mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-16 09:48:16 +00:00
1a4596601f
Signed-off-by: Wolfgang Denk <wd@denx.de> [trini: Fixup common/cmd_io.c] Signed-off-by: Tom Rini <trini@ti.com>
1702 lines
53 KiB
C
1702 lines
53 KiB
C
/*
|
|
* (C) Copyright 2001
|
|
* Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
/*************************************************************************
|
|
* adaption for the Marvell DB64360 Board
|
|
* Ingo Assmus (ingo.assmus@keymile.com)
|
|
*
|
|
* adaption for the cpci750 Board
|
|
* Reinhard Arlt (reinhard.arlt@esd-electronics.com)
|
|
*************************************************************************/
|
|
|
|
|
|
/* sdram_init.c - automatic memory sizing */
|
|
|
|
#include <common.h>
|
|
#include <74xx_7xx.h>
|
|
#include "../../Marvell/include/memory.h"
|
|
#include "../../Marvell/include/pci.h"
|
|
#include "../../Marvell/include/mv_gen_reg.h"
|
|
#include <net.h>
|
|
|
|
#include "eth.h"
|
|
#include "mpsc.h"
|
|
#include "../../Marvell/common/i2c.h"
|
|
#include "64360.h"
|
|
#include "mv_regs.h"
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
int set_dfcdlInit(void); /* setup delay line of Mv64360 */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
int
|
|
memory_map_bank(unsigned int bankNo,
|
|
unsigned int bankBase,
|
|
unsigned int bankLength)
|
|
{
|
|
#ifdef MAP_PCI
|
|
PCI_HOST host;
|
|
#endif
|
|
|
|
|
|
#ifdef DEBUG
|
|
if (bankLength > 0) {
|
|
printf("mapping bank %d at %08x - %08x\n",
|
|
bankNo, bankBase, bankBase + bankLength - 1);
|
|
} else {
|
|
printf("unmapping bank %d\n", bankNo);
|
|
}
|
|
#endif
|
|
|
|
memoryMapBank(bankNo, bankBase, bankLength);
|
|
|
|
#ifdef MAP_PCI
|
|
for (host=PCI_HOST0;host<=PCI_HOST1;host++) {
|
|
const int features=
|
|
PREFETCH_ENABLE |
|
|
DELAYED_READ_ENABLE |
|
|
AGGRESSIVE_PREFETCH |
|
|
READ_LINE_AGGRESSIVE_PREFETCH |
|
|
READ_MULTI_AGGRESSIVE_PREFETCH |
|
|
MAX_BURST_4 |
|
|
PCI_NO_SWAP;
|
|
|
|
pciMapMemoryBank(host, bankNo, bankBase, bankLength);
|
|
|
|
pciSetRegionSnoopMode(host, bankNo, PCI_SNOOP_WB, bankBase,
|
|
bankLength);
|
|
|
|
pciSetRegionFeatures(host, bankNo, features, bankBase, bankLength);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#define GB (1 << 30)
|
|
|
|
/* much of this code is based on (or is) the code in the pip405 port */
|
|
/* thanks go to the authors of said port - Josh */
|
|
|
|
/* structure to store the relevant information about an sdram bank */
|
|
typedef struct sdram_info {
|
|
uchar drb_size;
|
|
uchar registered, ecc;
|
|
uchar tpar;
|
|
uchar tras_clocks;
|
|
uchar burst_len;
|
|
uchar banks, slot;
|
|
} sdram_info_t;
|
|
|
|
/* Typedefs for 'gtAuxilGetDIMMinfo' function */
|
|
|
|
typedef enum _memoryType {SDRAM, DDR} MEMORY_TYPE;
|
|
|
|
typedef enum _voltageInterface {TTL_5V_TOLERANT, LVTTL, HSTL_1_5V,
|
|
SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN,
|
|
} VOLTAGE_INTERFACE;
|
|
|
|
typedef enum _max_CL_supported_DDR {DDR_CL_1=1, DDR_CL_1_5=2, DDR_CL_2=4, DDR_CL_2_5=8, DDR_CL_3=16, DDR_CL_3_5=32, DDR_CL_FAULT} MAX_CL_SUPPORTED_DDR;
|
|
typedef enum _max_CL_supported_SD {SD_CL_1=1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7, SD_FAULT} MAX_CL_SUPPORTED_SD;
|
|
|
|
|
|
/* SDRAM/DDR information struct */
|
|
