u-boot/arch/arm/mach-socfpga/clock_manager_arria10.c
Marek Vasut d81b5da3fe ARM: socfpga: clk: Convert to clock framework
Use clock framework functions to fetch clock information now that there
is a clock driver for Arria10, instead of custom coded register parsing.

Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Chin Liang See <chin.liang.see@intel.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
2018-08-13 22:35:42 +02:00

990 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2017 Intel Corporation
*/
#include <common.h>
#include <fdtdec.h>
#include <asm/io.h>
#include <dm.h>
#include <clk.h>
#include <dm/device-internal.h>
#include <asm/arch/clock_manager.h>
static const struct socfpga_clock_manager *clock_manager_base =
(struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
static u32 eosc1_hz;
static u32 cb_intosc_hz;
static u32 f2s_free_hz;
struct mainpll_cfg {
u32 vco0_psrc;
u32 vco1_denom;
u32 vco1_numer;
u32 mpuclk;
u32 mpuclk_cnt;
u32 mpuclk_src;
u32 nocclk;
u32 nocclk_cnt;
u32 nocclk_src;
u32 cntr2clk_cnt;
u32 cntr3clk_cnt;
u32 cntr4clk_cnt;
u32 cntr5clk_cnt;
u32 cntr6clk_cnt;
u32 cntr7clk_cnt;
u32 cntr7clk_src;
u32 cntr8clk_cnt;
u32 cntr9clk_cnt;
u32 cntr9clk_src;
u32 cntr15clk_cnt;
u32 nocdiv_l4mainclk;
u32 nocdiv_l4mpclk;
u32 nocdiv_l4spclk;
u32 nocdiv_csatclk;
u32 nocdiv_cstraceclk;
u32 nocdiv_cspdbclk;
};
struct perpll_cfg {
u32 vco0_psrc;
u32 vco1_denom;
u32 vco1_numer;
u32 cntr2clk_cnt;
u32 cntr2clk_src;
u32 cntr3clk_cnt;
u32 cntr3clk_src;
u32 cntr4clk_cnt;
u32 cntr4clk_src;
u32 cntr5clk_cnt;
u32 cntr5clk_src;
u32 cntr6clk_cnt;
u32 cntr6clk_src;
u32 cntr7clk_cnt;
u32 cntr8clk_cnt;
u32 cntr8clk_src;
u32 cntr9clk_cnt;
u32 cntr9clk_src;
u32 emacctl_emac0sel;
u32 emacctl_emac1sel;
u32 emacctl_emac2sel;
u32 gpiodiv_gpiodbclk;
};
struct strtou32 {
const char *str;
const u32 val;
};
static const struct strtou32 mainpll_cfg_tab[] = {
{ "vco0-psrc", offsetof(struct mainpll_cfg, vco0_psrc) },
{ "vco1-denom", offsetof(struct mainpll_cfg, vco1_denom) },
{ "vco1-numer", offsetof(struct mainpll_cfg, vco1_numer) },
{ "mpuclk-cnt", offsetof(struct mainpll_cfg, mpuclk_cnt) },
{ "mpuclk-src", offsetof(struct mainpll_cfg, mpuclk_src) },
{ "nocclk-cnt", offsetof(struct mainpll_cfg, nocclk_cnt) },
{ "nocclk-src", offsetof(struct mainpll_cfg, nocclk_src) },
{ "cntr2clk-cnt", offsetof(struct mainpll_cfg, cntr2clk_cnt) },
{ "cntr3clk-cnt", offsetof(struct mainpll_cfg, cntr3clk_cnt) },
{ "cntr4clk-cnt", offsetof(struct mainpll_cfg, cntr4clk_cnt) },
{ "cntr5clk-cnt", offsetof(struct mainpll_cfg, cntr5clk_cnt) },
{ "cntr6clk-cnt", offsetof(struct mainpll_cfg, cntr6clk_cnt) },
{ "cntr7clk-cnt", offsetof(struct mainpll_cfg, cntr7clk_cnt) },
{ "cntr7clk-src", offsetof(struct mainpll_cfg, cntr7clk_src) },
{ "cntr8clk-cnt", offsetof(struct mainpll_cfg, cntr8clk_cnt) },
{ "cntr9clk-cnt", offsetof(struct mainpll_cfg, cntr9clk_cnt) },
{ "cntr9clk-src", offsetof(struct mainpll_cfg, cntr9clk_src) },
{ "cntr15clk-cnt", offsetof(struct mainpll_cfg, cntr15clk_cnt) },
{ "nocdiv-l4mainclk", offsetof(struct mainpll_cfg, nocdiv_l4mainclk) },
{ "nocdiv-l4mpclk", offsetof(struct mainpll_cfg, nocdiv_l4mpclk) },
{ "nocdiv-l4spclk", offsetof(struct mainpll_cfg, nocdiv_l4spclk) },
{ "nocdiv-csatclk", offsetof(struct mainpll_cfg, nocdiv_csatclk) },
{ "nocdiv-cstraceclk", offsetof(struct mainpll_cfg, nocdiv_cstraceclk) },
