mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-07 10:48:54 +00:00
83d290c56f
When U-Boot started using SPDX tags we were among the early adopters and there weren't a lot of other examples to borrow from. So we picked the area of the file that usually had a full license text and replaced it with an appropriate SPDX-License-Identifier: entry. Since then, the Linux Kernel has adopted SPDX tags and they place it as the very first line in a file (except where shebangs are used, then it's second line) and with slightly different comment styles than us. In part due to community overlap, in part due to better tag visibility and in part for other minor reasons, switch over to that style. This commit changes all instances where we have a single declared license in the tag as both the before and after are identical in tag contents. There's also a few places where I found we did not have a tag and have introduced one. Signed-off-by: Tom Rini <trini@konsulko.com>
1037 lines
30 KiB
C
1037 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
|
|
* Rohit Choraria <rohitkc@ti.com>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/io.h>
|
|
#include <linux/errno.h>
|
|
#include <asm/arch/mem.h>
|
|
#include <linux/mtd/omap_gpmc.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/bch.h>
|
|
#include <linux/compiler.h>
|
|
#include <nand.h>
|
|
#include <linux/mtd/omap_elm.h>
|
|
|
|
#define BADBLOCK_MARKER_LENGTH 2
|
|
#define SECTOR_BYTES 512
|
|
#define ECCCLEAR (0x1 << 8)
|
|
#define ECCRESULTREG1 (0x1 << 0)
|
|
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
|
|
#define BCH4_BIT_PAD 4
|
|
|
|
#ifdef CONFIG_BCH
|
|
static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
|
|
0x97, 0x79, 0xe5, 0x24, 0xb5};
|
|
#endif
|
|
static uint8_t cs_next;
|
|
static __maybe_unused struct nand_ecclayout omap_ecclayout;
|
|
|
|
#if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
|
|
static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
|
|
{ CONFIG_NAND_OMAP_GPMC_WSCFG };
|
|
#else
|
|
/* wscfg is preset to zero since its a static variable */
|
|
static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
|
|
#endif
|
|
|
|
/*
|
|
* Driver configurations
|
|
*/
|
|
struct omap_nand_info {
|
|
struct bch_control *control;
|
|
enum omap_ecc ecc_scheme;
|
|
uint8_t cs;
|
|
uint8_t ws; /* wait status pin (0,1) */
|
|
};
|
|
|
|
/* We are wasting a bit of memory but al least we are safe */
|
|
static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
|
|
|
|
/*
|
|
* omap_nand_hwcontrol - Set the address pointers corretly for the
|
|
* following address/data/command operation
|
|
*/
|
|
static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
|
|
uint32_t ctrl)
|
|
{
|
|
register struct nand_chip *this = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(this);
|
|
int cs = info->cs;
|
|
|
|
/*
|
|
* Point the IO_ADDR to DATA and ADDRESS registers instead
|
|
* of chip address
|
|
*/
|
|
switch (ctrl) {
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
|
|
break;
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
|
|
break;
|
|
case NAND_CTRL_CHANGE | NAND_NCE:
|
|
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
|
|
break;
|
|
}
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
writeb(cmd, this->IO_ADDR_W);
|
|
}
|
|
|
|
/* Check wait pin as dev ready indicator */
|
|
static int omap_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
register struct nand_chip *this = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(this);
|
|
return gpmc_cfg->status & (1 << (8 + info->ws));
|
|
}
|
|
|
|
/*
|
|
* gen_true_ecc - This function will generate true ECC value, which
|
|
* can be used when correcting data read from NAND flash memory core
|
|
*
|
|
* @ecc_buf: buffer to store ecc code
|
|
*
|
|
* @return: re-formatted ECC value
|
|
*/
|
|
static uint32_t gen_true_ecc(uint8_t *ecc_buf)
