type)
|
|
{
|
|
int ret;
|
|
|
|
/* Enable quasi-dynamic programing of controller registers */
|
|
clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Unmasking dfi init complete */
|
|
setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET,
|
|
DDR4_DFIMISC_DFI_INIT_COMPLETE_EN);
|
|
|
|
/* Software exit from self-refresh */
|
|
clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_SW);
|
|
|
|
/* Complete quasi-dynamic register programming */
|
|
setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
/* Polling programming done */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_SWSTAT_OFFSET),
|
|
DDR4_SWSTAT_SW_DONE_ACK, true,
|
|
TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" programming done\n");
|
|
return ret;
|
|
}
|
|
|
|
debug("%s:DDR programming done\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
static int ddr_post_handoff_config(phys_addr_t umctl2_base,
|
|
enum ddr_type umctl2_type)
|
|
{
|
|
int ret = 0;
|
|
u32 value;
|
|
u32 start = get_timer(0);
|
|
|
|
do {
|
|
if (get_timer(start) > TIMEOUT_200MS) {
|
|
debug("%s: Timeout while waiting for",
|
|
__func__);
|
|
debug(" DDR enters normal operating mode\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
udelay(1);
|
|
WATCHDOG_RESET();
|
|
|
|
/* Polling until SDRAM entered normal operating mode */
|
|
value = readl(umctl2_base + DDR4_STAT_OFFSET) &
|
|
DDR4_STAT_OPERATING_MODE;
|
|
} while (value != OPM_NORMAL);
|
|
|
|
printf("DDR entered normal operating mode\n");
|
|
|
|
/* Enabling auto refresh */
|
|
clrbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET,
|
|
DDR4_RFSHCTL3_DIS_AUTO_REFRESH);
|
|
|
|
/* Checking ECC is enabled? */
|
|
value = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) & DDR4_ECC_MODE;
|
|
if (value) {
|
|
printf("ECC is enabled\n");
|
|
ret = scrubber_ddr_config(umctl2_base, umctl2_type);
|
|
if (ret)
|
|
printf("Failed to enable ECC\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int configure_training_firmware(struct ddr_handoff *ddr_handoff_info,
|
|
const void *train_imem,
|
|
const void *train_dmem)
|
|
{
|
|
int ret = 0;
|
|
|
|
printf("Configuring training firmware ...\n");
|
|
|
|
/* Reset SDRAM */
|
|
writew(DDR_PHY_PROTECT_MEMRESET,
|
|
(uintptr_t)(ddr_handoff_info->phy_base +
|
|
DDR_PHY_MEMRESETL_OFFSET));
|
|
|
|
/* Enable access to the PHY configuration registers */
|
|
clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_APBONLY0_OFFSET,
|
|
DDR_PHY_MICROCONTMUXSEL);
|
|
|
|
/* Copy train IMEM bin */
|
|
memcpy((void *)ddr_handoff_info->train_imem_base, train_imem,
|
|
ddr_handoff_info->train_imem_length);
|
|
|
|
ret = memcmp((void *)ddr_handoff_info->train_imem_base, train_imem,
|
|
ddr_handoff_info->train_imem_length);
|
|
if (ret) {
|
|
debug("%s: Failed to copy train IMEM binary\n", __func__);
|
|
/* Isolate the APB access from internal CSRs */
|
|
setbits_le16(ddr_handoff_info->phy_base +
|
|
DDR_PHY_APBONLY0_OFFSET, DDR_PHY_MICROCONTMUXSEL);
|
|
return ret;
|
|
}
|
|
|
|
memcpy((void *)ddr_handoff_info->train_dmem_base, train_dmem,
|
|
ddr_handoff_info->train_dmem_length);
|
|
|
|
ret = memcmp((void *)ddr_handoff_info->train_dmem_base, train_dmem,
|
|
ddr_handoff_info->train_dmem_length);
|
|
if (ret)
|
|
debug("%s: Failed to copy train DMEM binary\n", __func__);
|
|
|
|
/* Isolate the APB access from internal CSRs */
|
|
setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_APBONLY0_OFFSET,
|
|
DDR_PHY_MICROCONTMUXSEL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void calibrating_sdram(struct ddr_handoff *ddr_handoff_info)
|
|
{
|
|
/* Init mailbox protocol - set 1 to DCTWRITEPROT[0] */
|
|
setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
|
|
DDR_PHY_DCTWRITEPROT);
|
|
|
|
/* Init mailbox protocol - set 1 to UCTWRITEPROT[0] */
|
|
setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_UCTWRITEPROT_OFFSET,
|
|
DDR_PHY_UCTWRITEPROT);
|
|
|
|
/* Reset and stalling ARC processor */
|
|
setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET,
|
|
DDR_PHY_MICRORESET_RESET | DDR_PHY_MICRORESET_STALL);
|
|
|
|
/* Release ARC processor */
|
|
clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET,
|
|
DDR_PHY_MICRORESET_RESET);
|
|
|
|
/* Starting PHY firmware execution */
|
|
clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET,
|
|
DDR_PHY_MICRORESET_STALL);
|
|
}
|
|
|
|
static int get_mail(struct ddr_handoff *handoff, enum message_mode mode,
|
|
u32 *message_id)
|
|
{
|
|
int ret;
|
|
|
|
/* Polling major messages from PMU */
|
|
ret = wait_for_bit_le16((const void *)(handoff->phy_base +
|
|
DDR_PHY_UCTSHADOWREGS_OFFSET),
|
|
DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW,
|
|
false, TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for",
|
|
__func__);
|
|
debug(" major messages from PMU\n");
|
|
return ret;
|
|
}
|
|
|
|
*message_id = readw((uintptr_t)(handoff->phy_base +
|
|
DDR_PHY_UCTWRITEONLYSHADOW_OFFSET));
|
|
|
|
if (mode == STREAMING_MESSAGE)
|
|
*message_id |= readw((uintptr_t)((handoff->phy_base +
|
|
DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) <<
|
|
SZ_16;
|
|
|
|
/* Ack the receipt of the major message */
|
|
clrbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
|
|
DDR_PHY_DCTWRITEPROT);
|
|
|
|
ret = wait_for_bit_le16((const void *)(handoff->phy_base +
|
|
DDR_PHY_UCTSHADOWREGS_OFFSET),
|
|
DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW,
|
|
true, TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for",
|
|
__func__);
|
|
debug(" ack the receipt of the major message completed\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Complete protocol */
|
|
setbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
|
|
DDR_PHY_DCTWRITEPROT);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int get_mail_streaming(struct ddr_handoff *handoff,
|
|
enum message_mode mode, u32 *index)
|
|
{
|
|
int ret;
|
|
|
|
*index = readw((uintptr_t)(handoff->phy_base +
|
|
DDR_PHY_UCTWRITEONLYSHADOW_OFFSET));
|
|
|
|
if (mode == STREAMING_MESSAGE)
|
|
*index |= readw((uintptr_t)((handoff->phy_base +
|
|
DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) <<
|
|
SZ_16;
|
|
|
|
/* Ack the receipt of the major message */
|
|
clrbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
|
|
DDR_PHY_DCTWRITEPROT);
|
|
|
|
ret = wait_for_bit_le16((const void *)(handoff->phy_base +
|
|
DDR_PHY_UCTSHADOWREGS_OFFSET),
|
|
DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW,
|
|
true, TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for",
|
|
__func__);
|
|
debug(" ack the receipt of the major message completed\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Complete protocol */
|
|
setbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET,
|
|
DDR_PHY_DCTWRITEPROT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decode_streaming_message(struct ddr_handoff *ddr_handoff_info,
|
|
u32 *streaming_index)
|
|
{
|
|
int i = 0, ret;
|
|
u32 temp;
|
|
|
|
temp = *streaming_index;
|
|
|
|
while (i < GET_LOWHW_DATA(temp)) {
|
|
ret = get_mail(ddr_handoff_info, STREAMING_MESSAGE,
|
|
streaming_index);
|
|
if (ret)
|
|
return ret;
|
|
|
|
printf("args[%d]: 0x%x ", i, *streaming_index);
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int poll_for_training_complete(struct ddr_handoff *ddr_handoff_info)
|
|
{
|
|
