mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-03 18:10:13 +00:00
f7e1de4c6a
This adds the dirmap API originally introduced in Linux commit aa167f3fed0c ("spi: spi-mem: Add a new API to support direct mapping"). This also includes several follow-up patches and fixes. Changes from Linux include: * Added Kconfig option * Changed struct device to struct udevice * Changed struct spi_mem to struct spi_slave This patch is obtained from the following patch https://patchwork.ozlabs.org/project/uboot/patch/20210205043924.149504-3-seanga2@gmail.com/ The corresponding Linux kernel SHA1 is aa167f3fed0c. Signed-off-by: Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com> Signed-off-by: Sean Anderson <seanga2@gmail.com> Acked-by: Pratyush Yadav <p.yadav@ti.com>
835 lines
22 KiB
C
835 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2018 Exceet Electronics GmbH
|
|
* Copyright (C) 2018 Bootlin
|
|
*
|
|
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
|
|
*/
|
|
|
|
#ifndef __UBOOT__
|
|
#include <log.h>
|
|
#include <dm/devres.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include "internals.h"
|
|
#else
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <malloc.h>
|
|
#include <spi.h>
|
|
#include <spi.h>
|
|
#include <spi-mem.h>
|
|
#include <dm/device_compat.h>
|
|
#include <dm/devres.h>
|
|
#include <linux/bug.h>
|
|
#endif
|
|
|
|
#ifndef __UBOOT__
|
|
/**
|
|
* spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
|
|
* memory operation
|
|
* @ctlr: the SPI controller requesting this dma_map()
|
|
* @op: the memory operation containing the buffer to map
|
|
* @sgt: a pointer to a non-initialized sg_table that will be filled by this
|
|
* function
|
|
*
|
|
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
|
* This helper prepares everything for you and provides a ready-to-use
|
|
* sg_table. This function is not intended to be called from spi drivers.
|
|
* Only SPI controller drivers should use it.
|
|
* Note that the caller must ensure the memory region pointed by
|
|
* op->data.buf.{in,out} is DMA-able before calling this function.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
|
|
const struct spi_mem_op *op,
|
|
struct sg_table *sgt)
|
|
{
|
|
struct device *dmadev;
|
|
|
|
if (!op->data.nbytes)
|
|
return -EINVAL;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
|
dmadev = ctlr->dma_tx->device->dev;
|
|
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
|
dmadev = ctlr->dma_rx->device->dev;
|
|
else
|
|
dmadev = ctlr->dev.parent;
|
|
|
|
if (!dmadev)
|
|
return -EINVAL;
|
|
|
|
return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
|
|
op->data.dir == SPI_MEM_DATA_IN ?
|
|
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
|
|
|
|
/**
|
|
* spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
|
|
* memory operation
|
|
* @ctlr: the SPI controller requesting this dma_unmap()
|
|
* @op: the memory operation containing the buffer to unmap
|
|
* @sgt: a pointer to an sg_table previously initialized by
|
|
* spi_controller_dma_map_mem_op_data()
|
|
*
|
|
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
|
* This helper prepares things so that the CPU can access the
|
|
* op->data.buf.{in,out} buffer again.
|
|
*
|
|
* This function is not intended to be called from SPI drivers. Only SPI
|
|
* controller drivers should use it.
|
|
*
|
|
* This function should be called after the DMA operation has finished and is
|
|
* only valid if the previous spi_controller_dma_map_mem_op_data() call
|
|
* returned 0.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
|
|
const struct spi_mem_op *op,
|
|
struct sg_table *sgt)
|
|
{
|
|
struct device *dmadev;
|
|
|
|
if (!op->data.nbytes)
|
|
return;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
|
dmadev = ctlr->dma_tx->device->dev;
|
|
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
|
dmadev = ctlr->dma_rx->device->dev;
|
|
else
|
|
dmadev = ctlr->dev.parent;
|
|
|
|
spi_unmap_buf(ctlr, dmadev, sgt,
|
|
op->data.dir == SPI_MEM_DATA_IN ?
