mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-05 02:51:00 +00:00
1e94b46f73
This old patch was marked as deferred. Bring it back to life, to continue towards the removal of common.h Move this out of the common header and include it only where needed. Signed-off-by: Simon Glass <sjg@chromium.org>
963 lines
22 KiB
C
963 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2015
|
|
* Texas Instruments Incorporated - http://www.ti.com/
|
|
*/
|
|
|
|
#define LOG_CATEGORY UCLASS_REMOTEPROC
|
|
|
|
#define pr_fmt(fmt) "%s: " fmt, __func__
|
|
#include <common.h>
|
|
#include <elf.h>
|
|
#include <errno.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <virtio_ring.h>
|
|
#include <remoteproc.h>
|
|
#include <asm/io.h>
|
|
#include <dm/device-internal.h>
|
|
#include <dm.h>
|
|
#include <dm/uclass.h>
|
|
#include <dm/uclass-internal.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/printk.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
struct resource_table {
|
|
u32 ver;
|
|
u32 num;
|
|
u32 reserved[2];
|
|
u32 offset[0];
|
|
} __packed;
|
|
|
|
typedef int (*handle_resource_t) (struct udevice *, void *, int offset, int avail);
|
|
|
|
static struct resource_table *rsc_table;
|
|
|
|
/**
|
|
* for_each_remoteproc_device() - iterate through the list of rproc devices
|
|
* @fn: check function to call per match, if this function returns fail,
|
|
* iteration is aborted with the resultant error value
|
|
* @skip_dev: Device to skip calling the callback about.
|
|
* @data: Data to pass to the callback function
|
|
*
|
|
* Return: 0 if none of the callback returned a non 0 result, else returns the
|
|
* result from the callback function
|
|
*/
|
|
static int for_each_remoteproc_device(int (*fn) (struct udevice *dev,
|
|
struct dm_rproc_uclass_pdata *uc_pdata,
|
|
const void *data),
|
|
struct udevice *skip_dev,
|
|
const void *data)
|
|
{
|
|
struct udevice *dev;
|
|
struct dm_rproc_uclass_pdata *uc_pdata;
|
|
int ret;
|
|
|
|
for (ret = uclass_find_first_device(UCLASS_REMOTEPROC, &dev); dev;
|
|
ret = uclass_find_next_device(&dev)) {
|
|
if (ret || dev == skip_dev)
|
|
continue;
|
|
uc_pdata = dev_get_uclass_plat(dev);
|
|
ret = fn(dev, uc_pdata, data);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* _rproc_name_is_unique() - iteration helper to check if rproc name is unique
|
|
* @dev: device that we are checking name for
|
|
* @uc_pdata: uclass platform data
|
|
* @data: compare data (this is the name we want to ensure is unique)
|
|
*
|
|
* Return: 0 is there is no match(is unique); if there is a match(we dont
|
|
* have a unique name), return -EINVAL.
|
|
*/
|
|
static int _rproc_name_is_unique(struct udevice *dev,
|
|
struct dm_rproc_uclass_pdata *uc_pdata,
|
|
const void *data)
|
|
{
|
|
const char *check_name = data;
|
|
|
|
/* devices not yet populated with data - so skip them */
|
|
if (!uc_pdata->name || !check_name)
|
|
return 0;
|
|
|
|
/* Return 0 to search further if we dont match */
|
|
if (strlen(uc_pdata->name) != strlen(check_name))
|
|
return 0;
|
|
|
|
if (!strcmp(uc_pdata->name, check_name))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_name_is_unique() - Check if the rproc name is unique
|
|
* @check_dev: Device we are attempting to ensure is unique
|
|
* @check_name: Name we are trying to ensure is unique.
|
|
*
|
|
* Return: true if we have a unique name, false if name is not unique.
|
|
*/
|
|
static bool rproc_name_is_unique(struct udevice *check_dev,
|
|
const char *check_name)
|
|
{
|
|
int ret;
|
|
|
|
ret = for_each_remoteproc_device(_rproc_name_is_unique,
|
|
check_dev, check_name);
|
|
return ret ? false : true;
|
|
}
|
|
|
|
/**
|
|
* rproc_pre_probe() - Pre probe accessor for the uclass
|
|
* @dev: device for which we are preprobing
|
|
*
|
|
* Parses and fills up the uclass pdata for use as needed by core and
|
|
* remote proc drivers.