int ret;
|
|
u32 message_id = 0;
|
|
u32 streaming_index = 0;
|
|
|
|
do {
|
|
ret = get_mail(ddr_handoff_info, MAJOR_MESSAGE, &message_id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
printf("Major message id = 0%x\n", message_id);
|
|
|
|
if (message_id == FW_STREAMING_MSG_ID) {
|
|
ret = get_mail_streaming(ddr_handoff_info,
|
|
STREAMING_MESSAGE,
|
|
&streaming_index);
|
|
if (ret)
|
|
return ret;
|
|
|
|
printf("streaming index 0%x : ", streaming_index);
|
|
|
|
decode_streaming_message(ddr_handoff_info,
|
|
&streaming_index);
|
|
|
|
printf("\n");
|
|
}
|
|
} while ((message_id != FW_TRAINING_COMPLETED_STAT) &&
|
|
(message_id != FW_TRAINING_FAILED_STAT));
|
|
|
|
if (message_id == FW_TRAINING_COMPLETED_STAT) {
|
|
printf("DDR firmware training completed\n");
|
|
} else if (message_id == FW_TRAINING_FAILED_STAT) {
|
|
printf("DDR firmware training failed\n");
|
|
hang();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void enable_phy_clk_for_csr_access(struct ddr_handoff *handoff,
|
|
bool enable)
|
|
{
|
|
if (enable) {
|
|
/* Enable PHY clk */
|
|
setbits_le16((uintptr_t)(handoff->phy_base +
|
|
DDR_PHY_UCCLKHCLKENABLES_OFFSET),
|
|
DDR_PHY_UCCLKHCLKENABLES_UCCLKEN |
|
|
DDR_PHY_UCCLKHCLKENABLES_HCLKEN);
|
|
} else {
|
|
/* Disable PHY clk */
|
|
clrbits_le16((uintptr_t)(handoff->phy_base +
|
|
DDR_PHY_UCCLKHCLKENABLES_OFFSET),
|
|
DDR_PHY_UCCLKHCLKENABLES_UCCLKEN |
|
|
DDR_PHY_UCCLKHCLKENABLES_HCLKEN);
|
|
}
|
|
}
|
|
|
|
/* helper function for updating train result to umctl2 RANKCTL register */
|
|
static void set_cal_res_to_rankctrl(u32 reg_addr, u16 update_value,
|
|
u32 mask, u32 msb_mask, u32 shift)
|
|
{
|
|
u32 reg, value;
|
|
|
|
reg = readl((uintptr_t)reg_addr);
|
|
|
|
debug("max value divided by 2 is 0x%x\n", update_value);
|
|
debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
|
|
debug("update with train result\n");
|
|
|
|
value = (reg & mask) >> shift;
|
|
|
|
value += update_value + 3;
|
|
|
|
/* reg value greater than 0xF, set one to diff_rank_wr_gap_msb */
|
|
if (value > 0xF)
|
|
setbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask);
|
|
else
|
|
clrbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask);
|
|
|
|
reg = readl((uintptr_t)reg_addr);
|
|
|
|
value = (value << shift) & mask;
|
|
|
|
/* update register */
|
|
writel((reg & (~mask)) | value, (uintptr_t)reg_addr);
|
|
|
|
reg = readl((uintptr_t)reg_addr);
|
|
debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
|
|
debug("update with train result\n");
|
|
}
|
|
|
|
/* helper function for updating train result to register */
|
|
static void set_cal_res_to_reg(u32 reg_addr, u16 update_value, u32 mask,
|
|
u32 shift)
|
|
{
|
|
u32 reg, value;
|
|
|
|
reg = readl((uintptr_t)reg_addr);
|
|
|
|
debug("max value divided by 2 is 0x%x\n", update_value);
|
|
debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
|
|
debug("update with train result\n");
|
|
|
|
value = (reg & mask) >> shift;
|
|
|
|
value = ((value + update_value + 3) << shift) & mask;
|
|
|
|
/* update register */
|
|
writel((reg & (~mask)) | value, (uintptr_t)reg_addr);
|
|
|
|
reg = readl((uintptr_t)reg_addr);
|
|
debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg);
|
|
debug("update with train result\n");
|
|
}
|
|
|
|
static u16 get_max_txdqsdlytg0_ux_p0(struct ddr_handoff *handoff, u32 reg,
|
|
u8 numdbyte, u16 upd_val)
|
|
{
|
|
u32 b_addr;
|
|
u16 val;
|
|
u8 byte;
|
|
|
|
/* Getting max value from DBYTEx TxDqsDlyTg0_ux_p0 */
|
|
for (byte = 0; byte < numdbyte; byte++) {
|
|
b_addr = byte << 13;
|
|
|
|
/* TxDqsDlyTg0[9:6] is the coarse delay */
|
|
val = (readw((uintptr_t)(handoff->phy_base +