typedef struct _gtMemoryDimmInfo {
|
|
MEMORY_TYPE memoryType;
|
|
unsigned int numOfRowAddresses;
|
|
unsigned int numOfColAddresses;
|
|
unsigned int numOfModuleBanks;
|
|
unsigned int dataWidth;
|
|
VOLTAGE_INTERFACE voltageInterface;
|
|
unsigned int errorCheckType; /* ECC , PARITY.. */
|
|
unsigned int sdramWidth; /* 4,8,16 or 32 */ ;
|
|
unsigned int errorCheckDataWidth; /* 0 - no, 1 - Yes */
|
|
unsigned int minClkDelay;
|
|
unsigned int burstLengthSupported;
|
|
unsigned int numOfBanksOnEachDevice;
|
|
unsigned int suportedCasLatencies;
|
|
unsigned int RefreshInterval;
|
|
unsigned int maxCASlatencySupported_LoP; /* LoP left of point (measured in ns) */
|
|
unsigned int maxCASlatencySupported_RoP; /* RoP right of point (measured in ns) */
|
|
MAX_CL_SUPPORTED_DDR maxClSupported_DDR;
|
|
MAX_CL_SUPPORTED_SD maxClSupported_SD;
|
|
unsigned int moduleBankDensity;
|
|
/* module attributes (true for yes) */
|
|
bool bufferedAddrAndControlInputs;
|
|
bool registeredAddrAndControlInputs;
|
|
bool onCardPLL;
|
|
bool bufferedDQMBinputs;
|
|
bool registeredDQMBinputs;
|
|
bool differentialClockInput;
|
|
bool redundantRowAddressing;
|
|
|
|
/* module general attributes */
|
|
bool suportedAutoPreCharge;
|
|
bool suportedPreChargeAll;
|
|
bool suportedEarlyRasPreCharge;
|
|
bool suportedWrite1ReadBurst;
|
|
bool suported5PercentLowVCC;
|
|
bool suported5PercentUpperVCC;
|
|
/* module timing parameters */
|
|
unsigned int minRasToCasDelay;
|
|
unsigned int minRowActiveRowActiveDelay;
|
|
unsigned int minRasPulseWidth;
|
|
unsigned int minRowPrechargeTime; /* measured in ns */
|
|
|
|
int addrAndCommandHoldTime; /* LoP left of point (measured in ns) */
|
|
int addrAndCommandSetupTime; /* (measured in ns/100) */
|
|
int dataInputSetupTime; /* LoP left of point (measured in ns) */
|
|
int dataInputHoldTime; /* LoP left of point (measured in ns) */
|
|
/* tAC times for highest 2nd and 3rd highest CAS Latency values */
|
|
unsigned int clockToDataOut_LoP; /* LoP left of point (measured in ns) */
|
|
unsigned int clockToDataOut_RoP; /* RoP right of point (measured in ns) */
|
|
unsigned int clockToDataOutMinus1_LoP; /* LoP left of point (measured in ns) */
|
|
unsigned int clockToDataOutMinus1_RoP; /* RoP right of point (measured in ns) */
|
|
unsigned int clockToDataOutMinus2_LoP; /* LoP left of point (measured in ns) */
|
|
unsigned int clockToDataOutMinus2_RoP; /* RoP right of point (measured in ns) */
|
|
|
|
unsigned int minimumCycleTimeAtMaxCasLatancy_LoP; /* LoP left of point (measured in ns) */
|
|
unsigned int minimumCycleTimeAtMaxCasLatancy_RoP; /* RoP right of point (measured in ns) */
|
|
|
|
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP; /* LoP left of point (measured in ns) */
|
|
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP; /* RoP right of point (measured in ns) */
|
|
|
|
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP; /* LoP left of point (measured in ns) */
|
|
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP; /* RoP right of point (measured in ns) */
|
|
|
|
/* Parameters calculated from
|
|
the extracted DIMM information */
|
|
unsigned int size;
|
|
unsigned int deviceDensity; /* 16,64,128,256 or 512 Mbit */
|
|
unsigned int numberOfDevices;
|
|
uchar drb_size; /* DRAM size in n*64Mbit */