|
|
*
|
|
* Return: 0 if all wernt ok, else appropriate error value.
|
|
*/
|
|
static int rproc_pre_probe(struct udevice *dev)
|
|
{
|
|
struct dm_rproc_uclass_pdata *uc_pdata;
|
|
const struct dm_rproc_ops *ops;
|
|
|
|
uc_pdata = dev_get_uclass_plat(dev);
|
|
|
|
/* See if we need to populate via fdt */
|
|
|
|
if (!dev_get_plat(dev)) {
|
|
#if CONFIG_IS_ENABLED(OF_CONTROL)
|
|
bool tmp;
|
|
debug("'%s': using fdt\n", dev->name);
|
|
uc_pdata->name = dev_read_string(dev, "remoteproc-name");
|
|
|
|
/* Default is internal memory mapped */
|
|
uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED;
|
|
tmp = dev_read_bool(dev, "remoteproc-internal-memory-mapped");
|
|
if (tmp)
|
|
uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED;
|
|
#else
|
|
/* Nothing much we can do about this, can we? */
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
} else {
|
|
struct dm_rproc_uclass_pdata *pdata = dev_get_plat(dev);
|
|
|
|
debug("'%s': using legacy data\n", dev->name);
|
|
if (pdata->name)
|
|
uc_pdata->name = pdata->name;
|
|
uc_pdata->mem_type = pdata->mem_type;
|
|
uc_pdata->driver_plat_data = pdata->driver_plat_data;
|
|
}
|
|
|
|
/* Else try using device Name */
|
|
if (!uc_pdata->name)
|
|
uc_pdata->name = dev->name;
|
|
if (!uc_pdata->name) {
|
|
debug("Unnamed device!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!rproc_name_is_unique(dev, uc_pdata->name)) {
|
|
debug("%s duplicate name '%s'\n", dev->name, uc_pdata->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ops->load || !ops->start) {
|
|
debug("%s driver has missing mandatory ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_post_probe() - post probe accessor for the uclass
|
|
* @dev: deivce we finished probing
|
|
*
|
|
* initiate init function after the probe is completed. This allows
|
|
* the remote processor drivers to split up the initializations between
|
|
* probe and init as needed.
|
|
*
|
|
* Return: if the remote proc driver has a init routine, invokes it and
|
|
* hands over the return value. overall, 0 if all went well, else appropriate
|
|
* error value.
|
|
*/
|
|
static int rproc_post_probe(struct udevice *dev)
|
|
{
|
|
const struct dm_rproc_ops *ops;
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ops->init)
|
|
return ops->init(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_add_res() - After parsing the resource table add the mappings
|
|
* @dev: device we finished probing
|
|
* @mapping: rproc_mem_entry for the resource
|
|
*
|
|
* Return: if the remote proc driver has a add_res routine, invokes it and
|
|
* hands over the return value. overall, 0 if all went well, else appropriate
|
|
* error value.
|
|
*/
|
|
static int rproc_add_res(struct udevice *dev, struct rproc_mem_entry *mapping)
|
|
{
|
|
const struct dm_rproc_ops *ops = rproc_get_ops(dev);
|
|
|
|
if (!ops->add_res)
|
|
return -ENOSYS;
|
|
|
|
return ops->add_res(dev, mapping);
|
|
}
|
|
|
|
/**
|
|
* rproc_alloc_mem() - After parsing the resource table allocat mem
|
|
* @dev: device we finished probing
|
|
* @len: rproc_mem_entry for the resource
|
|
* @align: alignment for the resource
|
|
*
|
|
* Return: if the remote proc driver has a add_res routine, invokes it and
|
|
* hands over the return value. overall, 0 if all went well, else appropriate
|
|
* error value.