|
|
reg + b_addr)) &
|
|
DDR_PHY_TXDQDLYTG0_COARSE_DELAY) >>
|
|
DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT;
|
|
|
|
upd_val = max(val, upd_val);
|
|
}
|
|
|
|
return upd_val;
|
|
}
|
|
|
|
static int set_cal_res_to_umctl2(struct ddr_handoff *handoff,
|
|
phys_addr_t umctl2_base,
|
|
enum ddr_type umctl2_type)
|
|
{
|
|
int ret;
|
|
u8 numdbyte = 0x8;
|
|
u16 upd_val, val;
|
|
u32 dramtmg2_reg_addr, rankctl_reg_addr, reg_addr;
|
|
|
|
/* Enable quasi-dynamic programing of the controller registers */
|
|
clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Enable access to the PHY configuration registers */
|
|
clrbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET,
|
|
DDR_PHY_MICROCONTMUXSEL);
|
|
|
|
if (umctl2_type == DDRTYPE_DDR4) {
|
|
val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_WW_1_0_OFFSET)));
|
|
|
|
upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_WW_0_1_OFFSET)));
|
|
} else if (umctl2_type == DDRTYPE_LPDDR4_0) {
|
|
val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHA_WW_1_0_OFFSET)));
|
|
|
|
upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHA_WW_0_1_OFFSET)));
|
|
} else if (umctl2_type == DDRTYPE_LPDDR4_1) {
|
|
val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHB_WW_1_0_OFFSET)));
|
|
|
|
upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHB_WW_0_1_OFFSET)));
|
|
}
|
|
|
|
upd_val = max(val, upd_val);
|
|
debug("max value is 0x%x\n", upd_val);
|
|
|
|
/* Divided by two is required when running in freq ratio 1:2 */
|
|
if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO))
|
|
upd_val = DIV_ROUND_CLOSEST(upd_val, 2);
|
|
|
|
debug("Update train value to umctl2 RANKCTL.diff_rank_wr_gap\n");
|
|
rankctl_reg_addr = umctl2_base + DDR4_RANKCTL_OFFSET;
|
|
/* Update train value to umctl2 RANKCTL.diff_rank_wr_gap */
|
|
set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val,
|
|
DDR4_RANKCTL_DIFF_RANK_WR_GAP,
|
|
DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB,
|
|
DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT);
|
|
|
|
debug("Update train value to umctl2 DRAMTMG2.W2RD\n");
|
|
dramtmg2_reg_addr = umctl2_base + DDR4_DRAMTMG2_OFFSET;
|
|
/* Update train value to umctl2 dramtmg2.wr2rd */
|
|
set_cal_res_to_reg(dramtmg2_reg_addr, upd_val, DDR4_DRAMTMG2_WR2RD, 0);
|
|
|
|
if (umctl2_type == DDRTYPE_DDR4) {
|
|
debug("Update train value to umctl2 DRAMTMG9.W2RD_S\n");
|
|
reg_addr = umctl2_base + DDR4_DRAMTMG9_OFFSET;
|
|
/* Update train value to umctl2 dramtmg9.wr2rd_s */
|
|
set_cal_res_to_reg(reg_addr, upd_val, DDR4_DRAMTMG9_W2RD_S, 0);
|
|
}
|
|
|
|
if (umctl2_type == DDRTYPE_DDR4) {
|
|
val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_RR_1_0_OFFSET)));
|
|
|
|
upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_RR_0_1_OFFSET)));
|
|
} else if (umctl2_type == DDRTYPE_LPDDR4_0) {
|
|
val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHA_RR_1_0_OFFSET)));
|
|
|
|
upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHA_RR_0_1_OFFSET)));
|
|
} else if (umctl2_type == DDRTYPE_LPDDR4_1) {
|
|
val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHB_RR_1_0_OFFSET)));
|
|
|
|
upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHB_RR_0_1_OFFSET)));
|
|
}
|
|
|
|
upd_val = max(val, upd_val);
|
|
debug("max value is 0x%x\n", upd_val);
|
|
|
|
/* Divided by two is required when running in freq ratio 1:2 */
|
|
if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO))
|
|
upd_val = DIV_ROUND_CLOSEST(upd_val, 2);
|
|
|
|
debug("Update train value to umctl2 RANKCTL.diff_rank_rd_gap\n");
|
|
/* Update train value to umctl2 RANKCTL.diff_rank_rd_gap */
|
|