|
|
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
|
|
#endif /* __UBOOT__ */
|
|
|
|
static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
|
|
{
|
|
u32 mode = slave->mode;
|
|
|
|
switch (buswidth) {
|
|
case 1:
|
|
return 0;
|
|
|
|
case 2:
|
|
if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
|
|
(!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
|
|
return 0;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
if ((tx && (mode & SPI_TX_QUAD)) ||
|
|
(!tx && (mode & SPI_RX_QUAD)))
|
|
return 0;
|
|
|
|
break;
|
|
case 8:
|
|
if ((tx && (mode & SPI_TX_OCTAL)) ||
|
|
(!tx && (mode & SPI_RX_OCTAL)))
|
|
return 0;
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static bool spi_mem_check_buswidth(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
|
|
return false;
|
|
|
|
if (op->addr.nbytes &&
|
|
spi_check_buswidth_req(slave, op->addr.buswidth, true))
|
|
return false;
|
|
|
|
if (op->dummy.nbytes &&
|
|
spi_check_buswidth_req(slave, op->dummy.buswidth, true))
|
|
return false;
|
|
|
|
if (op->data.dir != SPI_MEM_NO_DATA &&
|
|
spi_check_buswidth_req(slave, op->data.buswidth,
|
|
op->data.dir == SPI_MEM_DATA_OUT))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool spi_mem_dtr_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (op->cmd.buswidth == 8 && op->cmd.nbytes % 2)
|
|
return false;
|
|
|
|
if (op->addr.nbytes && op->addr.buswidth == 8 && op->addr.nbytes % 2)
|
|
return false;
|
|
|
|
if (op->dummy.nbytes && op->dummy.buswidth == 8 && op->dummy.nbytes % 2)
|
|
return false;
|
|
|
|
if (op->data.dir != SPI_MEM_NO_DATA &&
|
|
op->dummy.buswidth == 8 && op->data.nbytes % 2)
|
|
return false;
|
|
|
|
return spi_mem_check_buswidth(slave, op);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
|
|
|
|
bool spi_mem_default_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
|
|
return false;
|
|
|
|
if (op->cmd.nbytes != 1)
|
|
return false;
|
|
|
|
return spi_mem_check_buswidth(slave, op);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
|
|
|
|
/**
|
|
* spi_mem_supports_op() - Check if a memory device and the controller it is
|
|
* connected to support a specific memory operation
|
|
* @slave: the SPI device
|
|
* @op: the memory operation to check
|
|
*
|
|
* Some controllers are only supporting Single or Dual IOs, others might only
|
|
* support specific opcodes, or it can even be that the controller and device
|
|
* both support Quad IOs but the hardware prevents you from using it because
|
|
* only 2 IO lines are connected.
|
|
*
|
|
* This function checks whether a specific operation is supported.
|
|
*
|
|
* Return: true if @op is supported, false otherwise.
|
|
*/
|
|
bool spi_mem_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
|
|
if (ops->mem_ops && ops->mem_ops->supports_op)
|
|
return ops->mem_ops->supports_op(slave, op);
|
|
|
|
return spi_mem_default_supports_op(slave, op);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_supports_op);
|
|
|
|
/**
|
|
* spi_mem_exec_op() - Execute a memory operation
|
|
* @slave: the SPI device
|
|
* @op: the memory operation to execute
|
|
*
|
|
* Executes a memory operation.
|
|
*
|
|
* This function first checks that @op is supported and then tries to execute
|
|
* it.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
unsigned int pos = 0;
|
|
const u8 *tx_buf = NULL;
|
|
u8 *rx_buf = NULL;
|
|
int op_len;
|
|
u32 flag;
|
|
int ret;
|
|
int i;
|
|
|
|
if (!spi_mem_supports_op(slave, op))
|
|
return -ENOTSUPP;
|
|
|
|
ret = spi_claim_bus(slave);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ops->mem_ops && ops->mem_ops->exec_op) {
|
|
#ifndef __UBOOT__
|
|
/*
|
|
* Flush the message queue before executing our SPI memory
|
|
* operation to prevent preemption of regular SPI transfers.
