u-boot/include/fdtdec.h
Simon Glass 5da38086bd x86: dts: Add compatible string for Intel ICH9 SPI controller
Add this to the enum so that we can use the various fdtdec functions. A
later commit will move this driver to driver model.

Signed-off-by: Simon Glass <sjg@chromium.org>
2015-01-23 21:44:59 -07:00

811 lines
29 KiB
C

/*
* Copyright (c) 2011 The Chromium OS Authors.
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef __fdtdec_h
#define __fdtdec_h
/*
* This file contains convenience functions for decoding useful and
* enlightening information from FDTs. It is intended to be used by device
* drivers and board-specific code within U-Boot. It aims to reduce the
* amount of FDT munging required within U-Boot itself, so that driver code
* changes to support FDT are minimized.
*/
#include <libfdt.h>
#include <pci.h>
/*
* A typedef for a physical address. Note that fdt data is always big
* endian even on a litle endian machine.
*/
#ifdef CONFIG_PHYS_64BIT
typedef u64 fdt_addr_t;
typedef u64 fdt_size_t;
#define FDT_ADDR_T_NONE (-1ULL)
#define fdt_addr_to_cpu(reg) be64_to_cpu(reg)
#define fdt_size_to_cpu(reg) be64_to_cpu(reg)
#else
typedef u32 fdt_addr_t;
typedef u32 fdt_size_t;
#define FDT_ADDR_T_NONE (-1U)
#define fdt_addr_to_cpu(reg) be32_to_cpu(reg)
#define fdt_size_to_cpu(reg) be32_to_cpu(reg)
#endif
/* Information obtained about memory from the FDT */
struct fdt_memory {
fdt_addr_t start;
fdt_addr_t end;
};
/*
* Information about a resource. start is the first address of the resource
* and end is the last address (inclusive). The length of the resource will
* be equal to: end - start + 1.
*/
struct fdt_resource {
fdt_addr_t start;
fdt_addr_t end;
};
enum fdt_pci_space {
FDT_PCI_SPACE_CONFIG = 0,
FDT_PCI_SPACE_IO = 0x01000000,
FDT_PCI_SPACE_MEM32 = 0x02000000,
FDT_PCI_SPACE_MEM64 = 0x03000000,
FDT_PCI_SPACE_MEM32_PREF = 0x42000000,
FDT_PCI_SPACE_MEM64_PREF = 0x43000000,
};
#define FDT_PCI_ADDR_CELLS 3
#define FDT_PCI_SIZE_CELLS 2
#define FDT_PCI_REG_SIZE \
((FDT_PCI_ADDR_CELLS + FDT_PCI_SIZE_CELLS) * sizeof(u32))
/*
* The Open Firmware spec defines PCI physical address as follows:
*
* bits# 31 .... 24 23 .... 16 15 .... 08 07 .... 00
*
* phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr
* phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
* phys.lo cell: llllllll llllllll llllllll llllllll
*
* where:
*
* n: is 0 if the address is relocatable, 1 otherwise
* p: is 1 if addressable region is prefetchable, 0 otherwise
* t: is 1 if the address is aliased (for non-relocatable I/O) below 1MB
* (for Memory), or below 64KB (for relocatable I/O)
* ss: is the space code, denoting the address space
* bbbbbbbb: is the 8-bit Bus Number
* ddddd: is the 5-bit Device Number
* fff: is the 3-bit Function Number
* rrrrrrrr: is the 8-bit Register Number
* hhhhhhhh: is a 32-bit unsigned number
* llllllll: is a 32-bit unsigned number
*/
struct fdt_pci_addr {
u32 phys_hi;
u32 phys_mid;
u32 phys_lo;
};
/**
* Compute the size of a resource.
*
* @param res the resource to operate on
* @return the size of the resource
*/
static inline fdt_size_t fdt_resource_size(const struct fdt_resource *res)
{
return res->end - res->start + 1;
}
/**
* Compat types that we know about and for which we might have drivers.
* Each is named COMPAT_<dir>_<filename> where <dir> is the directory
* within drivers.