set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val,
|
|
DDR4_RANKCTL_DIFF_RANK_RD_GAP,
|
|
DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB,
|
|
DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT);
|
|
|
|
if (umctl2_type == DDRTYPE_DDR4) {
|
|
val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_RW_1_1_OFFSET)));
|
|
|
|
upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_RW_1_0_OFFSET)));
|
|
|
|
upd_val = max(val, upd_val);
|
|
|
|
val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_RW_0_1_OFFSET)));
|
|
|
|
upd_val = max(val, upd_val);
|
|
|
|
val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_RW_0_0_OFFSET)));
|
|
|
|
upd_val = max(val, upd_val);
|
|
} else if (umctl2_type == DDRTYPE_LPDDR4_0) {
|
|
val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHA_RW_1_1_OFFSET)));
|
|
|
|
upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHA_RW_1_0_OFFSET)));
|
|
|
|
upd_val = max(val, upd_val);
|
|
|
|
val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHA_RW_0_1_OFFSET)));
|
|
|
|
upd_val = max(val, upd_val);
|
|
|
|
val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHA_RW_0_0_OFFSET)));
|
|
|
|
upd_val = max(val, upd_val);
|
|
} else if (umctl2_type == DDRTYPE_LPDDR4_1) {
|
|
val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHB_RW_1_1_OFFSET)));
|
|
|
|
upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHB_RW_1_0_OFFSET)));
|
|
|
|
upd_val = max(val, upd_val);
|
|
|
|
val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHB_RW_0_1_OFFSET)));
|
|
|
|
upd_val = max(val, upd_val);
|
|
|
|
val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base +
|
|
DMEM_MB_CDD_CHB_RW_0_0_OFFSET)));
|
|
|
|
upd_val = max(val, upd_val);
|
|
}
|
|
|
|
debug("max value is 0x%x\n", upd_val);
|
|
|
|
/* Divided by two is required when running in freq ratio 1:2 */
|
|
if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO))
|
|
upd_val = DIV_ROUND_CLOSEST(upd_val, 2);
|
|
|
|
debug("Update train value to umctl2 dramtmg2.rd2wr\n");
|
|
/* Update train value to umctl2 dramtmg2.rd2wr */
|
|
set_cal_res_to_reg(dramtmg2_reg_addr, upd_val, DDR4_DRAMTMG2_RD2WR,
|
|
DDR4_DRAMTMG2_RD2WR_SHIFT);
|
|
|
|
/* Checking ECC is enabled?, lpddr4 using inline ECC */
|
|
val = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) & DDR4_ECC_MODE;
|
|
if (val && umctl2_type == DDRTYPE_DDR4)
|
|
numdbyte = 0x9;
|
|
|
|
upd_val = 0;
|
|
|
|
/* Getting max value from DBYTEx TxDqsDlyTg0_u0_p0 */
|
|
upd_val = get_max_txdqsdlytg0_ux_p0(handoff,
|
|
DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0,
|
|
numdbyte, upd_val);
|
|
|
|
/* Getting max value from DBYTEx TxDqsDlyTg0_u1_p0 */
|
|
upd_val = get_max_txdqsdlytg0_ux_p0(handoff,
|
|
DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0,
|
|
numdbyte, upd_val);
|
|
|
|
debug("TxDqsDlyTg0 max value is 0x%x\n", upd_val);
|
|
|
|
/* Divided by two is required when running in freq ratio 1:2 */
|
|
if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO))
|
|
upd_val = DIV_ROUND_CLOSEST(upd_val, 2);
|
|
|
|
reg_addr = umctl2_base + DDR4_DFITMG1_OFFSET;
|
|
/* Update train value to umctl2 dfitmg1.dfi_wrdata_delay */
|
|
set_cal_res_to_reg(reg_addr, upd_val, DDR4_DFITMG1_DFI_T_WRDATA_DELAY,
|
|
DDR4_DFITMG1_DFI_T_WRDATA_SHIFT);
|
|
|
|
/* Complete quasi-dynamic register programming */
|
|
setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE);
|
|
|
|
/* Polling programming done */
|
|
ret = wait_for_bit_le32((const void *)(umctl2_base +
|
|
DDR4_SWSTAT_OFFSET), DDR4_SWSTAT_SW_DONE_ACK,
|
|
true, TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" programming done\n");
|
|
}
|
|
|
|