|
|
uchar slot; /* Slot Number this module is inserted in */
|
|
uchar spd_raw_data[128]; /* Content of SPD-EEPROM copied 1:1 */
|
|
#ifdef DEBUG
|
|
uchar manufactura[8]; /* Content of SPD-EEPROM Byte 64-71 */
|
|
uchar modul_id[18]; /* Content of SPD-EEPROM Byte 73-90 */
|
|
uchar vendor_data[27]; /* Content of SPD-EEPROM Byte 99-125 */
|
|
unsigned long modul_serial_no; /* Content of SPD-EEPROM Byte 95-98 */
|
|
unsigned int manufac_date; /* Content of SPD-EEPROM Byte 93-94 */
|
|
unsigned int modul_revision; /* Content of SPD-EEPROM Byte 91-92 */
|
|
uchar manufac_place; /* Content of SPD-EEPROM Byte 72 */
|
|
|
|
#endif
|
|
} AUX_MEM_DIMM_INFO;
|
|
|
|
|
|
/*
|
|
* translate ns.ns/10 coding of SPD timing values
|
|
* into 10 ps unit values
|
|
*/
|
|
static inline unsigned short
|
|
NS10to10PS(unsigned char spd_byte)
|
|
{
|
|
unsigned short ns, ns10;
|
|
|
|
/* isolate upper nibble */
|
|
ns = (spd_byte >> 4) & 0x0F;
|
|
/* isolate lower nibble */
|
|
ns10 = (spd_byte & 0x0F);
|
|
|
|
return(ns*100 + ns10*10);
|
|
}
|
|
|
|
/*
|
|
* translate ns coding of SPD timing values
|
|
* into 10 ps unit values
|
|
*/
|
|
static inline unsigned short
|
|
NSto10PS(unsigned char spd_byte)
|
|
{
|
|
return(spd_byte*100);
|
|
}
|
|
|
|
/* This code reads the SPD chip on the sdram and populates
|
|
* the array which is passed in with the relevant information */
|
|
/* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */
|
|
static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo)
|
|
{
|
|
uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
|
|
int ret;
|
|
unsigned int i, j, density = 1, devicesForErrCheck = 0;
|
|
|
|
#ifdef DEBUG
|
|
unsigned int k;
|
|
#endif
|
|
unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp;
|
|
int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint;
|
|
uchar supp_cal, cal_val;
|
|
ulong memclk, tmemclk;
|
|
ulong tmp;
|
|
uchar trp_clocks = 0, tras_clocks;
|
|
uchar data[128];
|
|
|
|
memclk = gd->bus_clk;
|
|
tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */
|
|
|
|
memset (data, 0, sizeof (data));
|
|
|
|
|
|
ret = 0;
|
|
|
|
debug("before i2c read\n");
|
|
|
|
ret = i2c_read (addr, 0, 2, data, 128);
|
|
|
|
debug("after i2c read\n");
|
|
|
|
if ((data[64] != 'e') || (data[65] != 's') || (data[66] != 'd')
|
|
|| (data[67] != '-') || (data[68] != 'g') || (data[69] != 'm')
|
|
|| (data[70] != 'b') || (data[71] != 'h')) {
|
|
ret = -1;
|
|
}
|
|
|
|
if ((ret != 0) && (slot == 0)) {
|
|
memset (data, 0, sizeof (data));
|
|
data[0] = 0x80;
|
|
data[1] = 0x08;
|
|
data[2] = 0x07;
|
|
data[3] = 0x0c;
|
|
data[4] = 0x09;
|
|
data[5] = 0x01;
|
|
data[6] = 0x48;
|
|
data[7] = 0x00;
|
|
data[8] = 0x04;
|
|
data[9] = 0x75;
|
|
data[10] = 0x80;
|
|
data[11] = 0x02;
|
|
data[12] = 0x80;
|
|
data[13] = 0x10;
|
|
data[14] = 0x08;
|
|
data[15] = 0x01;
|
|
data[16] = 0x0e;
|
|
data[17] = 0x04;
|
|
data[18] = 0x0c;
|
|
data[19] = 0x01;
|
|
data[20] = 0x02;
|
|
data[21] = 0x20;
|
|
data[22] = 0x00;
|
|
data[23] = 0xa0;
|
|
data[24] = 0x80;
|
|
data[25] = 0x00;
|
|
data[26] = 0x00;
|
|
data[27] = 0x50;
|
|
data[28] = 0x3c;
|
|
data[29] = 0x50;
|
|
data[30] = 0x32;
|
|
data[31] = 0x10;
|
|
data[32] = 0xb0;
|
|
data[33] = 0xb0;
|
|
data[34] = 0x60;
|
|
data[35] = 0x60;
|
|
data[64] = 'e';
|