*/
enum fdt_compat_id {
COMPAT_UNKNOWN,
COMPAT_NVIDIA_TEGRA20_USB, /* Tegra20 USB port */
COMPAT_NVIDIA_TEGRA30_USB, /* Tegra30 USB port */
COMPAT_NVIDIA_TEGRA114_USB, /* Tegra114 USB port */
COMPAT_NVIDIA_TEGRA114_I2C, /* Tegra114 I2C w/single clock source */
COMPAT_NVIDIA_TEGRA20_I2C, /* Tegra20 i2c */
COMPAT_NVIDIA_TEGRA20_DVC, /* Tegra20 dvc (really just i2c) */
COMPAT_NVIDIA_TEGRA20_EMC, /* Tegra20 memory controller */
COMPAT_NVIDIA_TEGRA20_EMC_TABLE, /* Tegra20 memory timing table */
COMPAT_NVIDIA_TEGRA20_KBC, /* Tegra20 Keyboard */
COMPAT_NVIDIA_TEGRA20_NAND, /* Tegra2 NAND controller */
COMPAT_NVIDIA_TEGRA20_PWM, /* Tegra 2 PWM controller */
COMPAT_NVIDIA_TEGRA20_DC, /* Tegra 2 Display controller */
COMPAT_NVIDIA_TEGRA124_SDMMC, /* Tegra124 SDMMC controller */
COMPAT_NVIDIA_TEGRA30_SDMMC, /* Tegra30 SDMMC controller */
COMPAT_NVIDIA_TEGRA20_SDMMC, /* Tegra20 SDMMC controller */
COMPAT_NVIDIA_TEGRA20_SFLASH, /* Tegra 2 SPI flash controller */
COMPAT_NVIDIA_TEGRA20_SLINK, /* Tegra 2 SPI SLINK controller */
COMPAT_NVIDIA_TEGRA114_SPI, /* Tegra 114 SPI controller */
COMPAT_NVIDIA_TEGRA124_PCIE, /* Tegra 124 PCIe controller */
COMPAT_NVIDIA_TEGRA30_PCIE, /* Tegra 30 PCIe controller */
COMPAT_NVIDIA_TEGRA20_PCIE, /* Tegra 20 PCIe controller */
COMPAT_NVIDIA_TEGRA124_XUSB_PADCTL,
/* Tegra124 XUSB pad controller */
COMPAT_SMSC_LAN9215, /* SMSC 10/100 Ethernet LAN9215 */
COMPAT_SAMSUNG_EXYNOS5_SROMC, /* Exynos5 SROMC */
COMPAT_SAMSUNG_S3C2440_I2C, /* Exynos I2C Controller */
COMPAT_SAMSUNG_EXYNOS5_SOUND, /* Exynos Sound */
COMPAT_WOLFSON_WM8994_CODEC, /* Wolfson WM8994 Sound Codec */
COMPAT_SAMSUNG_EXYNOS_SPI, /* Exynos SPI */
COMPAT_GOOGLE_CROS_EC, /* Google CROS_EC Protocol */
COMPAT_GOOGLE_CROS_EC_KEYB, /* Google CROS_EC Keyboard */
COMPAT_SAMSUNG_EXYNOS_EHCI, /* Exynos EHCI controller */
COMPAT_SAMSUNG_EXYNOS5_XHCI, /* Exynos5 XHCI controller */
COMPAT_SAMSUNG_EXYNOS_USB_PHY, /* Exynos phy controller for usb2.0 */
COMPAT_SAMSUNG_EXYNOS5_USB3_PHY,/* Exynos phy controller for usb3.0 */
COMPAT_SAMSUNG_EXYNOS_TMU, /* Exynos TMU */
COMPAT_SAMSUNG_EXYNOS_FIMD, /* Exynos Display controller */
COMPAT_SAMSUNG_EXYNOS_MIPI_DSI, /* Exynos mipi dsi */
COMPAT_SAMSUNG_EXYNOS5_DP, /* Exynos Display port controller */
COMPAT_SAMSUNG_EXYNOS_DWMMC, /* Exynos DWMMC controller */
COMPAT_SAMSUNG_EXYNOS_MMC, /* Exynos MMC controller */
COMPAT_SAMSUNG_EXYNOS_SERIAL, /* Exynos UART */
COMPAT_MAXIM_MAX77686_PMIC, /* MAX77686 PMIC */
COMPAT_GENERIC_SPI_FLASH, /* Generic SPI Flash chip */
COMPAT_MAXIM_98095_CODEC, /* MAX98095 Codec */
COMPAT_INFINEON_SLB9635_TPM, /* Infineon SLB9635 TPM */
COMPAT_INFINEON_SLB9645_TPM, /* Infineon SLB9645 TPM */
COMPAT_SAMSUNG_EXYNOS5_I2C, /* Exynos5 High Speed I2C Controller */
COMPAT_SANDBOX_HOST_EMULATION, /* Sandbox emulation of a function */
COMPAT_SANDBOX_LCD_SDL, /* Sandbox LCD emulation with SDL */