|
|
*/
|
|
static void *rproc_alloc_mem(struct udevice *dev, unsigned long len,
|
|
unsigned long align)
|
|
{
|
|
const struct dm_rproc_ops *ops;
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return NULL;
|
|
}
|
|
|
|
if (ops->alloc_mem)
|
|
return ops->alloc_mem(dev, len, align);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* rproc_config_pagetable() - Configure page table for remote processor
|
|
* @dev: device we finished probing
|
|
* @virt: Virtual address of the resource
|
|
* @phys: Physical address the resource
|
|
* @len: length the resource
|
|
*
|
|
* Return: if the remote proc driver has a add_res routine, invokes it and
|
|
* hands over the return value. overall, 0 if all went well, else appropriate
|
|
* error value.
|
|
*/
|
|
static int rproc_config_pagetable(struct udevice *dev, unsigned int virt,
|
|
unsigned int phys, unsigned int len)
|
|
{
|
|
const struct dm_rproc_ops *ops;
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ops->config_pagetable)
|
|
return ops->config_pagetable(dev, virt, phys, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
UCLASS_DRIVER(rproc) = {
|
|
.id = UCLASS_REMOTEPROC,
|
|
.name = "remoteproc",
|
|
.flags = DM_UC_FLAG_SEQ_ALIAS,
|
|
.pre_probe = rproc_pre_probe,
|
|
.post_probe = rproc_post_probe,
|
|
.per_device_plat_auto = sizeof(struct dm_rproc_uclass_pdata),
|
|
};
|
|
|
|
/* Remoteproc subsystem access functions */
|
|
/**
|
|
* _rproc_probe_dev() - iteration helper to probe a rproc device
|
|
* @dev: device to probe
|
|
* @uc_pdata: uclass data allocated for the device
|
|
* @data: unused
|
|
*
|
|
* Return: 0 if all ok, else appropriate error value.
|
|
*/
|
|
static int _rproc_probe_dev(struct udevice *dev,
|
|
struct dm_rproc_uclass_pdata *uc_pdata,
|
|
const void *data)
|
|
{
|
|
int ret;
|
|
|
|
ret = device_probe(dev);
|
|
|
|
if (ret)
|
|
debug("%s: Failed to initialize - %d\n", dev->name, ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* _rproc_dev_is_probed() - check if the device has been probed
|
|
* @dev: device to check
|
|
* @uc_pdata: unused
|
|
* @data: unused
|
|
*
|
|
* Return: -EAGAIN if not probed else return 0
|
|
*/
|
|
static int _rproc_dev_is_probed(struct udevice *dev,
|
|
struct dm_rproc_uclass_pdata *uc_pdata,
|
|
const void *data)
|
|
{
|
|
if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
|
|
return 0;
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
bool rproc_is_initialized(void)
|
|
{
|
|
int ret = for_each_remoteproc_device(_rproc_dev_is_probed, NULL, NULL);
|
|
return ret ? false : true;
|
|
}
|
|
|
|
int rproc_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (rproc_is_initialized()) {
|
|
debug("Already initialized\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = for_each_remoteproc_device(_rproc_probe_dev, NULL, NULL);
|
|
return ret;
|
|
}
|
|
|
|
int rproc_dev_init(int id)
|
|
{
|
|
struct udevice *dev = NULL;
|
|
int ret;
|
|
|
|
ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
|
|
if (ret) {
|
|
debug("Unknown remote processor id '%d' requested(%d)\n",
|
|
id, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = device_probe(dev);
|
|
if (ret)
|
|
debug("%s: Failed to initialize - %d\n", dev->name, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int rproc_load(int id, ulong addr, ulong size)
|
|
{
|
|
struct udevice *dev = NULL;
|
|
struct dm_rproc_uclass_pdata *uc_pdata;
|
|
const struct dm_rproc_ops *ops;
|
|
int ret;
|
|
|
|
ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
|
|
if (ret) {
|
|
debug("Unknown remote processor id '%d' requested(%d)\n",
|
|
id, ret);
|
|
return ret;
|
|
}
|
|
|
|
uc_pdata = dev_get_uclass_plat(dev);
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("Loading to '%s' from address 0x%08lX size of %lu bytes\n",
|
|
uc_pdata->name, addr, size);
|
|
if (ops->load)
|
|
return ops->load(dev, addr, size);
|
|
|
|
debug("%s: data corruption?? mandatory function is missing!\n",
|
|
dev->name);
|
|
|
|
return -EINVAL;
|
|
};
|
|
|
|
/*
|
|
* Completely internal helper enums..