|
|
{
|
|
return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
|
|
((ecc_buf[2] & 0x0F) << 8);
|
|
}
|
|
|
|
/*
|
|
* omap_correct_data - Compares the ecc read from nand spare area with ECC
|
|
* registers values and corrects one bit error if it has occurred
|
|
* Further details can be had from OMAP TRM and the following selected links:
|
|
* http://en.wikipedia.org/wiki/Hamming_code
|
|
* http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @dat: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from ECC registers
|
|
*
|
|
* @return 0 if data is OK or corrected, else returns -1
|
|
*/
|
|
static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
{
|
|
uint32_t orig_ecc, new_ecc, res, hm;
|
|
uint16_t parity_bits, byte;
|
|
uint8_t bit;
|
|
|
|
/* Regenerate the orginal ECC */
|
|
orig_ecc = gen_true_ecc(read_ecc);
|
|
new_ecc = gen_true_ecc(calc_ecc);
|
|
/* Get the XOR of real ecc */
|
|
res = orig_ecc ^ new_ecc;
|
|
if (res) {
|
|
/* Get the hamming width */
|
|
hm = hweight32(res);
|
|
/* Single bit errors can be corrected! */
|
|
if (hm == 12) {
|
|
/* Correctable data! */
|
|
parity_bits = res >> 16;
|
|
bit = (parity_bits & 0x7);
|
|
byte = (parity_bits >> 3) & 0x1FF;
|
|
/* Flip the bit to correct */
|
|
dat[byte] ^= (0x1 << bit);
|
|
} else if (hm == 1) {
|
|
printf("Error: Ecc is wrong\n");
|
|
/* ECC itself is corrupted */
|
|
return 2;
|
|
} else {
|
|
/*
|
|
* hm distance != parity pairs OR one, could mean 2 bit
|
|
* error OR potentially be on a blank page..
|
|
* orig_ecc: contains spare area data from nand flash.
|
|
* new_ecc: generated ecc while reading data area.
|
|
* Note: if the ecc = 0, all data bits from which it was
|
|
* generated are 0xFF.
|
|
* The 3 byte(24 bits) ecc is generated per 512byte
|
|
* chunk of a page. If orig_ecc(from spare area)
|
|
* is 0xFF && new_ecc(computed now from data area)=0x0,
|
|
* this means that data area is 0xFF and spare area is
|
|
* 0xFF. A sure sign of a erased page!
|
|
*/
|
|
if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
|
|
return 0;
|
|
printf("Error: Bad compare! failed\n");
|
|
/* detected 2 bit error */
|
|
return -EBADMSG;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*/
|
|
__maybe_unused
|
|
static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(nand);
|
|
unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
|
unsigned int ecc_algo = 0;
|
|
unsigned int bch_type = 0;
|
|
unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
|
|
u32 ecc_size_config_val = 0;
|
|
u32 ecc_config_val = 0;
|
|
int cs = info->cs;
|
|
|
|
/* configure GPMC for specific ecc-scheme */
|
|
switch (info->ecc_scheme) {
|
|
case OMAP_ECC_HAM1_CODE_SW:
|
|
return;
|
|
case OMAP_ECC_HAM1_CODE_HW:
|
|
ecc_algo = 0x0;
|
|
bch_type = 0x0;
|
|
bch_wrapmode = 0x00;
|
|
eccsize0 = 0xFF;
|
|
eccsize1 = 0xFF;
|
|
break;
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
ecc_algo = 0x1;
|
|
bch_type = 0x1;
|
|
if (mode == NAND_ECC_WRITE) {
|
|
bch_wrapmode = 0x01;
|
|
eccsize0 = 0; /* extra bits in nibbles per sector */
|
|
eccsize1 = 28; /* OOB bits in nibbles per sector */
|
|
} else {
|
|
bch_wrapmode = 0x01;
|
|
eccsize0 = 26; /* ECC bits in nibbles per sector */
|
|
eccsize1 = 2; /* non-ECC bits in nibbles per sector */
|
|
}
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
ecc_algo = 0x1;
|
|
bch_type = 0x2;
|
|
if (mode == NAND_ECC_WRITE) {
|
|
bch_wrapmode = 0x01;
|
|
eccsize0 = 0; /* extra bits in nibbles per sector */
|
|
eccsize1 = 52; /* OOB bits in nibbles per sector */
|
|
} else {
|
|
bch_wrapmode = 0x01;
|
|
eccsize0 = 52; /* ECC bits in nibbles per sector */
|
|
eccsize1 = 0; /* non-ECC bits in nibbles per sector */
|
|
}
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
/* Clear ecc and enable bits */
|
|
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
/* Configure ecc size for BCH */
|
|
ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
|
|
writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
|
|
|
|
/* Configure device details for BCH engine */
|
|
ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
|
|
(bch_type << 12) | /* BCH4/BCH8/BCH16 */
|
|
(bch_wrapmode << 8) | /* wrap mode */
|
|
(dev_width << 7) | /* bus width */
|
|
(0x0 << 4) | /* number of sectors */
|
|
(cs << 1) | /* ECC CS */
|
|
(0x1)); /* enable ECC */
|
|
writel(ecc_config_val, &gpmc_cfg->ecc_config);
|
|
}
|
|
|
|
/*
|
|
* omap_calculate_ecc - Read ECC result
|
|
* @mtd: MTD structure
|
|
* @dat: unused
|
|
* @ecc_code: ecc_code buffer
|
|
* Using noninverted ECC can be considered ugly since writing a blank
|
|
* page ie. padding will clear the ECC bytes. This is no problem as
|
|
* long nobody is trying to write data on the seemingly unused page.
|
|
* Reading an erased page will produce an ECC mismatch between
|
|
* generated and read ECC bytes that has to be dealt with separately.
|
|
* E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
|
|
* is used, the result of read will be 0x0 while the ECC offsets of the
|
|
* spare area will be 0xFF which will result in an ECC mismatch.
|
|
*/
|
|
static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
|
|
uint8_t *ecc_code)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
const uint32_t *ptr;
|
|
uint32_t val = 0;
|
|
int8_t i = 0, j;
|
|
|
|
switch (info->ecc_scheme) {
|
|
case OMAP_ECC_HAM1_CODE_HW:
|
|
val = readl(&gpmc_cfg->ecc1_result);
|
|
ecc_code[0] = val & 0xFF;
|
|
ecc_code[1] = (val >> 16) & 0xFF;
|
|
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
|
|
break;
|
|
#ifdef CONFIG_BCH
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
#endif
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
|
|
val = readl(ptr);
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
ptr--;
|
|
for (j = 0; j < 3; j++) {
|
|
val = readl(ptr);
|
|
ecc_code[i++] = (val >> 24) & 0xFF;
|
|
ecc_code[i++] = (val >> 16) & 0xFF;
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
ptr--;
|
|
}
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
|
|
ecc_code[i++] = (val >> 24) & 0xFF;
|
|
ecc_code[i++] = (val >> 16) & 0xFF;
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
|
|
ecc_code[i++] = (val >> 24) & 0xFF;
|
|
ecc_code[i++] = (val >> 16) & 0xFF;
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
for (j = 3; j >= 0; j--) {
|
|
val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
|
|
);
|
|
ecc_code[i++] = (val >> 24) & 0xFF;
|
|
ecc_code[i++] = (val >> 16) & 0xFF;
|
|
ecc_code[i++] = (val >> 8) & 0xFF;
|
|
ecc_code[i++] = (val >> 0) & 0xFF;
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
/* ECC scheme specific syndrome customizations */
|
|
switch (info->ecc_scheme) {
|
|
case OMAP_ECC_HAM1_CODE_HW:
|
|
break;
|
|
#ifdef CONFIG_BCH
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
|
|
for (i = 0; i < chip->ecc.bytes; i++)
|
|
*(ecc_code + i) = *(ecc_code + i) ^
|
|
bch8_polynomial[i];
|
|
break;
|
|
#endif
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
ecc_code[chip->ecc.bytes - 1] = 0x00;
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
|
|
|
|
#define PREFETCH_CONFIG1_CS_SHIFT 24
|
|
#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
|
|
#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
|
|
#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
|
|
#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
|
|
#define ENABLE_PREFETCH (1 << 7)
|
|
|
|
/**
|
|
* omap_prefetch_enable - configures and starts prefetch transfer
|
|
* @fifo_th: fifo threshold to be used for read/ write
|
|
* @count: number of bytes to be transferred
|
|
* @is_write: prefetch read(0) or write post(1) mode
|
|
* @cs: chip select to use
|
|
*/
|
|
static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
|
|
{
|
|
uint32_t val;
|
|
|
|