COMPAT_TI_TPS65090, /* Texas Instrument TPS65090 */
COMPAT_NXP_PTN3460, /* NXP PTN3460 DP/LVDS bridge */
COMPAT_SAMSUNG_EXYNOS_SYSMMU, /* Exynos sysmmu */
COMPAT_PARADE_PS8625, /* Parade PS8622 EDP->LVDS bridge */
COMPAT_INTEL_LPC, /* Intel Low Pin Count I/F */
COMPAT_INTEL_MICROCODE, /* Intel microcode update */
COMPAT_MEMORY_SPD, /* Memory SPD information */
COMPAT_INTEL_PANTHERPOINT_AHCI, /* Intel Pantherpoint AHCI */
COMPAT_INTEL_MODEL_206AX, /* Intel Model 206AX CPU */
COMPAT_INTEL_GMA, /* Intel Graphics Media Accelerator */
COMPAT_AMS_AS3722, /* AMS AS3722 PMIC */
COMPAT_INTEL_ICH_SPI, /* Intel ICH7/9 SPI controller */
COMPAT_COUNT,
};
/* GPIOs are numbered from 0 */
enum {
FDT_GPIO_NONE = -1U, /* an invalid GPIO used to end our list */
FDT_GPIO_ACTIVE_LOW = 1 << 0, /* input is active low (else high) */
};
/* This is the state of a GPIO pin as defined by the fdt */
struct fdt_gpio_state {
const char *name; /* name of the fdt property defining this */
uint gpio; /* GPIO number, or FDT_GPIO_NONE if none */
u8 flags; /* FDT_GPIO_... flags */
};
/* This tells us whether a fdt_gpio_state record is valid or not */
#define fdt_gpio_isvalid(x) ((x)->gpio != FDT_GPIO_NONE)
/**
* Read the GPIO taking into account the polarity of the pin.
*
* @param gpio pointer to the decoded gpio
* @return value of the gpio if successful, < 0 if unsuccessful
*/
int fdtdec_get_gpio(struct fdt_gpio_state *gpio);
/**
* Write the GPIO taking into account the polarity of the pin.
*
* @param gpio pointer to the decoded gpio
* @return 0 if successful
*/
int fdtdec_set_gpio(struct fdt_gpio_state *gpio, int val);
/**
* Find the next numbered alias for a peripheral. This is used to enumerate
* all the peripherals of a certain type.
*
* Do the first call with *upto = 0. Assuming /aliases/<name>0 exists then
* this function will return a pointer to the node the alias points to, and
* then update *upto to 1. Next time you call this function, the next node
* will be returned.
*
* All nodes returned will match the compatible ID, as it is assumed that
* all peripherals use the same driver.
*
* @param blob FDT blob to use
* @param name Root name of alias to search for
* @param id Compatible ID to look for
* @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
*/
int fdtdec_next_alias(const void *blob, const char *name,
enum fdt_compat_id id, int *upto);
/**
* Find the compatible ID for a given node.
*
* Generally each node has at least one compatible string attached to it.
* This function looks through our list of known compatible strings and
* returns the corresponding ID which matches the compatible string.
*
* @param blob FDT blob to use
* @param node Node containing compatible string to find
* @return compatible ID, or COMPAT_UNKNOWN if we cannot find a match
*/
enum fdt_compat_id fdtdec_lookup(const void *blob, int node);
/**
* Find the next compatible node for a peripheral.