|
|
*/
|
|
spi_flush_queue(ctlr);
|
|
|
|
if (ctlr->auto_runtime_pm) {
|
|
ret = pm_runtime_get_sync(ctlr->dev.parent);
|
|
if (ret < 0) {
|
|
dev_err(&ctlr->dev,
|
|
"Failed to power device: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
mutex_lock(&ctlr->bus_lock_mutex);
|
|
mutex_lock(&ctlr->io_mutex);
|
|
#endif
|
|
ret = ops->mem_ops->exec_op(slave, op);
|
|
|
|
#ifndef __UBOOT__
|
|
mutex_unlock(&ctlr->io_mutex);
|
|
mutex_unlock(&ctlr->bus_lock_mutex);
|
|
|
|
if (ctlr->auto_runtime_pm)
|
|
pm_runtime_put(ctlr->dev.parent);
|
|
#endif
|
|
|
|
/*
|
|
* Some controllers only optimize specific paths (typically the
|
|
* read path) and expect the core to use the regular SPI
|
|
* interface in other cases.
|
|
*/
|
|
if (!ret || ret != -ENOTSUPP) {
|
|
spi_release_bus(slave);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
|
|
/*
|
|
* Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
|
|
* we're guaranteed that this buffer is DMA-able, as required by the
|
|
* SPI layer.
|
|
*/
|
|
tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
|
|
if (!tmpbuf)
|
|
return -ENOMEM;
|
|
|
|
spi_message_init(&msg);
|
|
|
|
tmpbuf[0] = op->cmd.opcode;
|
|
xfers[xferpos].tx_buf = tmpbuf;
|
|
xfers[xferpos].len = op->cmd.nbytes;
|
|
xfers[xferpos].tx_nbits = op->cmd.buswidth;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen++;
|
|
|
|
if (op->addr.nbytes) {
|
|
int i;
|
|
|
|
for (i = 0; i < op->addr.nbytes; i++)
|
|
tmpbuf[i + 1] = op->addr.val >>
|
|
(8 * (op->addr.nbytes - i - 1));
|
|
|
|
xfers[xferpos].tx_buf = tmpbuf + 1;
|
|
xfers[xferpos].len = op->addr.nbytes;
|
|
xfers[xferpos].tx_nbits = op->addr.buswidth;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen += op->addr.nbytes;
|
|
}
|
|
|
|
if (op->dummy.nbytes) {
|
|
memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
|
|
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
|
|
xfers[xferpos].len = op->dummy.nbytes;
|
|
xfers[xferpos].tx_nbits = op->dummy.buswidth;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen += op->dummy.nbytes;
|
|
}
|
|
|
|
if (op->data.nbytes) {
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
xfers[xferpos].rx_buf = op->data.buf.in;
|
|
xfers[xferpos].rx_nbits = op->data.buswidth;
|
|
} else {
|
|
xfers[xferpos].tx_buf = op->data.buf.out;
|
|
xfers[xferpos].tx_nbits = op->data.buswidth;
|
|
}
|
|
|
|
xfers[xferpos].len = op->data.nbytes;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen += op->data.nbytes;
|
|
}
|
|
|
|
ret = spi_sync(slave, &msg);
|
|
|
|
kfree(tmpbuf);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (msg.actual_length != totalxferlen)
|
|
return -EIO;
|
|
#else
|
|
|
|
if (op->data.nbytes) {
|
|
if (op->data.dir == SPI_MEM_DATA_IN)
|
|
rx_buf = op->data.buf.in;
|
|
else
|
|
tx_buf = op->data.buf.out;
|
|
}
|
|
|
|
op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
|
|
/*
|
|
* Avoid using malloc() here so that we can use this code in SPL where
|
|
* simple malloc may be used. That implementation does not allow free()
|
|
* so repeated calls to this code can exhaust the space.
|
|
*
|
|
* The value of op_len is small, since it does not include the actual
|
|
* data being sent, only the op-code and address. In fact, it should be
|
|
* possible to just use a small fixed value here instead of op_len.