|
|
* Keeping this isolated helps this code evolve independent of other
|
|
* parts..
|
|
*/
|
|
enum rproc_ops {
|
|
RPROC_START,
|
|
RPROC_STOP,
|
|
RPROC_RESET,
|
|
RPROC_PING,
|
|
RPROC_RUNNING,
|
|
};
|
|
|
|
/**
|
|
* _rproc_ops_wrapper() - wrapper for invoking remote proc driver callback
|
|
* @id: id of the remote processor
|
|
* @op: one of rproc_ops that indicate what operation to invoke
|
|
*
|
|
* Most of the checks and verification for remoteproc operations are more
|
|
* or less same for almost all operations. This allows us to put a wrapper
|
|
* and use the common checks to allow the driver to function appropriately.
|
|
*
|
|
* Return: 0 if all ok, else appropriate error value.
|
|
*/
|
|
static int _rproc_ops_wrapper(int id, enum rproc_ops op)
|
|
{
|
|
struct udevice *dev = NULL;
|
|
struct dm_rproc_uclass_pdata *uc_pdata;
|
|
const struct dm_rproc_ops *ops;
|
|
int (*fn)(struct udevice *dev);
|
|
bool mandatory = false;
|
|
char *op_str;
|
|
int ret;
|
|
|
|
ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
|
|
if (ret) {
|
|
debug("Unknown remote processor id '%d' requested(%d)\n",
|
|
id, ret);
|
|
return ret;
|
|
}
|
|
|
|
uc_pdata = dev_get_uclass_plat(dev);
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
switch (op) {
|
|
case RPROC_START:
|
|
fn = ops->start;
|
|
mandatory = true;
|
|
op_str = "Starting";
|
|
break;
|
|
case RPROC_STOP:
|
|
fn = ops->stop;
|
|
op_str = "Stopping";
|
|
break;
|
|
case RPROC_RESET:
|
|
fn = ops->reset;
|
|
op_str = "Resetting";
|
|
break;
|
|
case RPROC_RUNNING:
|
|
fn = ops->is_running;
|
|
op_str = "Checking if running:";
|
|
break;
|
|
case RPROC_PING:
|
|
fn = ops->ping;
|
|
op_str = "Pinging";
|
|
break;
|
|
default:
|
|
debug("what is '%d' operation??\n", op);
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("%s %s...\n", op_str, uc_pdata->name);
|
|
if (fn)
|
|
return fn(dev);
|
|
|
|
if (mandatory)
|
|
debug("%s: data corruption?? mandatory function is missing!\n",
|
|
dev->name);
|
|
|
|
return -ENOSYS;
|
|
}
|
|
|
|
int rproc_start(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_START);
|
|
};
|
|
|
|
int rproc_stop(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_STOP);
|
|
};
|
|
|
|
int rproc_reset(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_RESET);
|
|
};
|
|
|
|
int rproc_ping(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_PING);
|
|
};
|
|
|
|
int rproc_is_running(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_RUNNING);
|
|
};
|
|
|
|
|
|
static int handle_trace(struct udevice *dev, struct fw_rsc_trace *rsc,
|
|
int offset, int avail)
|
|
{
|
|
if (sizeof(*rsc) > avail) {
|
|
debug("trace rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (rsc->reserved) {
|
|
debug("trace rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("trace rsc: da 0x%x, len 0x%x\n", rsc->da, rsc->len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_devmem(struct udevice *dev, struct fw_rsc_devmem *rsc,
|
|
int offset, int avail)
|
|
{
|
|
struct rproc_mem_entry *mapping;
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
debug("devmem rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (rsc->reserved) {
|
|
debug("devmem rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("devmem rsc: pa 0x%x, da 0x%x, len 0x%x\n",
|
|
rsc->pa, rsc->da, rsc->len);
|
|
|
|
rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);
|
|
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We'll need this info later when we'll want to unmap everything
|
|
* (e.g. on shutdown).