|
data[65] = 's';
|
|
data[66] = 'd';
|
|
data[67] = '-';
|
|
data[68] = 'g';
|
|
data[69] = 'm';
|
|
data[70] = 'b';
|
|
data[71] = 'h';
|
|
ret = 0;
|
|
}
|
|
|
|
/* zero all the values */
|
|
memset (dimmInfo, 0, sizeof (*dimmInfo));
|
|
|
|
/* copy the SPD content 1:1 into the dimmInfo structure */
|
|
for (i = 0; i <= 127; i++) {
|
|
dimmInfo->spd_raw_data[i] = data[i];
|
|
}
|
|
|
|
if (ret) {
|
|
debug("No DIMM in slot %d [err = %x]\n", slot, ret);
|
|
return 0;
|
|
} else
|
|
dimmInfo->slot = slot; /* start to fill up dimminfo for this "slot" */
|
|
|
|
#ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT
|
|
|
|
for (i = 0; i <= 127; i++) {
|
|
printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i],
|
|
data[i]);
|
|
}
|
|
|
|
#endif
|
|
#ifdef DEBUG
|
|
/* find Manufacturer of Dimm Module */
|
|
for (i = 0; i < sizeof (dimmInfo->manufactura); i++) {
|
|
dimmInfo->manufactura[i] = data[64 + i];
|
|
}
|
|
printf ("\nThis RAM-Module is produced by: %s\n",
|
|
dimmInfo->manufactura);
|
|
|
|
/* find Manul-ID of Dimm Module */
|
|
for (i = 0; i < sizeof (dimmInfo->modul_id); i++) {
|
|
dimmInfo->modul_id[i] = data[73 + i];
|
|
}
|
|
printf ("The Module-ID of this RAM-Module is: %s\n",
|
|
dimmInfo->modul_id);
|
|
|
|
/* find Vendor-Data of Dimm Module */
|
|
for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) {
|
|
dimmInfo->vendor_data[i] = data[99 + i];
|
|
}
|
|
printf ("Vendor Data of this RAM-Module is: %s\n",
|
|
dimmInfo->vendor_data);
|
|
|
|
/* find modul_serial_no of Dimm Module */
|
|
dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95])));
|
|
printf ("Serial No. of this RAM-Module is: %ld (%lx)\n",
|
|
dimmInfo->modul_serial_no, dimmInfo->modul_serial_no);
|
|
|
|
/* find Manufac-Data of Dimm Module */
|
|
dimmInfo->manufac_date = (*((unsigned int *) (&data[93])));
|
|
printf ("Manufactoring Date of this RAM-Module is: %d.%d\n", data[93], data[94]); /*dimmInfo->manufac_date */
|
|
|
|
/* find modul_revision of Dimm Module */
|
|
dimmInfo->modul_revision = (*((unsigned int *) (&data[91])));
|
|
printf ("Module Revision of this RAM-Module is: %d.%d\n", data[91], data[92]); /* dimmInfo->modul_revision */
|
|
|
|
/* find manufac_place of Dimm Module */
|
|
dimmInfo->manufac_place = (*((unsigned char *) (&data[72])));
|
|
printf ("manufac_place of this RAM-Module is: %d\n",
|
|
dimmInfo->manufac_place);
|
|
|
|
#endif
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
/* calculate SPD checksum */
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
#if 0 /* test-only */
|
|
spd_checksum = 0;
|
|
|
|
for (i = 0; i <= 62; i++) {
|
|
spd_checksum += data[i];
|
|
}
|
|
|
|
if ((spd_checksum & 0xff) != data[63]) {
|
|
printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]);
|
|
hang ();
|
|
}
|
|
|
|
else
|
|
printf ("SPD Checksum ok!\n");
|
|
#endif /* test-only */
|
|
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
for (i = 2; i <= 35; i++) {
|
|
switch (i) {
|
|
case 2: /* Memory type (DDR / SDRAM) */
|
|
dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM;
|
|
#ifdef DEBUG
|
|
if (dimmInfo->memoryType == 0)
|
|
debug("Dram_type in slot %d is: SDRAM\n",
|
|
dimmInfo->slot);
|
|
if (dimmInfo->memoryType == 1)
|
|
debug("Dram_type in slot %d is: DDRAM\n",
|
|
dimmInfo->slot);