if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
|
|
return -EINVAL;
|
|
|
|
if (readl(&gpmc_cfg->prefetch_control))
|
|
return -EBUSY;
|
|
|
|
/* Set the amount of bytes to be prefetched */
|
|
writel(count, &gpmc_cfg->prefetch_config2);
|
|
|
|
val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
|
|
PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
|
|
writel(val, &gpmc_cfg->prefetch_config1);
|
|
|
|
/* Start the prefetch engine */
|
|
writel(1, &gpmc_cfg->prefetch_control);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_prefetch_reset - disables and stops the prefetch engine
|
|
*/
|
|
static void omap_prefetch_reset(void)
|
|
{
|
|
writel(0, &gpmc_cfg->prefetch_control);
|
|
writel(0, &gpmc_cfg->prefetch_config1);
|
|
}
|
|
|
|
static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
|
|
{
|
|
int ret;
|
|
uint32_t cnt;
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
|
|
ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
do {
|
|
int i;
|
|
|
|
cnt = readl(&gpmc_cfg->prefetch_status);
|
|
cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
|
|
|
|
for (i = 0; i < cnt / 4; i++) {
|
|
*buf++ = readl(CONFIG_SYS_NAND_BASE);
|
|
len -= 4;
|
|
}
|
|
} while (len);
|
|
|
|
omap_prefetch_reset();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
nand_read_buf16(mtd, buf, len);
|
|
else
|
|
nand_read_buf(mtd, buf, len);
|
|
}
|
|
|
|
static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
int ret;
|
|
uint32_t head, tail;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
/*
|
|
* If the destination buffer is unaligned, start with reading
|
|
* the overlap byte-wise.
|
|
*/
|
|
head = ((uint32_t) buf) % 4;
|
|
if (head) {
|
|
omap_nand_read(mtd, buf, head);
|
|
buf += head;
|
|
len -= head;
|
|
}
|
|
|
|
/*
|
|
* Only transfer multiples of 4 bytes in a pre-fetched fashion.
|
|
* If there's a residue, care for it byte-wise afterwards.
|
|
*/
|
|
tail = len % 4;
|
|
|
|
ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
|
|
if (ret < 0) {
|
|
/* fallback in case the prefetch engine is busy */
|
|
omap_nand_read(mtd, buf, len);
|
|
} else if (tail) {
|
|
buf += len - tail;
|
|
omap_nand_read(mtd, buf, tail);
|
|
}
|
|
}
|
|
#endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
|
|
|
|
#ifdef CONFIG_NAND_OMAP_ELM
|
|
/*
|
|
* omap_reverse_list - re-orders list elements in reverse order [internal]
|
|
* @list: pointer to start of list
|
|
* @length: length of list
|
|
*/
|
|
static void omap_reverse_list(u8 *list, unsigned int length)
|
|
{
|
|
unsigned int i, j;
|
|
unsigned int half_length = length / 2;
|
|
u8 tmp;
|
|
for (i = 0, j = length - 1; i < half_length; i++, j--) {
|
|
tmp = list[i];
|
|
list[i] = list[j];
|
|
list[j] = tmp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* omap_correct_data_bch - Compares the ecc read from nand spare area
|
|
* with ECC registers values and corrects one bit error if it has occurred
|
|
*
|
|
* @mtd: MTD device structure
|
|
* @dat: page data
|
|
* @read_ecc: ecc read from nand flash (ignored)
|
|
* @calc_ecc: ecc read from ECC registers
|
|
*
|
|
* @return 0 if data is OK or corrected, else returns -1
|
|
*/
|
|
static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
uint32_t error_count = 0, error_max;
|
|
uint32_t error_loc[ELM_MAX_ERROR_COUNT];
|
|
enum bch_level bch_type;
|
|
uint32_t i, ecc_flag = 0;
|
|
uint8_t count;
|
|
uint32_t byte_pos, bit_pos;
|
|
int err = 0;
|
|
|
|
/* check calculated ecc */
|
|
for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
|
|
if (calc_ecc[i] != 0x00)
|
|
ecc_flag = 1;
|
|
}
|
|
if (!ecc_flag)
|
|
return 0;
|
|
|
|
/* check for whether its a erased-page */
|
|
ecc_flag = 0;
|
|
for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
|
|
if (read_ecc[i] != 0xff)
|
|
ecc_flag = 1;
|
|
}
|
|
if (!ecc_flag)
|
|
return 0;
|
|
|
|
/*
|
|
* while reading ECC result we read it in big endian.