{ "nocdiv-cspdbgclk", offsetof(struct mainpll_cfg, nocdiv_cspdbclk) },
};
static const struct strtou32 perpll_cfg_tab[] = {
{ "vco0-psrc", offsetof(struct perpll_cfg, vco0_psrc) },
{ "vco1-denom", offsetof(struct perpll_cfg, vco1_denom) },
{ "vco1-numer", offsetof(struct perpll_cfg, vco1_numer) },
{ "cntr2clk-cnt", offsetof(struct perpll_cfg, cntr2clk_cnt) },
{ "cntr2clk-src", offsetof(struct perpll_cfg, cntr2clk_src) },
{ "cntr3clk-cnt", offsetof(struct perpll_cfg, cntr3clk_cnt) },
{ "cntr3clk-src", offsetof(struct perpll_cfg, cntr3clk_src) },
{ "cntr4clk-cnt", offsetof(struct perpll_cfg, cntr4clk_cnt) },
{ "cntr4clk-src", offsetof(struct perpll_cfg, cntr4clk_src) },
{ "cntr5clk-cnt", offsetof(struct perpll_cfg, cntr5clk_cnt) },
{ "cntr5clk-src", offsetof(struct perpll_cfg, cntr5clk_src) },
{ "cntr6clk-cnt", offsetof(struct perpll_cfg, cntr6clk_cnt) },
{ "cntr6clk-src", offsetof(struct perpll_cfg, cntr6clk_src) },
{ "cntr7clk-cnt", offsetof(struct perpll_cfg, cntr7clk_cnt) },
{ "cntr8clk-cnt", offsetof(struct perpll_cfg, cntr8clk_cnt) },
{ "cntr8clk-src", offsetof(struct perpll_cfg, cntr8clk_src) },
{ "cntr9clk-cnt", offsetof(struct perpll_cfg, cntr9clk_cnt) },
{ "emacctl-emac0sel", offsetof(struct perpll_cfg, emacctl_emac0sel) },
{ "emacctl-emac1sel", offsetof(struct perpll_cfg, emacctl_emac1sel) },
{ "emacctl-emac2sel", offsetof(struct perpll_cfg, emacctl_emac2sel) },
{ "gpiodiv-gpiodbclk", offsetof(struct perpll_cfg, gpiodiv_gpiodbclk) },
};
static const struct strtou32 alteragrp_cfg_tab[] = {
{ "nocclk", offsetof(struct mainpll_cfg, nocclk) },
{ "mpuclk", offsetof(struct mainpll_cfg, mpuclk) },
};
struct strtopu32 {
const char *str;
u32 *p;
};
const struct strtopu32 dt_to_val[] = {
{ "altera_arria10_hps_eosc1", &eosc1_hz },
{ "altera_arria10_hps_cb_intosc_ls", &cb_intosc_hz },
{ "altera_arria10_hps_f2h_free", &f2s_free_hz },
};
static int of_to_struct(const void *blob, int node, const struct strtou32 *cfg_tab,
int cfg_tab_len, void *cfg)
{
int i;
u32 val;
for (i = 0; i < cfg_tab_len; i++) {
if (fdtdec_get_int_array(blob, node, cfg_tab[i].str, &val, 1)) {
/* could not find required property */
return -EINVAL;
}
*(u32 *)(cfg + cfg_tab[i].val) = val;
}
return 0;
}
static int of_get_input_clks(const void *blob)
{
struct udevice *dev;
struct clk clk;
int i, ret;
for (i = 0; i < ARRAY_SIZE(dt_to_val); i++) {
memset(&clk, 0, sizeof(clk));
ret = uclass_get_device_by_name(UCLASS_CLK, dt_to_val[i].str,
&dev);
if (ret)
return ret;
ret = clk_request(dev, &clk);
if (ret)
return ret;
*dt_to_val[i].p = clk_get_rate(&clk);
}
return 0;
}
static int of_get_clk_cfg(const void *blob, struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg)
{
int ret, node, child, len;
const char *node_name;
ret = of_get_input_clks(blob);
if (ret)
return ret;
node = fdtdec_next_compatible(blob, 0, COMPAT_ALTERA_SOCFPGA_CLK_INIT);
if (node < 0)
return -EINVAL;
child = fdt_first_subnode(blob, node);
if (child < 0)
return -EINVAL;
node_name = fdt_get_name(blob, child, &len);
while (node_name) {
if (!strcmp(node_name, "mainpll")) {
if (of_to_struct(blob, child, mainpll_cfg_tab,
ARRAY_SIZE(mainpll_cfg_tab), main_cfg))
return -EINVAL;
} else if (!strcmp(node_name, "perpll")) {
if (of_to_struct(blob, child, perpll_cfg_tab,
ARRAY_SIZE(perpll_cfg_tab), per_cfg))
return -EINVAL;
} else if (!strcmp(node_name, "alteragrp")) {
if (of_to_struct(blob, child, alteragrp_cfg_tab,
ARRAY_SIZE(alteragrp_cfg_tab), main_cfg))