*
* Do the first call with node = 0. This function will return a pointer to
* the next compatible node. Next time you call this function, pass the
* value returned, and the next node will be provided.
*
* @param blob FDT blob to use
* @param node Start node for search
* @param id Compatible ID to look for (enum fdt_compat_id)
* @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
*/
int fdtdec_next_compatible(const void *blob, int node,
enum fdt_compat_id id);
/**
* Find the next compatible subnode for a peripheral.
*
* Do the first call with node set to the parent and depth = 0. This
* function will return the offset of the next compatible node. Next time
* you call this function, pass the node value returned last time, with
* depth unchanged, and the next node will be provided.
*
* @param blob FDT blob to use
* @param node Start node for search
* @param id Compatible ID to look for (enum fdt_compat_id)
* @param depthp Current depth (set to 0 before first call)
* @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
*/
int fdtdec_next_compatible_subnode(const void *blob, int node,
enum fdt_compat_id id, int *depthp);
/**
* Look up an address property in a node and return it as an address.
* The property must hold either one address with no trailing data or
* one address with a length. This is only tested on 32-bit machines.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @return address, if found, or FDT_ADDR_T_NONE if not
*/
fdt_addr_t fdtdec_get_addr(const void *blob, int node,
const char *prop_name);
/**
* Look up an address property in a node and return it as an address.
* The property must hold one address with a length. This is only tested
* on 32-bit machines.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @return address, if found, or FDT_ADDR_T_NONE if not
*/
fdt_addr_t fdtdec_get_addr_size(const void *blob, int node,
const char *prop_name, fdt_size_t *sizep);
/**
* Look at an address property in a node and return the pci address which
* corresponds to the given type in the form of fdt_pci_addr.
* The property must hold one fdt_pci_addr with a lengh.
*
* @param blob FDT blob
* @param node node to examine
* @param type pci address type (FDT_PCI_SPACE_xxx)
* @param prop_name name of property to find
* @param addr returns pci address in the form of fdt_pci_addr
* @return 0 if ok, negative on error
*/
int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type,
const char *prop_name, struct fdt_pci_addr *addr);
/**
* Look at the compatible property of a device node that represents a PCI
* device and extract pci vendor id and device id from it.
*
* @param blob FDT blob
* @param node node to examine
* @param vendor vendor id of the pci device
* @param device device id of the pci device
* @return 0 if ok, negative on error
*/
int fdtdec_get_pci_vendev(const void *blob, int node,
u16 *vendor, u16 *device);
/**
* Look at the pci address of a device node that represents a PCI device
* and parse the bus, device and function number from it.
*
* @param blob FDT blob
* @param node node to examine
* @param addr pci address in the form of fdt_pci_addr
* @param bdf returns bus, device, function triplet
* @return 0 if ok, negative on error
*/
int fdtdec_get_pci_bdf(const void *blob, int node,
struct fdt_pci_addr *addr, pci_dev_t *bdf);
/**
* Look at the pci address of a device node that represents a PCI device
* and return base address of the pci device's registers.
*
* @param blob FDT blob
* @param node node to examine
* @param addr pci address in the form of fdt_pci_addr
* @param bar returns base address of the pci device's registers
* @return 0 if ok, negative on error
*/
int fdtdec_get_pci_bar32(const void *blob, int node,
struct fdt_pci_addr *addr, u32 *bar);
/**
* Look up a 32-bit integer property in a node and return it. The property
* must have at least 4 bytes of data. The value of the first cell is
* returned.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param default_val default value to return if the property is not found
* @return integer value, if found, or default_val if not
*/
s32 fdtdec_get_int(const void *blob, int node, const char *prop_name,
s32 default_val);
/**
* Look up a 64-bit integer property in a node and return it. The property
* must have at least 8 bytes of data (2 cells). The first two cells are
* concatenated to form a 8 bytes value, where the first cell is top half and
* the second cell is bottom half.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param default_val default value to return if the property is not found
* @return integer value, if found, or default_val if not
*/
uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name,
uint64_t default_val);
/**
* Checks whether a node is enabled.
* This looks for a 'status' property. If this exists, then returns 1 if
* the status is 'ok' and 0 otherwise. If there is no status property,
* it returns 1 on the assumption that anything mentioned should be enabled
* by default.