|
|
*/
|
|
u8 op_buf[op_len];
|
|
|
|
op_buf[pos++] = op->cmd.opcode;
|
|
|
|
if (op->addr.nbytes) {
|
|
for (i = 0; i < op->addr.nbytes; i++)
|
|
op_buf[pos + i] = op->addr.val >>
|
|
(8 * (op->addr.nbytes - i - 1));
|
|
|
|
pos += op->addr.nbytes;
|
|
}
|
|
|
|
if (op->dummy.nbytes)
|
|
memset(op_buf + pos, 0xff, op->dummy.nbytes);
|
|
|
|
/* 1st transfer: opcode + address + dummy cycles */
|
|
flag = SPI_XFER_BEGIN;
|
|
/* Make sure to set END bit if no tx or rx data messages follow */
|
|
if (!tx_buf && !rx_buf)
|
|
flag |= SPI_XFER_END;
|
|
|
|
ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* 2nd transfer: rx or tx data path */
|
|
if (tx_buf || rx_buf) {
|
|
ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
|
|
rx_buf, SPI_XFER_END);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
spi_release_bus(slave);
|
|
|
|
for (i = 0; i < pos; i++)
|
|
debug("%02x ", op_buf[i]);
|
|
debug("| [%dB %s] ",
|
|
tx_buf || rx_buf ? op->data.nbytes : 0,
|
|
tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
|
|
for (i = 0; i < op->data.nbytes; i++)
|
|
debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
|
|
debug("[ret %d]\n", ret);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
#endif /* __UBOOT__ */
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_exec_op);
|
|
|
|
/**
|
|
* spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
|
|
* match controller limitations
|
|
* @slave: the SPI device
|
|
* @op: the operation to adjust
|
|
*
|
|
* Some controllers have FIFO limitations and must split a data transfer
|
|
* operation into multiple ones, others require a specific alignment for
|
|
* optimized accesses. This function allows SPI mem drivers to split a single
|
|
* operation into multiple sub-operations when required.
|
|
*
|
|
* Return: a negative error code if the controller can't properly adjust @op,
|
|
* 0 otherwise. Note that @op->data.nbytes will be updated if @op
|
|
* can't be handled in a single step.
|
|
*/
|
|
int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
|
|
if (ops->mem_ops && ops->mem_ops->adjust_op_size)
|
|
return ops->mem_ops->adjust_op_size(slave, op);
|
|
|
|
if (!ops->mem_ops || !ops->mem_ops->exec_op) {
|
|
unsigned int len;
|
|
|
|
len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
if (slave->max_write_size && len > slave->max_write_size)
|
|
return -EINVAL;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
if (slave->max_read_size)
|
|
op->data.nbytes = min(op->data.nbytes,
|
|
slave->max_read_size);
|
|
} else if (slave->max_write_size) {
|
|
op->data.nbytes = min(op->data.nbytes,
|
|
slave->max_write_size - len);
|
|
}
|
|
|
|
if (!op->data.nbytes)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
|
|
|
|
static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
|
|
u64 offs, size_t len, void *buf)
|
|
{
|
|
struct spi_mem_op op = desc->info.op_tmpl;
|
|
int ret;
|
|
|
|
op.addr.val = desc->info.offset + offs;
|
|
op.data.buf.in = buf;
|
|
op.data.nbytes = len;
|
|
ret = spi_mem_adjust_op_size(desc->slave, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_mem_exec_op(desc->slave, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return op.data.nbytes;
|
|
}
|
|
|
|
static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
|
|
u64 offs, size_t len, const void *buf)
|
|
{
|
|
struct spi_mem_op op = desc->info.op_tmpl;
|
|
int ret;
|
|
|
|
op.addr.val = desc->info.offset + offs;
|
|
op.data.buf.out = buf;
|
|
op.data.nbytes = len;
|
|
ret = spi_mem_adjust_op_size(desc->slave, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_mem_exec_op(desc->slave, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return op.data.nbytes;
|
|
}
|
|
|
|
/**
|
|
* spi_mem_dirmap_create() - Create a direct mapping descriptor
|
|
* @mem: SPI mem device this direct mapping should be created for
|
|
* @info: direct mapping information
|
|
*
|
|
* This function is creating a direct mapping descriptor which can then be used
|
|
* to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
|
|
* If the SPI controller driver does not support direct mapping, this function
|
|
* falls back to an implementation using spi_mem_exec_op(), so that the caller
|
|
* doesn't have to bother implementing a fallback on his own.
|
|
*
|
|
* Return: a valid pointer in case of success, and ERR_PTR() otherwise.