return -EINVAL;
}
child = fdt_next_subnode(blob, child);
if (child < 0)
break;
node_name = fdt_get_name(blob, child, &len);
}
return 0;
}
/* calculate the intended main VCO frequency based on handoff */
static unsigned int cm_calc_handoff_main_vco_clk_hz
(struct mainpll_cfg *main_cfg)
{
unsigned int clk_hz;
/* Check main VCO clock source: eosc, intosc or f2s? */
switch (main_cfg->vco0_psrc) {
case CLKMGR_MAINPLL_VCO0_PSRC_EOSC:
clk_hz = eosc1_hz;
break;
case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_MAINPLL_VCO0_PSRC_F2S:
clk_hz = f2s_free_hz;
break;
default:
return 0;
}
/* calculate the VCO frequency */
clk_hz /= 1 + main_cfg->vco1_denom;
clk_hz *= 1 + main_cfg->vco1_numer;
return clk_hz;
}
/* calculate the intended periph VCO frequency based on handoff */
static unsigned int cm_calc_handoff_periph_vco_clk_hz(
struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg)
{
unsigned int clk_hz;
/* Check periph VCO clock source: eosc, intosc, f2s or mainpll? */
switch (per_cfg->vco0_psrc) {
case CLKMGR_PERPLL_VCO0_PSRC_EOSC:
clk_hz = eosc1_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_F2S:
clk_hz = f2s_free_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_MAIN:
clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
clk_hz /= main_cfg->cntr15clk_cnt;
break;
default:
return 0;
}
/* calculate the VCO frequency */
clk_hz /= 1 + per_cfg->vco1_denom;
clk_hz *= 1 + per_cfg->vco1_numer;
return clk_hz;
}
/* calculate the intended MPU clock frequency based on handoff */
static unsigned int cm_calc_handoff_mpu_clk_hz(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg)
{
unsigned int clk_hz;
/* Check MPU clock source: main, periph, osc1, intosc or f2s? */
switch (main_cfg->mpuclk_src) {
case CLKMGR_MAINPLL_MPUCLK_SRC_MAIN:
clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
clk_hz /= (main_cfg->mpuclk & CLKMGR_MAINPLL_MPUCLK_CNT_MSK)
+ 1;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_PERI:
clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg);
clk_hz /= ((main_cfg->mpuclk >>
CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB) &
CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_OSC1:
clk_hz = eosc1_hz;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_FPGA:
clk_hz = f2s_free_hz;
break;
default:
return 0;
}
clk_hz /= main_cfg->mpuclk_cnt + 1;
return clk_hz;
}
/* calculate the intended NOC clock frequency based on handoff */
static unsigned int cm_calc_handoff_noc_clk_hz(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg)
{
unsigned int clk_hz;
/* Check MPU clock source: main, periph, osc1, intosc or f2s? */
switch (main_cfg->nocclk_src) {
case CLKMGR_MAINPLL_NOCCLK_SRC_MAIN:
clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
clk_hz /= (main_cfg->nocclk & CLKMGR_MAINPLL_NOCCLK_CNT_MSK)
+ 1;
break;
case CLKMGR_MAINPLL_NOCCLK_SRC_PERI:
clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg);
clk_hz /= ((main_cfg->nocclk >>
CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB) &
CLKMGR_MAINPLL_NOCCLK_CNT_MSK) + 1;
break;
case CLKMGR_MAINPLL_NOCCLK_SRC_OSC1:
clk_hz = eosc1_hz;
break;
case CLKMGR_MAINPLL_NOCCLK_SRC_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_MAINPLL_NOCCLK_SRC_FPGA:
clk_hz = f2s_free_hz;
break;
default:
return 0;
}
clk_hz /= main_cfg->nocclk_cnt + 1;
return clk_hz;
}
/* return 1 if PLL ramp is required */
static int cm_is_pll_ramp_required(int main0periph1,
struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg)
{
/* Check for main PLL */
if (main0periph1 == 0) {
/*
* PLL ramp is not required if both MPU clock and NOC clock are
* not sourced from main PLL
*/
if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_MAIN &&
main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_MAIN)
return 0;
/*
* PLL ramp is required if MPU clock is sourced from main PLL
* and MPU clock is over 900MHz (as advised by HW team)
*/
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN &&
(cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) >
CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ))
return 1;
/*
* PLL ramp is required if NOC clock is sourced from main PLL
* and NOC clock is over 300MHz (as advised by HW team)
*/
if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN &&
(cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) >
CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ))
return 2;
} else if (main0periph1 == 1) {
/*
* PLL ramp is not required if both MPU clock and NOC clock are
* not sourced from periph PLL
*/
if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_PERI &&
main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_PERI)
return 0;
/*
* PLL ramp is required if MPU clock are source from periph PLL
* and MPU clock is over 900MHz (as advised by HW team)
*/
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI &&
(cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) >
CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ))
return 1;
/*
* PLL ramp is required if NOC clock are source from periph PLL
* and NOC clock is over 300MHz (as advised by HW team)
*/
if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI &&
(cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) >
CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ))
return 2;
}
return 0;
}
static u32 cm_calculate_numer(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg,
u32 safe_hz, u32 clk_hz)
{
u32 cnt;
u32 clk;
u32 shift;
u32 mask;
u32 denom;
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) {
cnt = main_cfg->mpuclk_cnt;
clk = main_cfg->mpuclk;
shift = 0;
mask = CLKMGR_MAINPLL_MPUCLK_CNT_MSK;
denom = main_cfg->vco1_denom;
} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) {
cnt = main_cfg->nocclk_cnt;
clk = main_cfg->nocclk;
shift = 0;
mask = CLKMGR_MAINPLL_NOCCLK_CNT_MSK;
denom = main_cfg->vco1_denom;
} else if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) {
cnt = main_cfg->mpuclk_cnt;
clk = main_cfg->mpuclk;
shift = CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB;
mask = CLKMGR_MAINPLL_MPUCLK_CNT_MSK;
denom = per_cfg->vco1_denom;
} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) {
cnt = main_cfg->nocclk_cnt;
clk = main_cfg->nocclk;
shift = CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB;
mask = CLKMGR_MAINPLL_NOCCLK_CNT_MSK;
denom = per_cfg->vco1_denom;
} else {
return 0;
}
return (safe_hz / clk_hz) * (cnt + 1) * (((clk >> shift) & mask) + 1) *
(1 + denom) - 1;
}
/*
* Calculate the new PLL numerator which is based on existing DTS hand off and
* intended safe frequency (safe_hz). Note that PLL ramp is only modifying the
* numerator while maintaining denominator as denominator will influence the
* jitter condition. Please refer A10 HPS TRM for the jitter guide. Note final
* value for numerator is minus with 1 to cater our register value
* representation.