|
|
* Hence while loading to ELM we have rotate to get the right endian.
|
|
*/
|
|
switch (info->ecc_scheme) {
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
bch_type = BCH_8_BIT;
|
|
omap_reverse_list(calc_ecc, ecc->bytes - 1);
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
bch_type = BCH_16_BIT;
|
|
omap_reverse_list(calc_ecc, ecc->bytes);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
/* use elm module to check for errors */
|
|
elm_config(bch_type);
|
|
err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
|
|
if (err)
|
|
return err;
|
|
|
|
/* correct bch error */
|
|
for (count = 0; count < error_count; count++) {
|
|
switch (info->ecc_scheme) {
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
/* 14th byte in ECC is reserved to match ROM layout */
|
|
error_max = SECTOR_BYTES + (ecc->bytes - 1);
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
error_max = SECTOR_BYTES + ecc->bytes;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
byte_pos = error_max - (error_loc[count] / 8) - 1;
|
|
bit_pos = error_loc[count] % 8;
|
|
if (byte_pos < SECTOR_BYTES) {
|
|
dat[byte_pos] ^= 1 << bit_pos;
|
|
debug("nand: bit-flip corrected @data=%d\n", byte_pos);
|
|
} else if (byte_pos < error_max) {
|
|
read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
|
|
debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
|
|
SECTOR_BYTES);
|
|
} else {
|
|
err = -EBADMSG;
|
|
printf("nand: error: invalid bit-flip location\n");
|
|
}
|
|
}
|
|
return (err) ? err : error_count;
|
|
}
|
|
|
|
/**
|
|
* omap_read_page_bch - hardware ecc based page read function
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller expects OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
*/
|
|
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int i, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_calc = chip->buffers->ecccalc;
|
|
uint8_t *ecc_code = chip->buffers->ecccode;
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
uint8_t *oob = chip->oob_poi;
|
|
uint32_t data_pos;
|
|
uint32_t oob_pos;
|
|
|
|
data_pos = 0;
|
|
/* oob area start */
|
|
oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
|
|
oob += chip->ecc.layout->eccpos[0];
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
|
|
oob += eccbytes) {
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
/* read data */
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
|
|
chip->read_buf(mtd, p, eccsize);
|
|
|
|
/* read respective ecc from oob area */
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
|
|
chip->read_buf(mtd, oob, eccbytes);
|
|
/* read syndrome */
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
data_pos += eccsize;
|
|
oob_pos += eccbytes;
|
|
}
|
|
|
|
for (i = 0; i < chip->ecc.total; i++)
|
|
ecc_code[i] = chip->oob_poi[eccpos[i]];
|
|
|
|
eccsteps = chip->ecc.steps;
|
|
p = buf;
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
|
|
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
if (stat < 0)
|
|
mtd->ecc_stats.failed++;
|
|
else
|
|
mtd->ecc_stats.corrected += stat;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NAND_OMAP_ELM */
|
|
|
|
/*
|
|
* OMAP3 BCH8 support (with BCH library)
|
|
*/
|
|
#ifdef CONFIG_BCH
|
|
/**
|
|
* omap_correct_data_bch_sw - Decode received data and correct errors
|
|
* @mtd: MTD device structure
|
|
* @data: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
*/
|
|
static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
int i, count;
|
|
/* cannot correct more than 8 errors */
|
|
unsigned int errloc[8];
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
|
|
count = decode_bch(info->control, NULL, SECTOR_BYTES,
|
|
read_ecc, calc_ecc, NULL, errloc);
|
|
if (count > 0) {
|
|
/* correct errors */
|
|
for (i = 0; i < count; i++) {
|
|
/* correct data only, not ecc bytes */
|
|
if (errloc[i] < SECTOR_BYTES << 3)
|
|
data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
|
|
debug("corrected bitflip %u\n", errloc[i]);
|
|
#ifdef DEBUG
|
|
puts("read_ecc: ");
|
|
/*
|
|
* BCH8 have 13 bytes of ECC; BCH4 needs adoption
|
|
* here!