|
|
*
|
|
* We can't trust the remote processor not to change the resource
|
|
* table, so we must maintain this info independently.
|
|
*/
|
|
mapping->dma = rsc->pa;
|
|
mapping->da = rsc->da;
|
|
mapping->len = rsc->len;
|
|
rproc_add_res(dev, mapping);
|
|
|
|
debug("mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
|
|
rsc->pa, rsc->da, rsc->len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_carveout(struct udevice *dev, struct fw_rsc_carveout *rsc,
|
|
int offset, int avail)
|
|
{
|
|
struct rproc_mem_entry *mapping;
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
debug("carveout rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (rsc->reserved) {
|
|
debug("carveout rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("carveout rsc: da %x, pa %x, len %x, flags %x\n",
|
|
rsc->da, rsc->pa, rsc->len, rsc->flags);
|
|
|
|
rsc->pa = (uintptr_t)rproc_alloc_mem(dev, rsc->len, 8);
|
|
if (!rsc->pa) {
|
|
debug
|
|
("failed to allocate carveout rsc: da %x, pa %x, len %x, flags %x\n",
|
|
rsc->da, rsc->pa, rsc->len, rsc->flags);
|
|
return -ENOMEM;
|
|
}
|
|
rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);
|
|
|
|
/*
|
|
* Ok, this is non-standard.
|
|
*
|
|
* Sometimes we can't rely on the generic iommu-based DMA API
|
|
* to dynamically allocate the device address and then set the IOMMU
|
|
* tables accordingly, because some remote processors might
|
|
* _require_ us to use hard coded device addresses that their
|
|
* firmware was compiled with.
|
|
*
|
|
* In this case, we must use the IOMMU API directly and map
|
|
* the memory to the device address as expected by the remote
|
|
* processor.
|
|
*
|
|
* Obviously such remote processor devices should not be configured
|
|
* to use the iommu-based DMA API: we expect 'dma' to contain the
|
|
* physical address in this case.
|
|
*/
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We'll need this info later when we'll want to unmap
|
|
* everything (e.g. on shutdown).
|
|
*
|
|
* We can't trust the remote processor not to change the
|
|
* resource table, so we must maintain this info independently.
|
|
*/
|
|
mapping->dma = rsc->pa;
|
|
mapping->da = rsc->da;
|
|
mapping->len = rsc->len;
|
|
rproc_add_res(dev, mapping);
|
|
|
|
debug("carveout mapped 0x%x to 0x%x\n", rsc->da, rsc->pa);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define RPROC_PAGE_SHIFT 12
|
|
#define RPROC_PAGE_SIZE BIT(RPROC_PAGE_SHIFT)
|
|
#define RPROC_PAGE_ALIGN(x) (((x) + (RPROC_PAGE_SIZE - 1)) & ~(RPROC_PAGE_SIZE - 1))
|
|
|
|
static int alloc_vring(struct udevice *dev, struct fw_rsc_vdev *rsc, int i)
|
|
{
|
|
struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
|
|
int size;
|
|
int order;
|
|
void *pa;
|
|
|
|
debug("vdev rsc: vring%d: da %x, qsz %d, align %d\n",
|
|
i, vring->da, vring->num, vring->align);
|
|
|
|
/*
|
|
* verify queue size and vring alignment are sane
|
|
*/
|
|
if (!vring->num || !vring->align) {
|
|
debug("invalid qsz (%d) or alignment (%d)\n", vring->num,
|
|
vring->align);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* actual size of vring (in bytes)
|
|
*/
|
|
size = RPROC_PAGE_ALIGN(vring_size(vring->num, vring->align));
|
|
order = vring->align >> RPROC_PAGE_SHIFT;
|
|
|
|
pa = rproc_alloc_mem(dev, size, order);
|
|
if (!pa) {
|
|
debug("failed to allocate vring rsc\n");
|
|
return -ENOMEM;
|
|
}
|
|
debug("alloc_mem(%#x, %d): %p\n", size, order, pa);