*/
static unsigned int cm_calc_safe_pll_numer(int main0periph1,
struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg,
unsigned int safe_hz)
{
unsigned int clk_hz = 0;
/* Check for main PLL */
if (main0periph1 == 0) {
/* Check main VCO clock source: eosc, intosc or f2s? */
switch (main_cfg->vco0_psrc) {
case CLKMGR_MAINPLL_VCO0_PSRC_EOSC:
clk_hz = eosc1_hz;
break;
case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_MAINPLL_VCO0_PSRC_F2S:
clk_hz = f2s_free_hz;
break;
default:
return 0;
}
} else if (main0periph1 == 1) {
/* Check periph VCO clock source: eosc, intosc, f2s, mainpll */
switch (per_cfg->vco0_psrc) {
case CLKMGR_PERPLL_VCO0_PSRC_EOSC:
clk_hz = eosc1_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_F2S:
clk_hz = f2s_free_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_MAIN:
clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
clk_hz /= main_cfg->cntr15clk_cnt;
break;
default:
return 0;
}
} else {
return 0;
}
return cm_calculate_numer(main_cfg, per_cfg, safe_hz, clk_hz);
}
/* ramping the main PLL to final value */
static void cm_pll_ramp_main(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg,
unsigned int pll_ramp_main_hz)
{
unsigned int clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0;
/* find out the increment value */
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) {
clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ;
clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg);
} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) {
clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ;
clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg);
}
/* execute the ramping here */
for (clk_hz = pll_ramp_main_hz + clk_incr_hz;
clk_hz < clk_final_hz; clk_hz += clk_incr_hz) {
writel((main_cfg->vco1_denom <<
CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
cm_calc_safe_pll_numer(0, main_cfg, per_cfg, clk_hz),
&clock_manager_base->main_pll.vco1);
mdelay(1);
cm_wait_for_lock(LOCKED_MASK);
}
writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
main_cfg->vco1_numer, &clock_manager_base->main_pll.vco1);
mdelay(1);
cm_wait_for_lock(LOCKED_MASK);
}
/* ramping the periph PLL to final value */
static void cm_pll_ramp_periph(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg,
unsigned int pll_ramp_periph_hz)
{
unsigned int clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0;
/* find out the increment value */
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) {
clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ;
clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg);
} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) {
clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ;
clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg);
}
/* execute the ramping here */
for (clk_hz = pll_ramp_periph_hz + clk_incr_hz;
clk_hz < clk_final_hz; clk_hz += clk_incr_hz) {
writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
cm_calc_safe_pll_numer(1, main_cfg, per_cfg, clk_hz),
&clock_manager_base->per_pll.vco1);
mdelay(1);
cm_wait_for_lock(LOCKED_MASK);
}
writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
per_cfg->vco1_numer, &clock_manager_base->per_pll.vco1);
mdelay(1);
cm_wait_for_lock(LOCKED_MASK);
}
/*
* Setup clocks while making no assumptions of the
* previous state of the clocks.
*
* Start by being paranoid and gate all sw managed clocks
*
* Put all plls in bypass
*
* Put all plls VCO registers back to reset value (bgpwr dwn).
*
* Put peripheral and main pll src to reset value to avoid glitch.
*
* Delay 5 us.
*
* Deassert bg pwr dn and set numerator and denominator
*
* Start 7 us timer.
*
* set internal dividers
*
* Wait for 7 us timer.
*
* Enable plls
*
* Set external dividers while plls are locking
*
* Wait for pll lock
*
* Assert/deassert outreset all.
*
* Take all pll's out of bypass
*
* Clear safe mode
*
* set source main and peripheral clocks
*
* Ungate clocks
*/
static int cm_full_cfg(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg)
{
unsigned int pll_ramp_main_hz = 0, pll_ramp_periph_hz = 0,
ramp_required;
/* gate off all mainpll clock excpet HW managed clock */
writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK |
CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK,
&clock_manager_base->main_pll.enr);
/* now we can gate off the rest of the peripheral clocks */
writel(0, &clock_manager_base->per_pll.en);
/* Put all plls in external bypass */
writel(CLKMGR_MAINPLL_BYPASS_RESET,
&clock_manager_base->main_pll.bypasss);
writel(CLKMGR_PERPLL_BYPASS_RESET,
&clock_manager_base->per_pll.bypasss);
/*
* Put all plls VCO registers back to reset value.