*
* @param blob FDT blob
* @param node node to examine
* @return integer value 0 (not enabled) or 1 (enabled)
*/
int fdtdec_get_is_enabled(const void *blob, int node);
/**
* Make sure we have a valid fdt available to control U-Boot.
*
* If not, a message is printed to the console if the console is ready.
*
* @return 0 if all ok, -1 if not
*/
int fdtdec_prepare_fdt(void);
/**
* Checks that we have a valid fdt available to control U-Boot.
* However, if not then for the moment nothing is done, since this function
* is called too early to panic().
*
* @returns 0
*/
int fdtdec_check_fdt(void);
/**
* Find the nodes for a peripheral and return a list of them in the correct
* order. This is used to enumerate all the peripherals of a certain type.
*
* To use this, optionally set up a /aliases node with alias properties for
* a peripheral. For example, for usb you could have:
*
* aliases {
* usb0 = "/ehci@c5008000";
* usb1 = "/ehci@c5000000";
* };
*
* Pass "usb" as the name to this function and will return a list of two
* nodes offsets: /ehci@c5008000 and ehci@c5000000.
*
* All nodes returned will match the compatible ID, as it is assumed that
* all peripherals use the same driver.
*
* If no alias node is found, then the node list will be returned in the
* order found in the fdt. If the aliases mention a node which doesn't
* exist, then this will be ignored. If nodes are found with no aliases,
* they will be added in any order.
*
* If there is a gap in the aliases, then this function return a 0 node at
* that position. The return value will also count these gaps.
*
* This function checks node properties and will not return nodes which are
* marked disabled (status = "disabled").
*
* @param blob FDT blob to use
* @param name Root name of alias to search for
* @param id Compatible ID to look for
* @param node_list Place to put list of found nodes
* @param maxcount Maximum number of nodes to find
* @return number of nodes found on success, FTD_ERR_... on error
*/
int fdtdec_find_aliases_for_id(const void *blob, const char *name,
enum fdt_compat_id id, int *node_list, int maxcount);
/*
* This function is similar to fdtdec_find_aliases_for_id() except that it
* adds to the node_list that is passed in. Any 0 elements are considered
* available for allocation - others are considered already used and are
* skipped.
*
* You can use this by calling fdtdec_find_aliases_for_id() with an
* uninitialised array, then setting the elements that are returned to -1,
* say, then calling this function, perhaps with a different compat id.
* Any elements you get back that are >0 are new nodes added by the call
* to this function.
*
* Note that if you have some nodes with aliases and some without, you are
* sailing close to the wind. The call to fdtdec_find_aliases_for_id() with
* one compat_id may fill in positions for which you have aliases defined
* for another compat_id. When you later call *this* function with the second
* compat_id, the alias positions may already be used. A debug warning may
* be generated in this case, but it is safest to define aliases for all
* nodes when you care about the ordering.
*/
int fdtdec_add_aliases_for_id(const void *blob, const char *name,
enum fdt_compat_id id, int *node_list, int maxcount);
/**
* Get the alias sequence number of a node
*
* This works out whether a node is pointed to by an alias, and if so, the
* sequence number of that alias. Aliases are of the form <base><num> where
* <num> is the sequence number. For example spi2 would be sequence number
* 2.
*
* @param blob Device tree blob (if NULL, then error is returned)
* @param base Base name for alias (before the underscore)
* @param node Node to look up
* @param seqp This is set to the sequence number if one is found,
* but otherwise the value is left alone
* @return 0 if a sequence was found, -ve if not
*/
int fdtdec_get_alias_seq(const void *blob, const char *base, int node,
int *seqp);
/**
* Get the offset of the given chosen node
*
* This looks up a property in /chosen containing the path to another node,
* then finds the offset of that node.
*
* @param blob Device tree blob (if NULL, then error is returned)
* @param name Property name, e.g. "stdout-path"
* @return Node offset referred to by that chosen node, or -ve FDT_ERR_...