/* Isolate the APB access from internal CSRs */
|
|
setbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET,
|
|
DDR_PHY_MICROCONTMUXSEL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int update_training_result(struct ddr_handoff *ddr_handoff_info)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Updating training result to first DDR controller */
|
|
if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 ||
|
|
ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) {
|
|
ret = set_cal_res_to_umctl2(ddr_handoff_info,
|
|
ddr_handoff_info->cntlr_base,
|
|
ddr_handoff_info->cntlr_t);
|
|
if (ret) {
|
|
debug("%s: Failed to update train result to ",
|
|
__func__);
|
|
debug("first DDR controller\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Updating training result to 2nd DDR controller */
|
|
if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) {
|
|
ret = set_cal_res_to_umctl2(ddr_handoff_info,
|
|
ddr_handoff_info->cntlr2_base,
|
|
ddr_handoff_info->cntlr2_t);
|
|
if (ret) {
|
|
debug("%s: Failed to update train result to ",
|
|
__func__);
|
|
debug("2nd DDR controller\n");
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int start_ddr_calibration(struct ddr_handoff *ddr_handoff_info)
|
|
{
|
|
int ret;
|
|
|
|
/* Implement 1D training firmware */
|
|
ret = configure_training_firmware(ddr_handoff_info,
|
|
(const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_1D_SECTION,
|
|
(const void *)SOC64_HANDOFF_DDR_TRAIN_DMEM_1D_SECTION);
|
|
if (ret) {
|
|
debug("%s: Failed to configure 1D training firmware\n",
|
|
__func__);
|
|
return ret;
|
|
}
|
|
|
|
calibrating_sdram(ddr_handoff_info);
|
|
|
|
ret = poll_for_training_complete(ddr_handoff_info);
|
|
if (ret) {
|
|
debug("%s: Failed to get FW training completed\n",
|
|
__func__);
|
|
return ret;
|
|
}
|
|
|
|
/* Updating training result to DDR controller */
|
|
ret = update_training_result(ddr_handoff_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Implement 2D training firmware */
|
|
ret = configure_training_firmware(ddr_handoff_info,
|
|
(const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_2D_SECTION,
|
|
(const void *)SOC64_HANDOFF_DDR_TRAIN_DMEM_2D_SECTION);
|
|
if (ret) {
|
|
debug("%s: Failed to update train result to ", __func__);
|
|
debug("DDR controller\n");
|
|
return ret;
|
|
}
|
|
|
|
calibrating_sdram(ddr_handoff_info);
|
|
|
|
ret = poll_for_training_complete(ddr_handoff_info);
|
|
if (ret)
|
|
debug("%s: Failed to get FW training completed\n",
|
|
__func__);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int init_controller(struct ddr_handoff *ddr_handoff_info,
|
|
u32 *user_backup, u32 *user_backup_2nd)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 ||
|
|
ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) {
|
|
/* Initialize 1st DDR controller */
|
|
ret = init_umctl2(ddr_handoff_info->cntlr_handoff_base,
|
|
ddr_handoff_info->cntlr_base,
|
|
ddr_handoff_info->cntlr_t,
|
|
ddr_handoff_info->cntlr_handoff_length,
|
|
user_backup);
|
|
if (ret) {
|
|
debug("%s: Failed to inilialize first controller\n",
|
|
__func__);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) {
|
|
/* Initialize 2nd DDR controller */
|
|
ret = init_umctl2(ddr_handoff_info->cntlr2_handoff_base,
|
|
ddr_handoff_info->cntlr2_base,
|
|
ddr_handoff_info->cntlr2_t,
|
|
ddr_handoff_info->cntlr2_handoff_length,
|
|
user_backup_2nd);
|
|
if (ret)
|
|
debug("%s: Failed to inilialize 2nd controller\n",
|
|
__func__);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dfi_init(struct ddr_handoff *ddr_handoff_info)
|
|
{
|
|
int ret;
|
|
|
|
ret = ddr_start_dfi_init(ddr_handoff_info->cntlr_base,
|
|