|
|
*/
|
|
for (i = 0; i < 13; i++)
|
|
printf("%02x ", read_ecc[i]);
|
|
puts("\n");
|
|
puts("calc_ecc: ");
|
|
for (i = 0; i < 13; i++)
|
|
printf("%02x ", calc_ecc[i]);
|
|
puts("\n");
|
|
#endif
|
|
}
|
|
} else if (count < 0) {
|
|
puts("ecc unrecoverable error\n");
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* omap_free_bch - Release BCH ecc resources
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = nand_get_controller_data(chip);
|
|
|
|
if (info->control) {
|
|
free_bch(info->control);
|
|
info->control = NULL;
|
|
}
|
|
}
|
|
#endif /* CONFIG_BCH */
|
|
|
|
/**
|
|
* omap_select_ecc_scheme - configures driver for particular ecc-scheme
|
|
* @nand: NAND chip device structure
|
|
* @ecc_scheme: ecc scheme to configure
|
|
* @pagesize: number of main-area bytes per page of NAND device
|
|
* @oobsize: number of OOB/spare bytes per page of NAND device
|
|
*/
|
|
static int omap_select_ecc_scheme(struct nand_chip *nand,
|
|
enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
|
|
struct omap_nand_info *info = nand_get_controller_data(nand);
|
|
struct nand_ecclayout *ecclayout = &omap_ecclayout;
|
|
int eccsteps = pagesize / SECTOR_BYTES;
|
|
int i;
|
|
|
|
switch (ecc_scheme) {
|
|
case OMAP_ECC_HAM1_CODE_SW:
|
|
debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
|
|
/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
|
|
* initialized in nand_scan_tail(), so just set ecc.mode */
|
|
info->control = NULL;
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
nand->ecc.layout = NULL;
|
|
nand->ecc.size = 0;
|
|
break;
|
|
|
|
case OMAP_ECC_HAM1_CODE_HW:
|
|
debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
return -EINVAL;
|
|
}
|
|
info->control = NULL;
|
|
/* populate ecc specific fields */
|
|
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.strength = 1;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 3;
|
|
nand->ecc.hwctl = omap_enable_hwecc;
|
|
nand->ecc.correct = omap_correct_data;
|
|
nand->ecc.calculate = omap_calculate_ecc;
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
for (i = 0; i < ecclayout->eccbytes; i++) {
|
|
if (nand->options & NAND_BUSWIDTH_16)
|
|
ecclayout->eccpos[i] = i + 2;
|
|
else
|
|
ecclayout->eccpos[i] = i + 1;
|
|
}
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
BADBLOCK_MARKER_LENGTH;
|
|
break;
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
#ifdef CONFIG_BCH
|
|
debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
return -EINVAL;
|
|
}
|
|
/* check if BCH S/W library can be used for error detection */
|
|
info->control = init_bch(13, 8, 0x201b);
|
|
if (!info->control) {
|
|
printf("nand: error: could not init_bch()\n");
|
|
return -ENODEV;
|
|
}
|
|
/* populate ecc specific fields */
|
|
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.strength = 8;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 13;
|
|
nand->ecc.hwctl = omap_enable_hwecc;
|
|
nand->ecc.correct = omap_correct_data_bch_sw;
|
|
nand->ecc.calculate = omap_calculate_ecc;
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
for (i = 1; i < ecclayout->eccbytes; i++) {
|
|
if (i % nand->ecc.bytes)
|
|
ecclayout->eccpos[i] =
|
|
ecclayout->eccpos[i - 1] + 1;
|
|
else
|
|
ecclayout->eccpos[i] =
|
|
ecclayout->eccpos[i - 1] + 2;
|
|
}
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
BADBLOCK_MARKER_LENGTH;
|
|
break;
|
|
#else
|
|
printf("nand: error: CONFIG_BCH required for ECC\n");
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
#ifdef CONFIG_NAND_OMAP_ELM
|
|
debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
return -EINVAL;
|
|
}
|
|
/* intialize ELM for ECC error detection */