|
|
vring->da = (uintptr_t)pa;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_vdev(struct udevice *dev, struct fw_rsc_vdev *rsc,
|
|
int offset, int avail)
|
|
{
|
|
int i, ret;
|
|
void *pa;
|
|
|
|
/*
|
|
* make sure resource isn't truncated
|
|
*/
|
|
if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
|
|
+ rsc->config_len > avail) {
|
|
debug("vdev rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (rsc->reserved[0] || rsc->reserved[1]) {
|
|
debug("vdev rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
|
|
rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
|
|
|
|
/*
|
|
* we currently support only two vrings per rvdev
|
|
*/
|
|
if (rsc->num_of_vrings > 2) {
|
|
debug("too many vrings: %d\n", rsc->num_of_vrings);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* allocate the vrings
|
|
*/
|
|
for (i = 0; i < rsc->num_of_vrings; i++) {
|
|
ret = alloc_vring(dev, rsc, i);
|
|
if (ret)
|
|
goto alloc_error;
|
|
}
|
|
|
|
pa = rproc_alloc_mem(dev, RPMSG_TOTAL_BUF_SPACE, 6);
|
|
if (!pa) {
|
|
debug("failed to allocate vdev rsc\n");
|
|
return -ENOMEM;
|
|
}
|
|
debug("vring buffer alloc_mem(%#x, 6): %p\n", RPMSG_TOTAL_BUF_SPACE,
|
|
pa);
|
|
|
|
return 0;
|
|
|
|
alloc_error:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* A lookup table for resource handlers. The indices are defined in
|
|
* enum fw_resource_type.
|
|
*/
|
|
static handle_resource_t loading_handlers[RSC_LAST] = {
|
|
[RSC_CARVEOUT] = (handle_resource_t)handle_carveout,
|
|
[RSC_DEVMEM] = (handle_resource_t)handle_devmem,
|
|
[RSC_TRACE] = (handle_resource_t)handle_trace,
|
|
[RSC_VDEV] = (handle_resource_t)handle_vdev,
|
|
};
|
|
|
|
/*
|
|
* handle firmware resource entries before booting the remote processor
|
|
*/
|
|
static int handle_resources(struct udevice *dev, int len,
|
|
handle_resource_t handlers[RSC_LAST])
|
|
{
|
|
handle_resource_t handler;
|
|
int ret = 0, i;
|
|
|
|
for (i = 0; i < rsc_table->num; i++) {
|
|
int offset = rsc_table->offset[i];
|
|
struct fw_rsc_hdr *hdr = (void *)rsc_table + offset;
|
|
int avail = len - offset - sizeof(*hdr);
|
|
void *rsc = (void *)hdr + sizeof(*hdr);
|
|
|
|
/*
|
|
* make sure table isn't truncated
|
|
*/
|
|
if (avail < 0) {
|
|
debug("rsc table is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("rsc: type %d\n", hdr->type);
|
|
|
|
if (hdr->type >= RSC_LAST) {
|
|
debug("unsupported resource %d\n", hdr->type);
|
|
continue;
|
|
}
|
|
|
|
handler = handlers[hdr->type];
|
|
if (!handler)
|
|
continue;
|
|
|
|
ret = handler(dev, rsc, offset + sizeof(*hdr), avail);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
handle_intmem_to_l3_mapping(struct udevice *dev,
|
|
struct rproc_intmem_to_l3_mapping *l3_mapping)
|
|
{
|
|
u32 i = 0;
|
|
|
|
for (i = 0; i < l3_mapping->num_entries; i++) {
|
|
struct l3_map *curr_map = &l3_mapping->mappings[i];
|
|
struct rproc_mem_entry *mapping;
|
|
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
return -ENOMEM;
|
|
|
|
mapping->dma = curr_map->l3_addr;
|
|
mapping->da = curr_map->priv_addr;
|
|
mapping->len = curr_map->len;
|
|
rproc_add_res(dev, mapping);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static Elf32_Shdr *rproc_find_table(unsigned int addr)
|
|
{
|
|
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
|
|
Elf32_Shdr *shdr; /* Section header structure pointer */
|
|
Elf32_Shdr sectionheader;
|
|
int i;
|
|