* Some code might have messed with them. At same time set the
* desired clock source
*/
writel(CLKMGR_MAINPLL_VCO0_RESET |
CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK |
(main_cfg->vco0_psrc << CLKMGR_MAINPLL_VCO0_PSRC_LSB),
&clock_manager_base->main_pll.vco0);
writel(CLKMGR_PERPLL_VCO0_RESET |
CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK |
(per_cfg->vco0_psrc << CLKMGR_PERPLL_VCO0_PSRC_LSB),
&clock_manager_base->per_pll.vco0);
writel(CLKMGR_MAINPLL_VCO1_RESET, &clock_manager_base->main_pll.vco1);
writel(CLKMGR_PERPLL_VCO1_RESET, &clock_manager_base->per_pll.vco1);
/* clear the interrupt register status register */
writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLACHIEVED_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLACHIEVED_SET_MSK,
&clock_manager_base->intr);
/* Program VCO Numerator and Denominator for main PLL */
ramp_required = cm_is_pll_ramp_required(0, main_cfg, per_cfg);
if (ramp_required) {
/* set main PLL to safe starting threshold frequency */
if (ramp_required == 1)
pll_ramp_main_hz = CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ;
else if (ramp_required == 2)
pll_ramp_main_hz = CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ;
writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
cm_calc_safe_pll_numer(0, main_cfg, per_cfg,
pll_ramp_main_hz),
&clock_manager_base->main_pll.vco1);
} else
writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
main_cfg->vco1_numer,
&clock_manager_base->main_pll.vco1);
/* Program VCO Numerator and Denominator for periph PLL */
ramp_required = cm_is_pll_ramp_required(1, main_cfg, per_cfg);
if (ramp_required) {
/* set periph PLL to safe starting threshold frequency */
if (ramp_required == 1)
pll_ramp_periph_hz =
CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ;
else if (ramp_required == 2)
pll_ramp_periph_hz =
CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ;
writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
cm_calc_safe_pll_numer(1, main_cfg, per_cfg,
pll_ramp_periph_hz),
&clock_manager_base->per_pll.vco1);
} else
writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
per_cfg->vco1_numer,
&clock_manager_base->per_pll.vco1);
/* Wait for at least 5 us */
udelay(5);
/* Now deassert BGPWRDN and PWRDN */
clrbits_le32(&clock_manager_base->main_pll.vco0,
CLKMGR_MAINPLL_VCO0_BGPWRDN_SET_MSK |
CLKMGR_MAINPLL_VCO0_PWRDN_SET_MSK);
clrbits_le32(&clock_manager_base->per_pll.vco0,
CLKMGR_PERPLL_VCO0_BGPWRDN_SET_MSK |
CLKMGR_PERPLL_VCO0_PWRDN_SET_MSK);
/* Wait for at least 7 us */
udelay(7);
/* enable the VCO and disable the external regulator to PLL */
writel((readl(&clock_manager_base->main_pll.vco0) &
~CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK) |
CLKMGR_MAINPLL_VCO0_EN_SET_MSK,
&clock_manager_base->main_pll.vco0);
writel((readl(&clock_manager_base->per_pll.vco0) &
~CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK) |
CLKMGR_PERPLL_VCO0_EN_SET_MSK,
&clock_manager_base->per_pll.vco0);
/* setup all the main PLL counter and clock source */
writel(main_cfg->nocclk,
SOCFPGA_CLKMGR_ADDRESS + CLKMGR_MAINPLL_NOC_CLK_OFFSET);
writel(main_cfg->mpuclk,
SOCFPGA_CLKMGR_ADDRESS + CLKMGR_ALTERAGRP_MPU_CLK_OFFSET);
/* main_emaca_clk divider */
writel(main_cfg->cntr2clk_cnt, &clock_manager_base->main_pll.cntr2clk);
/* main_emacb_clk divider */
writel(main_cfg->cntr3clk_cnt, &clock_manager_base->main_pll.cntr3clk);
/* main_emac_ptp_clk divider */
writel(main_cfg->cntr4clk_cnt, &clock_manager_base->main_pll.cntr4clk);
/* main_gpio_db_clk divider */
writel(main_cfg->cntr5clk_cnt, &clock_manager_base->main_pll.cntr5clk);