|
|
elm_init();
|
|
info->control = NULL;
|
|
/* populate ecc specific fields */
|
|
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.strength = 8;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 14;
|
|
nand->ecc.hwctl = omap_enable_hwecc;
|
|
nand->ecc.correct = omap_correct_data_bch;
|
|
nand->ecc.calculate = omap_calculate_ecc;
|
|
nand->ecc.read_page = omap_read_page_bch;
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
for (i = 0; i < ecclayout->eccbytes; i++)
|
|
ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
BADBLOCK_MARKER_LENGTH;
|
|
break;
|
|
#else
|
|
printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
#ifdef CONFIG_NAND_OMAP_ELM
|
|
debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
|
|
/* check ecc-scheme requirements before updating ecc info */
|
|
if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
|
|
printf("nand: error: insufficient OOB: require=%d\n", (
|
|
(26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
|
|
return -EINVAL;
|
|
}
|
|
/* intialize ELM for ECC error detection */
|
|
elm_init();
|
|
/* populate ecc specific fields */
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 26;
|
|
nand->ecc.strength = 16;
|
|
nand->ecc.hwctl = omap_enable_hwecc;
|
|
nand->ecc.correct = omap_correct_data_bch;
|
|
nand->ecc.calculate = omap_calculate_ecc;
|
|
nand->ecc.read_page = omap_read_page_bch;
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
for (i = 0; i < ecclayout->eccbytes; i++)
|
|
ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
|
|
BADBLOCK_MARKER_LENGTH;
|
|
break;
|
|
#else
|
|
printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
|
|
return -EINVAL;
|
|
#endif
|
|
default:
|
|
debug("nand: error: ecc scheme not enabled or supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
|
|
if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
|
|
nand->ecc.layout = ecclayout;
|
|
|
|
info->ecc_scheme = ecc_scheme;
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_SPL_BUILD
|
|
/*
|
|
* omap_nand_switch_ecc - switch the ECC operation between different engines
|
|
* (h/w and s/w) and different algorithms (hamming and BCHx)
|
|
*
|
|
* @hardware - true if one of the HW engines should be used
|
|
* @eccstrength - the number of bits that could be corrected
|
|
* (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
|
|
*/
|
|
int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
|
|
{
|
|
struct nand_chip *nand;
|
|
struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
|
|
int err = 0;
|
|
|
|
if (!mtd) {
|
|
printf("nand: error: no NAND devices found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
nand = mtd_to_nand(mtd);
|
|
nand->options |= NAND_OWN_BUFFERS;
|
|
nand->options &= ~NAND_SUBPAGE_READ;
|
|
/* Setup the ecc configurations again */
|
|
if (hardware) {
|
|
if (eccstrength == 1) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_HAM1_CODE_HW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else if (eccstrength == 8) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_BCH8_CODE_HW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else if (eccstrength == 16) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_BCH16_CODE_HW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else {
|
|
printf("nand: error: unsupported ECC scheme\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (eccstrength == 1) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_HAM1_CODE_SW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else if (eccstrength == 8) {
|
|
err = omap_select_ecc_scheme(nand,
|
|
OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