ddr_handoff_info->cntlr_t);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1)
|
|
ret = ddr_start_dfi_init(ddr_handoff_info->cntlr2_base,
|
|
ddr_handoff_info->cntlr2_t);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int check_dfi_init(struct ddr_handoff *handoff)
|
|
{
|
|
int ret;
|
|
|
|
ret = ddr_check_dfi_init_complete(handoff->cntlr_base,
|
|
handoff->cntlr_t);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1)
|
|
ret = ddr_check_dfi_init_complete(handoff->cntlr2_base,
|
|
handoff->cntlr2_t);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int trigger_sdram_init(struct ddr_handoff *handoff)
|
|
{
|
|
int ret;
|
|
|
|
ret = ddr_trigger_sdram_init(handoff->cntlr_base,
|
|
handoff->cntlr_t);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1)
|
|
ret = ddr_trigger_sdram_init(handoff->cntlr2_base,
|
|
handoff->cntlr2_t);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ddr_post_config(struct ddr_handoff *handoff)
|
|
{
|
|
int ret;
|
|
|
|
ret = ddr_post_handoff_config(handoff->cntlr_base,
|
|
handoff->cntlr_t);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1)
|
|
ret = ddr_post_handoff_config(handoff->cntlr2_base,
|
|
handoff->cntlr2_t);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool is_ddr_retention_enabled(u32 boot_scratch_cold0_reg)
|
|
{
|
|
return boot_scratch_cold0_reg &
|
|
ALT_SYSMGR_SCRATCH_REG_0_DDR_RETENTION_MASK;
|
|
}
|
|
|
|
static bool is_ddr_bitstream_sha_matching(u32 boot_scratch_cold0_reg)
|
|
{
|
|
return boot_scratch_cold0_reg & ALT_SYSMGR_SCRATCH_REG_0_DDR_SHA_MASK;
|
|
}
|
|
|
|
static enum reset_type get_reset_type(u32 boot_scratch_cold0_reg)
|
|
{
|
|
return (boot_scratch_cold0_reg &
|
|
ALT_SYSMGR_SCRATCH_REG_0_DDR_RESET_TYPE_MASK) >>
|
|
ALT_SYSMGR_SCRATCH_REG_0_DDR_RESET_TYPE_SHIFT;
|
|
}
|
|
|
|
void reset_type_debug_print(u32 boot_scratch_cold0_reg)
|
|
{
|
|
switch (get_reset_type(boot_scratch_cold0_reg)) {
|
|
case POR_RESET:
|
|
debug("%s: POR is triggered\n", __func__);
|
|
break;
|
|
case WARM_RESET:
|
|
debug("%s: Warm reset is triggered\n", __func__);
|
|
break;
|
|
case COLD_RESET:
|
|
debug("%s: Cold reset is triggered\n", __func__);
|
|
break;
|
|
default:
|
|
debug("%s: Invalid reset type\n", __func__);
|
|
}
|
|
}
|
|
|
|
bool is_ddr_init(void)
|
|
{
|
|
u32 reg = readl(socfpga_get_sysmgr_addr() +
|
|
SYSMGR_SOC64_BOOT_SCRATCH_COLD0);
|
|
|
|
reset_type_debug_print(reg);
|
|
|
|
if (get_reset_type(reg) == POR_RESET) {
|
|
debug("%s: DDR init is required\n", __func__);
|
|
return true;
|
|
}
|
|
|
|
if (get_reset_type(reg) == WARM_RESET) {
|
|
debug("%s: DDR init is skipped\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
if (get_reset_type(reg) == COLD_RESET) {
|
|
if (is_ddr_retention_enabled(reg) &&
|
|
is_ddr_bitstream_sha_matching(reg)) {
|
|
debug("%s: DDR retention bit is set\n", __func__);
|
|
debug("%s: Matching in DDR bistream\n", __func__);
|
|
debug("%s: DDR init is skipped\n", __func__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
debug("%s: DDR init is required\n", __func__);
|
|
return true;
|
|
}
|
|
|
|
int sdram_mmr_init_full(struct udevice *dev)
|
|
{
|
|
u32 user_backup[2], user_backup_2nd[2];
|
|
int ret;
|
|
struct bd_info bd;
|
|
struct ddr_handoff ddr_handoff_info;
|
|
struct altera_sdram_priv *priv = dev_get_priv(dev);
|
|
|
|
printf("Checking SDRAM configuration in progress ...\n");
|
|
ret = populate_ddr_handoff(&ddr_handoff_info);
|
|
if (ret) {
|
|
debug("%s: Failed to populate DDR handoff\n",
|
|
__func__);
|
|
return ret;
|
|
}
|
|
|
|
/* Set the MPFE NoC mux to correct DDR controller type */
|
|
use_ddr4(ddr_handoff_info.cntlr_t);
|
|
|
|
if (is_ddr_init()) {