*/
int fdtdec_get_chosen_node(const void *blob, const char *name);
/*
* Get the name for a compatible ID
*
* @param id Compatible ID to look for
* @return compatible string for that id
*/
const char *fdtdec_get_compatible(enum fdt_compat_id id);
/* Look up a phandle and follow it to its node. Then return the offset
* of that node.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @return node offset if found, -ve error code on error
*/
int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name);
/**
* Look up a property in a node and return its contents in an integer
* array of given length. The property must have at least enough data for
* the array (4*count bytes). It may have more, but this will be ignored.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param array array to fill with data
* @param count number of array elements
* @return 0 if ok, or -FDT_ERR_NOTFOUND if the property is not found,
* or -FDT_ERR_BADLAYOUT if not enough data
*/
int fdtdec_get_int_array(const void *blob, int node, const char *prop_name,
u32 *array, int count);
/**
* Look up a property in a node and return its contents in an integer
* array of given length. The property must exist but may have less data that
* expected (4*count bytes). It may have more, but this will be ignored.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param array array to fill with data
* @param count number of array elements
* @return number of array elements if ok, or -FDT_ERR_NOTFOUND if the
* property is not found
*/
int fdtdec_get_int_array_count(const void *blob, int node,
const char *prop_name, u32 *array, int count);
/**
* Look up a property in a node and return a pointer to its contents as a
* unsigned int array of given length. The property must have at least enough
* data for the array ('count' cells). It may have more, but this will be
* ignored. The data is not copied.
*
* Note that you must access elements of the array with fdt32_to_cpu(),
* since the elements will be big endian even on a little endian machine.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param count number of array elements
* @return pointer to array if found, or NULL if the property is not
* found or there is not enough data
*/
const u32 *fdtdec_locate_array(const void *blob, int node,
const char *prop_name, int count);
/**
* Look up a boolean property in a node and return it.
*
* A boolean properly is true if present in the device tree and false if not
* present, regardless of its value.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @return 1 if the properly is present; 0 if it isn't present
*/
int fdtdec_get_bool(const void *blob, int node, const char *prop_name);
/**
* Decode a single GPIOs from an FDT.
*
* If the property is not found, then the GPIO structure will still be
* initialised, with gpio set to FDT_GPIO_NONE. This makes it easy to
* provide optional GPIOs.
*
* @param blob FDT blob to use
* @param node Node to look at
* @param prop_name Node property name
* @param gpio gpio elements to fill from FDT
* @return 0 if ok, -FDT_ERR_NOTFOUND if the property is missing.
*/
int fdtdec_decode_gpio(const void *blob, int node, const char *prop_name,
struct fdt_gpio_state *gpio);
/**
* Decode a list of GPIOs from an FDT. This creates a list of GPIOs with no
* terminating item.
*
* @param blob FDT blob to use
* @param node Node to look at
* @param prop_name Node property name
* @param gpio Array of gpio elements to fill from FDT. This will be
* untouched if either 0 or an error is returned
* @param max_count Maximum number of elements allowed
* @return number of GPIOs read if ok, -FDT_ERR_BADLAYOUT if max_count would
* be exceeded, or -FDT_ERR_NOTFOUND if the property is missing.
*/
int fdtdec_decode_gpios(const void *blob, int node, const char *prop_name,
struct fdt_gpio_state *gpio, int max_count);
/**
* Set up a GPIO pin according to the provided gpio information. At present this
* just requests the GPIO.
*
* If the gpio is FDT_GPIO_NONE, no action is taken. This makes it easy to
* deal with optional GPIOs.
*
* @param gpio GPIO info to use for set up
* @return 0 if all ok or gpio was FDT_GPIO_NONE; -1 on error
*/
int fdtdec_setup_gpio(struct fdt_gpio_state *gpio);
/**
* Look in the FDT for a config item with the given name and return its value
* as a 32-bit integer. The property must have at least 4 bytes of data. The
* value of the first cell is returned.
*
* @param blob FDT blob to use
* @param prop_name Node property name
* @param default_val default value to return if the property is not found
* @return integer value, if found, or default_val if not
*/
int fdtdec_get_config_int(const void *blob, const char *prop_name,
int default_val);
/**
* Look in the FDT for a config item with the given name
* and return whether it exists.
*
* @param blob FDT blob
* @param prop_name property name to look up
* @return 1, if it exists, or 0 if not
*/
int fdtdec_get_config_bool(const void *blob, const char *prop_name);
/**
* Look in the FDT for a config item with the given name and return its value
* as a string.