u8 *elf_data;
|
|
char *name_table;
|
|
struct resource_table *ptable;
|
|
|
|
ehdr = (Elf32_Ehdr *)(uintptr_t)addr;
|
|
elf_data = (u8 *)ehdr;
|
|
shdr = (Elf32_Shdr *)(elf_data + ehdr->e_shoff);
|
|
memcpy(§ionheader, &shdr[ehdr->e_shstrndx], sizeof(sectionheader));
|
|
name_table = (char *)(elf_data + sectionheader.sh_offset);
|
|
|
|
for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
|
|
memcpy(§ionheader, shdr, sizeof(sectionheader));
|
|
u32 size = sectionheader.sh_size;
|
|
u32 offset = sectionheader.sh_offset;
|
|
|
|
if (strcmp
|
|
(name_table + sectionheader.sh_name, ".resource_table"))
|
|
continue;
|
|
|
|
ptable = (struct resource_table *)(elf_data + offset);
|
|
|
|
/*
|
|
* make sure table has at least the header
|
|
*/
|
|
if (sizeof(struct resource_table) > size) {
|
|
debug("header-less resource table\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* we don't support any version beyond the first
|
|
*/
|
|
if (ptable->ver != 1) {
|
|
debug("unsupported fw ver: %d\n", ptable->ver);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (ptable->reserved[0] || ptable->reserved[1]) {
|
|
debug("non zero reserved bytes\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* make sure the offsets array isn't truncated
|
|
*/
|
|
if (ptable->num * sizeof(ptable->offset[0]) +
|
|
sizeof(struct resource_table) > size) {
|
|
debug("resource table incomplete\n");
|
|
return NULL;
|
|
}
|
|
|
|
return shdr;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct resource_table *rproc_find_resource_table(struct udevice *dev,
|
|
unsigned int addr,
|
|
int *tablesz)
|
|
{
|
|
Elf32_Shdr *shdr;
|
|
Elf32_Shdr sectionheader;
|
|
struct resource_table *ptable;
|
|
u8 *elf_data = (u8 *)(uintptr_t)addr;
|
|
|
|
shdr = rproc_find_table(addr);
|
|
if (!shdr) {
|
|
debug("%s: failed to get resource section header\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(§ionheader, shdr, sizeof(sectionheader));
|
|
ptable = (struct resource_table *)(elf_data + sectionheader.sh_offset);
|
|
if (tablesz)
|
|
*tablesz = sectionheader.sh_size;
|
|
|
|
return ptable;
|
|
}
|
|
|
|
unsigned long rproc_parse_resource_table(struct udevice *dev, struct rproc *cfg)
|
|
{
|
|
struct resource_table *ptable = NULL;
|
|
int tablesz;
|
|
int ret;
|
|
unsigned long addr;
|
|
|
|
addr = cfg->load_addr;
|
|
|
|
ptable = rproc_find_resource_table(dev, addr, &tablesz);
|
|
if (!ptable) {
|
|
debug("%s : failed to find resource table\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
debug("%s : found resource table\n", __func__);
|
|
rsc_table = kzalloc(tablesz, GFP_KERNEL);
|
|
if (!rsc_table) {
|
|
debug("resource table alloc failed!\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy the resource table into a local buffer before handling the
|
|
* resource table.
|
|
*/
|
|
memcpy(rsc_table, ptable, tablesz);
|
|
if (cfg->intmem_to_l3_mapping)
|
|
handle_intmem_to_l3_mapping(dev, cfg->intmem_to_l3_mapping);
|
|
ret = handle_resources(dev, tablesz, loading_handlers);
|
|
if (ret) {
|
|
debug("handle_resources failed: %d\n", ret);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Instead of trying to mimic the kernel flow of copying the
|
|
* processed resource table into its post ELF load location in DDR
|
|
* copying it into its original location.
|
|
*/
|
|
memcpy(ptable, rsc_table, tablesz);
|
|
free(rsc_table);
|
|
rsc_table = NULL;
|
|
|
|
return 1;
|
|
}
|