|
|
printf("SDRAM init in progress ...\n");
|
|
|
|
/*
|
|
* Polling reset complete, must be high to ensure DDR subsystem
|
|
* in complete reset state before init DDR clock and DDR
|
|
* controller
|
|
*/
|
|
ret = wait_for_bit_le32((const void *)((uintptr_t)(readl
|
|
(ddr_handoff_info.mem_reset_base) +
|
|
MEM_RST_MGR_STATUS)),
|
|
MEM_RST_MGR_STATUS_RESET_COMPLETE,
|
|
true, TIMEOUT_200MS, false);
|
|
if (ret) {
|
|
debug("%s: Timeout while waiting for", __func__);
|
|
debug(" reset complete done\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = enable_ddr_clock(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = init_controller(&ddr_handoff_info, user_backup,
|
|
user_backup_2nd);
|
|
if (ret) {
|
|
debug("%s: Failed to inilialize DDR controller\n",
|
|
__func__);
|
|
return ret;
|
|
}
|
|
|
|
/* Release the controller from reset */
|
|
setbits_le32((uintptr_t)
|
|
(readl(ddr_handoff_info.mem_reset_base) +
|
|
MEM_RST_MGR_STATUS), MEM_RST_MGR_STATUS_AXI_RST |
|
|
MEM_RST_MGR_STATUS_CONTROLLER_RST |
|
|
MEM_RST_MGR_STATUS_RESET_COMPLETE);
|
|
|
|
printf("DDR controller configuration is completed\n");
|
|
|
|
/* Initialize DDR PHY */
|
|
ret = init_phy(&ddr_handoff_info);
|
|
if (ret) {
|
|
debug("%s: Failed to inilialize DDR PHY\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
enable_phy_clk_for_csr_access(&ddr_handoff_info, true);
|
|
|
|
ret = start_ddr_calibration(&ddr_handoff_info);
|
|
if (ret) {
|
|
debug("%s: Failed to calibrate DDR\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
enable_phy_clk_for_csr_access(&ddr_handoff_info, false);
|
|
|
|
/* Reset ARC processor when no using for security purpose */
|
|
setbits_le16(ddr_handoff_info.phy_base +
|
|
DDR_PHY_MICRORESET_OFFSET,
|
|
DDR_PHY_MICRORESET_RESET);
|
|
|
|
/* DDR freq set to support DDR4-3200 */
|
|
phy_init_engine(&ddr_handoff_info);
|
|
|
|
ret = dfi_init(&ddr_handoff_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = check_dfi_init(&ddr_handoff_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = trigger_sdram_init(&ddr_handoff_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ddr_post_config(&ddr_handoff_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Restore user settings */
|
|
writel(user_backup[0], ddr_handoff_info.cntlr_base +
|
|
DDR4_PWRCTL_OFFSET);
|
|
|
|
if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_0)
|
|
setbits_le32(ddr_handoff_info.cntlr_base +
|
|
DDR4_INIT0_OFFSET, user_backup[1]);
|
|
|
|
if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) {
|
|
/* Restore user settings */
|
|
writel(user_backup_2nd[0],
|
|
ddr_handoff_info.cntlr2_base +
|
|
DDR4_PWRCTL_OFFSET);
|
|
|
|
setbits_le32(ddr_handoff_info.cntlr2_base +
|
|
DDR4_INIT0_OFFSET, user_backup_2nd[1]);
|
|
}
|
|
|
|
/* Enable input traffic per port */
|
|
setbits_le32(ddr_handoff_info.cntlr_base + DDR4_PCTRL0_OFFSET,
|
|
DDR4_PCTRL0_PORT_EN);
|
|
|
|
if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) {
|
|
/* Enable input traffic per port */
|
|
setbits_le32(ddr_handoff_info.cntlr2_base +
|
|
DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN);
|
|
}
|
|
|
|
printf("DDR init success\n");
|
|
}
|
|
|
|
/* Get bank configuration from devicetree */
|
|
ret = fdtdec_decode_ram_size(gd->fdt_blob, NULL, 0, NULL,
|
|
(phys_size_t *)&gd->ram_size, &bd);
|
|
if (ret) {
|
|
debug("%s: Failed to decode memory node\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
printf("DDR: %lld MiB\n", gd->ram_size >> 20);
|
|
|
|
priv->info.base = bd.bi_dram[0].start;
|
|
priv->info.size = gd->ram_size;
|
|
|
|
sdram_size_check(&bd);
|
|
|
|
sdram_set_firewall(&bd);
|
|
|
|
return 0;
|
|
}
|