|
|
*/
|
|
struct spi_mem_dirmap_desc *
|
|
spi_mem_dirmap_create(struct spi_slave *slave,
|
|
const struct spi_mem_dirmap_info *info)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
struct spi_mem_dirmap_desc *desc;
|
|
int ret = -EOPNOTSUPP;
|
|
|
|
/* Make sure the number of address cycles is between 1 and 8 bytes. */
|
|
if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
|
|
if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
|
|
if (!desc)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
desc->slave = slave;
|
|
desc->info = *info;
|
|
if (ops->mem_ops && ops->mem_ops->dirmap_create)
|
|
ret = ops->mem_ops->dirmap_create(desc);
|
|
|
|
if (ret) {
|
|
desc->nodirmap = true;
|
|
if (!spi_mem_supports_op(desc->slave, &desc->info.op_tmpl))
|
|
ret = -EOPNOTSUPP;
|
|
else
|
|
ret = 0;
|
|
}
|
|
|
|
if (ret) {
|
|
kfree(desc);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
|
|
|
|
/**
|
|
* spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
|
|
* @desc: the direct mapping descriptor to destroy
|
|
*
|
|
* This function destroys a direct mapping descriptor previously created by
|
|
* spi_mem_dirmap_create().
|
|
*/
|
|
void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
|
|
{
|
|
struct udevice *bus = desc->slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
|
|
if (!desc->nodirmap && ops->mem_ops && ops->mem_ops->dirmap_destroy)
|
|
ops->mem_ops->dirmap_destroy(desc);
|
|
|
|
kfree(desc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
|
|
|
|
#ifndef __UBOOT__
|
|
static void devm_spi_mem_dirmap_release(struct udevice *dev, void *res)
|
|
{
|
|
struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
|
|
|
|
spi_mem_dirmap_destroy(desc);
|
|
}
|
|
|
|
/**
|
|
* devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
|
|
* it to a device
|
|
* @dev: device the dirmap desc will be attached to
|
|
* @mem: SPI mem device this direct mapping should be created for
|
|
* @info: direct mapping information
|
|
*
|
|
* devm_ variant of the spi_mem_dirmap_create() function. See
|
|
* spi_mem_dirmap_create() for more details.
|
|
*
|
|
* Return: a valid pointer in case of success, and ERR_PTR() otherwise.
|
|
*/
|
|
struct spi_mem_dirmap_desc *
|
|
devm_spi_mem_dirmap_create(struct udevice *dev, struct spi_slave *slave,
|
|
const struct spi_mem_dirmap_info *info)
|
|
{
|
|
struct spi_mem_dirmap_desc **ptr, *desc;
|
|
|
|
ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
|
|
GFP_KERNEL);
|
|
if (!ptr)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
desc = spi_mem_dirmap_create(slave, info);
|
|
if (IS_ERR(desc)) {
|
|
devres_free(ptr);
|
|
} else {
|
|
*ptr = desc;
|
|
devres_add(dev, ptr);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
|
|
|
|
static int devm_spi_mem_dirmap_match(struct udevice *dev, void *res, void *data)
|
|
{
|
|
struct spi_mem_dirmap_desc **ptr = res;
|
|
|
|
if (WARN_ON(!ptr || !*ptr))
|
|
return 0;
|
|
|
|
return *ptr == data;
|
|
}
|
|
|
|
/**
|
|
* devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
|
|
* to a device
|
|
* @dev: device the dirmap desc is attached to
|
|
* @desc: the direct mapping descriptor to destroy
|
|
*
|
|
* devm_ variant of the spi_mem_dirmap_destroy() function. See
|
|
* spi_mem_dirmap_destroy() for more details.
|
|
*/
|
|
void devm_spi_mem_dirmap_destroy(struct udevice *dev,
|
|
struct spi_mem_dirmap_desc *desc)
|
|
{
|
|
devres_release(dev, devm_spi_mem_dirmap_release,
|
|
devm_spi_mem_dirmap_match, desc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
|
|
#endif /* __UBOOT__ */
|
|
|
|
/**
|
|
* spi_mem_dirmap_read() - Read data through a direct mapping
|
|
* @desc: direct mapping descriptor
|
|
* @offs: offset to start reading from. Note that this is not an absolute
|
|
* offset, but the offset within the direct mapping which already has
|
|
* its own offset
|
|
* @len: length in bytes
|
|
* @buf: destination buffer. This buffer must be DMA-able
|
|
*
|
|
* This function reads data from a memory device using a direct mapping
|
|
* previously instantiated with spi_mem_dirmap_create().