/* main_sdmmc_clk divider */
writel(main_cfg->cntr6clk_cnt, &clock_manager_base->main_pll.cntr6clk);
/* main_s2f_user0_clk divider */
writel(main_cfg->cntr7clk_cnt |
(main_cfg->cntr7clk_src << CLKMGR_MAINPLL_CNTR7CLK_SRC_LSB),
&clock_manager_base->main_pll.cntr7clk);
/* main_s2f_user1_clk divider */
writel(main_cfg->cntr8clk_cnt, &clock_manager_base->main_pll.cntr8clk);
/* main_hmc_pll_clk divider */
writel(main_cfg->cntr9clk_cnt |
(main_cfg->cntr9clk_src << CLKMGR_MAINPLL_CNTR9CLK_SRC_LSB),
&clock_manager_base->main_pll.cntr9clk);
/* main_periph_ref_clk divider */
writel(main_cfg->cntr15clk_cnt,
&clock_manager_base->main_pll.cntr15clk);
/* setup all the peripheral PLL counter and clock source */
/* peri_emaca_clk divider */
writel(per_cfg->cntr2clk_cnt |
(per_cfg->cntr2clk_src << CLKMGR_PERPLL_CNTR2CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr2clk);
/* peri_emacb_clk divider */
writel(per_cfg->cntr3clk_cnt |
(per_cfg->cntr3clk_src << CLKMGR_PERPLL_CNTR3CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr3clk);
/* peri_emac_ptp_clk divider */
writel(per_cfg->cntr4clk_cnt |
(per_cfg->cntr4clk_src << CLKMGR_PERPLL_CNTR4CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr4clk);
/* peri_gpio_db_clk divider */
writel(per_cfg->cntr5clk_cnt |
(per_cfg->cntr5clk_src << CLKMGR_PERPLL_CNTR5CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr5clk);
/* peri_sdmmc_clk divider */
writel(per_cfg->cntr6clk_cnt |
(per_cfg->cntr6clk_src << CLKMGR_PERPLL_CNTR6CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr6clk);
/* peri_s2f_user0_clk divider */
writel(per_cfg->cntr7clk_cnt, &clock_manager_base->per_pll.cntr7clk);
/* peri_s2f_user1_clk divider */
writel(per_cfg->cntr8clk_cnt |
(per_cfg->cntr8clk_src << CLKMGR_PERPLL_CNTR8CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr8clk);
/* peri_hmc_pll_clk divider */
writel(per_cfg->cntr9clk_cnt, &clock_manager_base->per_pll.cntr9clk);
/* setup all the external PLL counter */
/* mpu wrapper / external divider */
writel(main_cfg->mpuclk_cnt |
(main_cfg->mpuclk_src << CLKMGR_MAINPLL_MPUCLK_SRC_LSB),
&clock_manager_base->main_pll.mpuclk);
/* NOC wrapper / external divider */
writel(main_cfg->nocclk_cnt |
(main_cfg->nocclk_src << CLKMGR_MAINPLL_NOCCLK_SRC_LSB),
&clock_manager_base->main_pll.nocclk);
/* NOC subclock divider such as l4 */
writel(main_cfg->nocdiv_l4mainclk |
(main_cfg->nocdiv_l4mpclk <<
CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB) |
(main_cfg->nocdiv_l4spclk <<
CLKMGR_MAINPLL_NOCDIV_L4SPCLK_LSB) |
(main_cfg->nocdiv_csatclk <<
CLKMGR_MAINPLL_NOCDIV_CSATCLK_LSB) |
(main_cfg->nocdiv_cstraceclk <<
CLKMGR_MAINPLL_NOCDIV_CSTRACECLK_LSB) |
(main_cfg->nocdiv_cspdbclk <<
CLKMGR_MAINPLL_NOCDIV_CSPDBGCLK_LSB),
&clock_manager_base->main_pll.nocdiv);
/* gpio_db external divider */
writel(per_cfg->gpiodiv_gpiodbclk,
&clock_manager_base->per_pll.gpiodiv);
/* setup the EMAC clock mux select */
writel((per_cfg->emacctl_emac0sel <<
CLKMGR_PERPLL_EMACCTL_EMAC0SEL_LSB) |
(per_cfg->emacctl_emac1sel <<
CLKMGR_PERPLL_EMACCTL_EMAC1SEL_LSB) |
(per_cfg->emacctl_emac2sel <<
CLKMGR_PERPLL_EMACCTL_EMAC2SEL_LSB),
&clock_manager_base->per_pll.emacctl);
/* at this stage, check for PLL lock status */
cm_wait_for_lock(LOCKED_MASK);
/*
* after locking, but before taking out of bypass,
* assert/deassert outresetall
*/
/* assert mainpll outresetall */
setbits_le32(&clock_manager_base->main_pll.vco0,
CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK);
/* assert perpll outresetall */
setbits_le32(&clock_manager_base->per_pll.vco0,
CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK);
/* de-assert mainpll outresetall */