|
|
mtd->writesize, mtd->oobsize);
|
|
} else {
|
|
printf("nand: error: unsupported ECC scheme\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Update NAND handling after ECC mode switch */
|
|
if (!err)
|
|
err = nand_scan_tail(mtd);
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_SPL_BUILD */
|
|
|
|
/*
|
|
* Board-specific NAND initialization. The following members of the
|
|
* argument are board-specific:
|
|
* - IO_ADDR_R: address to read the 8 I/O lines of the flash device
|
|
* - IO_ADDR_W: address to write the 8 I/O lines of the flash device
|
|
* - cmd_ctrl: hardwarespecific function for accesing control-lines
|
|
* - waitfunc: hardwarespecific function for accesing device ready/busy line
|
|
* - ecc.hwctl: function to enable (reset) hardware ecc generator
|
|
* - ecc.mode: mode of ecc, see defines
|
|
* - chip_delay: chip dependent delay for transfering data from array to
|
|
* read regs (tR)
|
|
* - options: various chip options. They can partly be set to inform
|
|
* nand_scan about special functionality. See the defines for further
|
|
* explanation
|
|
*/
|
|
int board_nand_init(struct nand_chip *nand)
|
|
{
|
|
int32_t gpmc_config = 0;
|
|
int cs = cs_next++;
|
|
int err = 0;
|
|
/*
|
|
* xloader/Uboot's gpmc configuration would have configured GPMC for
|
|
* nand type of memory. The following logic scans and latches on to the
|
|
* first CS with NAND type memory.
|
|
* TBD: need to make this logic generic to handle multiple CS NAND
|
|
* devices.
|
|
*/
|
|
while (cs < GPMC_MAX_CS) {
|
|
/* Check if NAND type is set */
|
|
if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
|
|
/* Found it!! */
|
|
break;
|
|
}
|
|
cs++;
|
|
}
|
|
if (cs >= GPMC_MAX_CS) {
|
|
printf("nand: error: Unable to find NAND settings in "
|
|
"GPMC Configuration - quitting\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
gpmc_config = readl(&gpmc_cfg->config);
|
|
/* Disable Write protect */
|
|
gpmc_config |= 0x10;
|
|
writel(gpmc_config, &gpmc_cfg->config);
|
|
|
|
nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
|
|
nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
|
|
omap_nand_info[cs].control = NULL;
|
|
omap_nand_info[cs].cs = cs;
|
|
omap_nand_info[cs].ws = wscfg[cs];
|
|
nand_set_controller_data(nand, &omap_nand_info[cs]);
|
|
nand->cmd_ctrl = omap_nand_hwcontrol;
|
|
nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
|
|
nand->chip_delay = 100;
|
|
nand->ecc.layout = &omap_ecclayout;
|
|
|
|
/* configure driver and controller based on NAND device bus-width */
|
|
gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
|
|
#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
|
|
nand->options |= NAND_BUSWIDTH_16;
|
|
writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
|
|
#else
|
|
nand->options &= ~NAND_BUSWIDTH_16;
|
|
writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
|
|
#endif
|
|
/* select ECC scheme */
|
|
#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
|
|
err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
|
|
CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
|
|
#else
|
|
/* pagesize and oobsize are not required to configure sw ecc-scheme */
|
|
err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
|
|
0, 0);
|
|
#endif
|
|
if (err)
|
|
return err;
|
|
|
|
#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
|
|
nand->read_buf = omap_nand_read_prefetch;
|
|
#else
|
|
if (nand->options & NAND_BUSWIDTH_16)
|
|
nand->read_buf = nand_read_buf16;
|
|
else
|
|
nand->read_buf = nand_read_buf;
|
|
#endif
|
|
|
|
nand->dev_ready = omap_dev_ready;
|
|
|
|
return 0;
|
|
}
|