mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-12 21:28:58 +00:00
37e3a36a54
This patch basically adds two new commands for loadig secure images. 1. zynq rsa adds support to load secure image which can be both authenticated or encrypted or both authenticated and encrypted image in xilinx bootimage(BOOT.bin) format. 2. zynq aes command adds support to decrypt and load encrypted image back to DDR as per destination address. The image has to be encrypted using xilinx bootgen tool and to get only the encrypted image from tool use -split option while invoking bootgen. Signed-off-by: Siva Durga Prasad Paladugu <siva.durga.paladugu@xilinx.com> Signed-off-by: Michal Simek <michal.simek@xilinx.com>
353 lines
8.9 KiB
C
353 lines
8.9 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (c) 2013, Google Inc.
|
|
*/
|
|
|
|
#ifndef USE_HOSTCC
|
|
#include <common.h>
|
|
#include <fdtdec.h>
|
|
#include <asm/types.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/errno.h>
|
|
#include <asm/types.h>
|
|
#include <asm/unaligned.h>
|
|
#else
|
|
#include "fdt_host.h"
|
|
#include "mkimage.h"
|
|
#include <fdt_support.h>
|
|
#endif
|
|
#include <u-boot/rsa.h>
|
|
#include <u-boot/rsa-mod-exp.h>
|
|
|
|
#define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby)))
|
|
|
|
#define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a)
|
|
#define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a))
|
|
|
|
/* Default public exponent for backward compatibility */
|
|
#define RSA_DEFAULT_PUBEXP 65537
|
|
|
|
/**
|
|
* subtract_modulus() - subtract modulus from the given value
|
|
*
|
|
* @key: Key containing modulus to subtract
|
|
* @num: Number to subtract modulus from, as little endian word array
|
|
*/
|
|
static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
|
|
{
|
|
int64_t acc = 0;
|
|
uint i;
|
|
|
|
for (i = 0; i < key->len; i++) {
|
|
acc += (uint64_t)num[i] - key->modulus[i];
|
|
num[i] = (uint32_t)acc;
|
|
acc >>= 32;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* greater_equal_modulus() - check if a value is >= modulus
|
|
*
|
|
* @key: Key containing modulus to check
|
|
* @num: Number to check against modulus, as little endian word array
|
|
* @return 0 if num < modulus, 1 if num >= modulus
|
|
*/
|
|
static int greater_equal_modulus(const struct rsa_public_key *key,
|
|
uint32_t num[])
|
|
{
|
|
int i;
|
|
|
|
for (i = (int)key->len - 1; i >= 0; i--) {
|
|
if (num[i] < key->modulus[i])
|
|
return 0;
|
|
if (num[i] > key->modulus[i])
|
|
return 1;
|
|
}
|
|
|
|
return 1; /* equal */
|
|
}
|
|
|
|
/**
|
|
* montgomery_mul_add_step() - Perform montgomery multiply-add step
|
|
*
|
|
* Operation: montgomery result[] += a * b[] / n0inv % modulus
|
|
*
|
|
* @key: RSA key
|
|
* @result: Place to put result, as little endian word array
|
|
* @a: Multiplier
|
|
* @b: Multiplicand, as little endian word array
|
|
*/
|
|
static void montgomery_mul_add_step(const struct rsa_public_key *key,
|
|
uint32_t result[], const uint32_t a, const uint32_t b[])
|
|
{
|
|
uint64_t acc_a, acc_b;
|
|
uint32_t d0;
|
|
uint i;
|
|
|
|
acc_a = (uint64_t)a * b[0] + result[0];
|
|
d0 = (uint32_t)acc_a * key->n0inv;
|
|
acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
|
|
for (i = 1; i < key->len; i++) {
|
|
acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
|
|
acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
|
|
(uint32_t)acc_a;
|
|
result[i - 1] = (uint32_t)acc_b;
|
|
}
|
|
|
|
acc_a = (acc_a >> 32) + (acc_b >> 32);
|
|
|
|
result[i - 1] = (uint32_t)acc_a;
|
|
|
|
if (acc_a >> 32)
|
|