clrbits_le32(&clock_manager_base->main_pll.vco0,
CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK);
/* de-assert perpll outresetall */
clrbits_le32(&clock_manager_base->per_pll.vco0,
CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK);
/* Take all PLLs out of bypass when boot mode is cleared. */
/* release mainpll from bypass */
writel(CLKMGR_MAINPLL_BYPASS_RESET,
&clock_manager_base->main_pll.bypassr);
/* wait till Clock Manager is not busy */
cm_wait_for_fsm();
/* release perpll from bypass */
writel(CLKMGR_PERPLL_BYPASS_RESET,
&clock_manager_base->per_pll.bypassr);
/* wait till Clock Manager is not busy */
cm_wait_for_fsm();
/* clear boot mode */
clrbits_le32(&clock_manager_base->ctrl,
CLKMGR_CLKMGR_CTL_BOOTMOD_SET_MSK);
/* wait till Clock Manager is not busy */
cm_wait_for_fsm();
/* At here, we need to ramp to final value if needed */
if (pll_ramp_main_hz != 0)
cm_pll_ramp_main(main_cfg, per_cfg, pll_ramp_main_hz);
if (pll_ramp_periph_hz != 0)
cm_pll_ramp_periph(main_cfg, per_cfg, pll_ramp_periph_hz);
/* Now ungate non-hw-managed clocks */
writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK |
CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK,
&clock_manager_base->main_pll.ens);
writel(CLKMGR_PERPLL_EN_RESET, &clock_manager_base->per_pll.ens);
/* Clear the loss lock and slip bits as they might set during
clock reconfiguration */
writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK,
&clock_manager_base->intr);
return 0;
}
void cm_use_intosc(void)
{
setbits_le32(&clock_manager_base->ctrl,
CLKMGR_CLKMGR_CTL_BOOTCLK_INTOSC_SET_MSK);
}
int cm_basic_init(const void *blob)
{
struct mainpll_cfg main_cfg;
struct perpll_cfg per_cfg;
int rval;
/* initialize to zero for use case of optional node */
memset(&main_cfg, 0, sizeof(main_cfg));
memset(&per_cfg, 0, sizeof(per_cfg));
rval = of_get_clk_cfg(blob, &main_cfg, &per_cfg);
if (rval)
return rval;
return cm_full_cfg(&main_cfg, &per_cfg);
}
static u32 cm_get_rate_dm(char *name)
{
struct uclass *uc;
struct udevice *dev = NULL;
struct clk clk = { 0 };
ulong rate;
int ret;
/* Device addresses start at 1 */
ret = uclass_get(UCLASS_CLK, &uc);
if (ret)
return 0;
ret = uclass_get_device_by_name(UCLASS_CLK, name, &dev);
if (ret)
return 0;
ret = device_probe(dev);
if (ret)
return 0;
ret = clk_request(dev, &clk);
if (ret)
return 0;
rate = clk_get_rate(&clk);
clk_free(&clk);
return rate;
}
static u32 cm_get_rate_dm_khz(char *name)
{
return cm_get_rate_dm(name) / 1000;
}
unsigned long cm_get_mpu_clk_hz(void)
{
return cm_get_rate_dm("main_mpu_base_clk");
}
unsigned int cm_get_qspi_controller_clk_hz(void)
{
return cm_get_rate_dm("qspi_clk");
}
unsigned int cm_get_l4_sp_clk_hz(void)
{
return cm_get_rate_dm("l4_sp_clk");
}
void cm_print_clock_quick_summary(void)
{
printf("MPU %10d kHz\n", cm_get_rate_dm_khz("main_mpu_base_clk"));
printf("MMC %8d kHz\n", cm_get_rate_dm_khz("sdmmc_clk"));
printf("QSPI %8d kHz\n", cm_get_rate_dm_khz("qspi_clk"));
printf("SPI %8d kHz\n", cm_get_rate_dm_khz("spi_m_clk"));
printf("EOSC1 %8d kHz\n", cm_get_rate_dm_khz("osc1"));
printf("cb_intosc %8d kHz\n", cm_get_rate_dm_khz("cb_intosc_ls_clk"));
printf("f2s_free %8d kHz\n", cm_get_rate_dm_khz("f2s_free_clk"));
printf("Main VCO %8d kHz\n", cm_get_rate_dm_khz("main_pll@40"));
printf("NOC %8d kHz\n", cm_get_rate_dm_khz("main_noc_base_clk"));
printf("L4 Main %8d kHz\n", cm_get_rate_dm_khz("l4_main_clk"));
printf("L4 MP %8d kHz\n", cm_get_rate_dm_khz("l4_mp_clk"));
printf("L4 SP %8d kHz\n", cm_get_rate_dm_khz("l4_sp_clk"));
printf("L4 sys free %8d kHz\n", cm_get_rate_dm_khz("l4_sys_free_clk"));
}