|
|
*
|
|
* Return: the amount of data read from the memory device or a negative error
|
|
* code. Note that the returned size might be smaller than @len, and the caller
|
|
* is responsible for calling spi_mem_dirmap_read() again when that happens.
|
|
*/
|
|
ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
|
|
u64 offs, size_t len, void *buf)
|
|
{
|
|
struct udevice *bus = desc->slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
ssize_t ret;
|
|
|
|
if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
|
|
return -EINVAL;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (desc->nodirmap)
|
|
ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
|
|
else if (ops->mem_ops && ops->mem_ops->dirmap_read)
|
|
ret = ops->mem_ops->dirmap_read(desc, offs, len, buf);
|
|
else
|
|
ret = -EOPNOTSUPP;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
|
|
|
|
/**
|
|
* spi_mem_dirmap_write() - Write data through a direct mapping
|
|
* @desc: direct mapping descriptor
|
|
* @offs: offset to start writing from. Note that this is not an absolute
|
|
* offset, but the offset within the direct mapping which already has
|
|
* its own offset
|
|
* @len: length in bytes
|
|
* @buf: source buffer. This buffer must be DMA-able
|
|
*
|
|
* This function writes data to a memory device using a direct mapping
|
|
* previously instantiated with spi_mem_dirmap_create().
|
|
*
|
|
* Return: the amount of data written to the memory device or a negative error
|
|
* code. Note that the returned size might be smaller than @len, and the caller
|
|
* is responsible for calling spi_mem_dirmap_write() again when that happens.
|
|
*/
|
|
ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
|
|
u64 offs, size_t len, const void *buf)
|
|
{
|
|
struct udevice *bus = desc->slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
ssize_t ret;
|
|
|
|
if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
|
|
return -EINVAL;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (desc->nodirmap)
|
|
ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
|
|
else if (ops->mem_ops && ops->mem_ops->dirmap_write)
|
|
ret = ops->mem_ops->dirmap_write(desc, offs, len, buf);
|
|
else
|
|
ret = -EOPNOTSUPP;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
|
|
|
|
#ifndef __UBOOT__
|
|
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
|
|
{
|
|
return container_of(drv, struct spi_mem_driver, spidrv.driver);
|
|
}
|
|
|
|
static int spi_mem_probe(struct spi_device *spi)
|
|
{
|
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
|
struct spi_mem *mem;
|
|
|
|
mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
|
|
if (!mem)
|
|
return -ENOMEM;
|
|
|
|
mem->spi = spi;
|
|
spi_set_drvdata(spi, mem);
|
|
|
|
return memdrv->probe(mem);
|
|
}
|
|
|
|
static int spi_mem_remove(struct spi_device *spi)
|
|
{
|
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
|
struct spi_mem *mem = spi_get_drvdata(spi);
|
|
|
|
if (memdrv->remove)
|
|
return memdrv->remove(mem);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spi_mem_shutdown(struct spi_device *spi)
|
|
{
|
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
|
struct spi_mem *mem = spi_get_drvdata(spi);
|
|
|
|
if (memdrv->shutdown)
|
|
memdrv->shutdown(mem);
|
|
}
|
|
|
|
/**
|
|
* spi_mem_driver_register_with_owner() - Register a SPI memory driver
|
|
* @memdrv: the SPI memory driver to register
|
|
* @owner: the owner of this driver
|
|
*
|
|
* Registers a SPI memory driver.
|
|
*
|
|
* Return: 0 in case of success, a negative error core otherwise.
|
|
*/
|
|
|
|
int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
|
|
struct module *owner)
|
|
{
|
|
memdrv->spidrv.probe = spi_mem_probe;
|
|
memdrv->spidrv.remove = spi_mem_remove;
|
|
memdrv->spidrv.shutdown = spi_mem_shutdown;
|
|
|
|
return __spi_register_driver(owner, &memdrv->spidrv);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
|
|
|
|
/**
|
|
* spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
|
|
* @memdrv: the SPI memory driver to unregister
|
|
*
|
|
* Unregisters a SPI memory driver.
|
|
*/
|
|
void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
|
|
{
|
|
spi_unregister_driver(&memdrv->spidrv);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
|
|
#endif /* __UBOOT__ */
|