*
* @param blob FDT blob
* @param prop_name property name to look up
* @returns property string, NULL on error.
*/
char *fdtdec_get_config_string(const void *blob, const char *prop_name);
/*
* Look up a property in a node and return its contents in a byte
* array of given length. The property must have at least enough data for
* the array (count bytes). It may have more, but this will be ignored.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param array array to fill with data
* @param count number of array elements
* @return 0 if ok, or -FDT_ERR_MISSING if the property is not found,
* or -FDT_ERR_BADLAYOUT if not enough data
*/
int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name,
u8 *array, int count);
/**
* Look up a property in a node and return a pointer to its contents as a
* byte array of given length. The property must have at least enough data
* for the array (count bytes). It may have more, but this will be ignored.
* The data is not copied.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param count number of array elements
* @return pointer to byte array if found, or NULL if the property is not
* found or there is not enough data
*/
const u8 *fdtdec_locate_byte_array(const void *blob, int node,
const char *prop_name, int count);
/**
* Look up a property in a node which contains a memory region address and
* size. Then return a pointer to this address.
*
* The property must hold one address with a length. This is only tested on
* 32-bit machines.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param basep Returns base address of region
* @param size Returns size of region
* @return 0 if ok, -1 on error (property not found)
*/
int fdtdec_decode_region(const void *blob, int node, const char *prop_name,
fdt_addr_t *basep, fdt_size_t *sizep);
enum fmap_compress_t {
FMAP_COMPRESS_NONE,
FMAP_COMPRESS_LZO,
};
enum fmap_hash_t {
FMAP_HASH_NONE,
FMAP_HASH_SHA1,
FMAP_HASH_SHA256,
};
/* A flash map entry, containing an offset and length */
struct fmap_entry {
uint32_t offset;
uint32_t length;
uint32_t used; /* Number of bytes used in region */
enum fmap_compress_t compress_algo; /* Compression type */
enum fmap_hash_t hash_algo; /* Hash algorithm */
const uint8_t *hash; /* Hash value */
int hash_size; /* Hash size */
};
/**
* Read a flash entry from the fdt
*
* @param blob FDT blob
* @param node Offset of node to read
* @param name Name of node being read
* @param entry Place to put offset and size of this node
* @return 0 if ok, -ve on error
*/
int fdtdec_read_fmap_entry(const void *blob, int node, const char *name,
struct fmap_entry *entry);
/**
* Obtain an indexed resource from a device property.
*
* @param fdt FDT blob
* @param node node to examine
* @param property name of the property to parse
* @param index index of the resource to retrieve
* @param res returns the resource
* @return 0 if ok, negative on error
*/
int fdt_get_resource(const void *fdt, int node, const char *property,
unsigned int index, struct fdt_resource *res);
/**
* Obtain a named resource from a device property.
*
* Look up the index of the name in a list of strings and return the resource
* at that index.
*
* @param fdt FDT blob
* @param node node to examine
* @param property name of the property to parse
* @param prop_names name of the property containing the list of names
* @param name the name of the entry to look up
* @param res returns the resource
*/
int fdt_get_named_resource(const void *fdt, int node, const char *property,
const char *prop_names, const char *name,
struct fdt_resource *res);
/**
* Decode a named region within a memory bank of a given type.
*
* This function handles selection of a memory region. The region is
* specified as an offset/size within a particular type of memory.
*
* The properties used are:
*
* <mem_type>-memory<suffix> for the name of the memory bank
* <mem_type>-offset<suffix> for the offset in that bank
*
* The property value must have an offset and a size. The function checks
* that the region is entirely within the memory bank.5
*
* @param blob FDT blob
* @param node Node containing the properties (-1 for /config)
* @param mem_type Type of memory to use, which is a name, such as
* "u-boot" or "kernel".
* @param suffix String to append to the memory/offset
* property names
* @param basep Returns base of region
* @param sizep Returns size of region
* @return 0 if OK, -ive on error
*/
int fdtdec_decode_memory_region(const void *blob, int node,
const char *mem_type, const char *suffix,
fdt_addr_t *basep, fdt_size_t *sizep);
#endif