subtract_modulus(key, result);
|
|
}
|
|
|
|
/**
|
|
* montgomery_mul() - Perform montgomery mutitply
|
|
*
|
|
* Operation: montgomery result[] = a[] * b[] / n0inv % modulus
|
|
*
|
|
* @key: RSA key
|
|
* @result: Place to put result, as little endian word array
|
|
* @a: Multiplier, as little endian word array
|
|
* @b: Multiplicand, as little endian word array
|
|
*/
|
|
static void montgomery_mul(const struct rsa_public_key *key,
|
|
uint32_t result[], uint32_t a[], const uint32_t b[])
|
|
{
|
|
uint i;
|
|
|
|
for (i = 0; i < key->len; ++i)
|
|
result[i] = 0;
|
|
for (i = 0; i < key->len; ++i)
|
|
montgomery_mul_add_step(key, result, a[i], b);
|
|
}
|
|
|
|
/**
|
|
* num_pub_exponent_bits() - Number of bits in the public exponent
|
|
*
|
|
* @key: RSA key
|
|
* @num_bits: Storage for the number of public exponent bits
|
|
*/
|
|
static int num_public_exponent_bits(const struct rsa_public_key *key,
|
|
int *num_bits)
|
|
{
|
|
uint64_t exponent;
|
|
int exponent_bits;
|
|
const uint max_bits = (sizeof(exponent) * 8);
|
|
|
|
exponent = key->exponent;
|
|
exponent_bits = 0;
|
|
|
|
if (!exponent) {
|
|
*num_bits = exponent_bits;
|
|
return 0;
|
|
}
|
|
|
|
for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits)
|
|
if (!(exponent >>= 1)) {
|
|
*num_bits = exponent_bits;
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* is_public_exponent_bit_set() - Check if a bit in the public exponent is set
|
|
*
|
|
* @key: RSA key
|
|
* @pos: The bit position to check
|
|
*/
|
|
static int is_public_exponent_bit_set(const struct rsa_public_key *key,
|
|
int pos)
|
|
{
|
|
return key->exponent & (1ULL << pos);
|
|
}
|
|
|
|
/**
|
|
* pow_mod() - in-place public exponentiation
|
|
*
|
|
* @key: RSA key
|
|
* @inout: Big-endian word array containing value and result
|
|
*/
|
|
static int pow_mod(const struct rsa_public_key *key, uint32_t *inout)
|
|
{
|
|
uint32_t *result, *ptr;
|
|
uint i;
|
|
int j, k;
|
|
|
|
/* Sanity check for stack size - key->len is in 32-bit words */
|
|
if (key->len > RSA_MAX_KEY_BITS / 32) {
|
|
debug("RSA key words %u exceeds maximum %d\n", key->len,
|
|
RSA_MAX_KEY_BITS / 32);
|
|
return -EINVAL;
|
|
}
|
|
|
|
uint32_t val[key->len], acc[key->len], tmp[key->len];
|
|
uint32_t a_scaled[key->len];
|
|
result = tmp; /* Re-use location. */
|
|
|
|
/* Convert from big endian byte array to little endian word array. */
|
|
for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
|
|
val[i] = get_unaligned_be32(ptr);
|
|
|
|
if (0 != num_public_exponent_bits(key, &k))
|
|
return -EINVAL;
|
|
|
|
if (k < 2) {
|
|
debug("Public exponent is too short (%d bits, minimum 2)\n",
|
|
k);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_public_exponent_bit_set(key, 0)) {
|
|
debug("LSB of RSA public exponent must be set.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* the bit at e[k-1] is 1 by definition, so start with: C := M */
|
|
montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */
|
|
/* retain scaled version for intermediate use */
|
|
memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0]));
|
|
|
|
for (j = k - 2; j > 0; --j) {
|
|
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
|
|
|
|
if (is_public_exponent_bit_set(key, j)) {
|
|
/* acc = tmp * val / R mod n */
|
|
montgomery_mul(key, acc, tmp, a_scaled);
|
|
} else {
|
|
/* e[j] == 0, copy tmp back to acc for next operation */
|
|
memcpy(acc, tmp, key->len * sizeof(acc[0]));
|
|
}
|
|
}
|
|
|
|
/* the bit at e[0] is always 1 */
|
|
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
|
|
montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */
|
|
memcpy(result, acc, key->len * sizeof(result[0]));
|
|
|
|
/* Make sure result < mod; result is at most 1x mod too large. */
|
|
if (greater_equal_modulus(key, result))
|
|
subtract_modulus(key, result);
|
|
|
|
/* Convert to bigendian byte array */
|
|
for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
|
|
put_unaligned_be32(result[i], ptr);
|
|
return 0;
|
|
}
|
|
|
|
static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
dst[i] = fdt32_to_cpu(src[len - 1 - i]);
|
|
}
|
|
|
|
int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len,
|
|
struct key_prop *prop, uint8_t *out)
|
|
{
|
|
struct rsa_public_key key;
|
|
int ret;
|
|
|
|
if (!prop) {
|
|
debug("%s: Skipping invalid prop", __func__);
|
|
return -EBADF;
|
|
}
|
|
key.n0inv = prop->n0inv;
|
|
key.len = prop->num_bits;
|
|
|
|
if (!prop->public_exponent)
|
|
key.exponent = RSA_DEFAULT_PUBEXP;
|
|
else
|
|
key.exponent =
|
|
fdt64_to_cpu(*((uint64_t *)(prop->public_exponent)));
|
|
|
|
if (!key.len || !prop->modulus || !prop->rr) {
|
|
debug("%s: Missing RSA key info", __func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Sanity check for stack size */
|
|
if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) {
|
|
debug("RSA key bits %u outside allowed range %d..%d\n",
|
|
key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
|
|
return -EFAULT;
|
|
}
|
|
key.len /= sizeof(uint32_t) * 8;
|
|
uint32_t key1[key.len], key2[key.len];
|
|
|
|
key.modulus = key1;
|
|
key.rr = key2;
|
|
rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len);
|
|
rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len);
|
|
if (!key.modulus || !key.rr) {
|
|
debug("%s: Out of memory", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
uint32_t buf[sig_len / sizeof(uint32_t)];
|
|
|
|
memcpy(buf, sig, sig_len);
|
|
|
|
ret = pow_mod(&key, buf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memcpy(out, buf, sig_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_CMD_ZYNQ_RSA)
|
|
/**
|
|
* zynq_pow_mod - in-place public exponentiation
|
|
*
|
|
* @keyptr: RSA key
|
|
* @inout: Big-endian word array containing value and result
|
|
* @return 0 on successful calculation, otherwise failure error code
|
|
*
|
|
* FIXME: Use pow_mod() instead of zynq_pow_mod()
|
|
* pow_mod calculation required for zynq is bit different from
|
|
* pw_mod above here, hence defined zynq specific routine.
|
|
*/
|
|
int zynq_pow_mod(u32 *keyptr, u32 *inout)
|
|
{
|
|
u32 *result, *ptr;
|
|
uint i;
|
|
struct rsa_public_key *key;
|
|
u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES];
|
|
|
|
key = (struct rsa_public_key *)keyptr;
|
|
|
|
/* Sanity check for stack size - key->len is in 32-bit words */
|
|
if (key->len > RSA_MAX_KEY_BITS / 32) {
|
|
debug("RSA key words %u exceeds maximum %d\n", key->len,
|
|
RSA_MAX_KEY_BITS / 32);
|
|
return -EINVAL;
|
|
}
|
|
|
|
result = tmp; /* Re-use location. */
|
|
|
|
for (i = 0, ptr = inout; i < key->len; i++, ptr++)
|
|
val[i] = *(ptr);
|
|
|
|
montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */
|
|
for (i = 0; i < 16; i += 2) {
|
|
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */
|
|
montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */
|
|
}
|
|
montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */
|
|
|
|
/* Make sure result < mod; result is at most 1x mod too large. */
|
|
if (greater_equal_modulus(key, result))
|
|
subtract_modulus(key, result);
|
|
|
|
for (i = 0, ptr = inout; i < key->len; i++, ptr++)
|
|
*ptr = result[i];
|
|
|
|
return 0;
|
|
}
|
|
#endif
|