|
|
#endif
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 3: /* Number Of Row Addresses */
|
|
dimmInfo->numOfRowAddresses = data[i];
|
|
debug("Module Number of row addresses: %d\n",
|
|
dimmInfo->numOfRowAddresses);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 4: /* Number Of Column Addresses */
|
|
dimmInfo->numOfColAddresses = data[i];
|
|
debug("Module Number of col addresses: %d\n",
|
|
dimmInfo->numOfColAddresses);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 5: /* Number Of Module Banks */
|
|
dimmInfo->numOfModuleBanks = data[i];
|
|
debug("Number of Banks on Mod. : %d\n",
|
|
dimmInfo->numOfModuleBanks);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 6: /* Data Width */
|
|
dimmInfo->dataWidth = data[i];
|
|
debug("Module Data Width: %d\n",
|
|
dimmInfo->dataWidth);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 8: /* Voltage Interface */
|
|
switch (data[i]) {
|
|
case 0x0:
|
|
dimmInfo->voltageInterface = TTL_5V_TOLERANT;
|
|
debug("Module is TTL_5V_TOLERANT\n");
|
|
break;
|
|
case 0x1:
|
|
dimmInfo->voltageInterface = LVTTL;
|
|
debug("Module is LVTTL\n");
|
|
break;
|
|
case 0x2:
|
|
dimmInfo->voltageInterface = HSTL_1_5V;
|
|
debug("Module is TTL_5V_TOLERANT\n");
|
|
break;
|
|
case 0x3:
|
|
dimmInfo->voltageInterface = SSTL_3_3V;
|
|
debug("Module is HSTL_1_5V\n");
|
|
break;
|
|
case 0x4:
|
|
dimmInfo->voltageInterface = SSTL_2_5V;
|
|
debug("Module is SSTL_2_5V\n");
|
|
break;
|
|
default:
|
|
dimmInfo->voltageInterface = VOLTAGE_UNKNOWN;
|
|
debug("Module is VOLTAGE_UNKNOWN\n");
|
|
break;
|
|
}
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 9: /* Minimum Cycle Time At Max CasLatancy */
|
|
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
|
|
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
|
|
maskLeftOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
|
|
maskRightOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
|
|
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
|
|
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
|
|
dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP =
|
|
leftOfPoint;
|
|
dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP =
|
|
rightOfPoint;
|
|
debug("Minimum Cycle Time At Max CasLatancy: %d.%d [ns]\n",
|
|
leftOfPoint, rightOfPoint);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 10: /* Clock To Data Out */
|
|
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
|
|
time_tmp =
|
|
(((data[i] & 0xf0) >> 4) * 10) +
|
|
((data[i] & 0x0f));
|
|
leftOfPoint = time_tmp / div;
|
|
rightOfPoint = time_tmp % div;
|
|
dimmInfo->clockToDataOut_LoP = leftOfPoint;
|
|
dimmInfo->clockToDataOut_RoP = rightOfPoint;
|
|
debug("Clock To Data Out: %d.%2d [ns]\n",
|
|
leftOfPoint, rightOfPoint);
|
|
/*dimmInfo->clockToDataOut */
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
#ifdef CONFIG_MV64360_ECC
|
|
case 11: /* Error Check Type */
|
|
dimmInfo->errorCheckType = data[i];
|
|
debug("Error Check Type (0=NONE): %d\n",
|
|
dimmInfo->errorCheckType);
|
|
break;
|
|
#endif /* of ifdef CONFIG_MV64360_ECC */
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 12: /* Refresh Interval */
|
|
dimmInfo->RefreshInterval = data[i];
|
|
debug("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n",
|
|
dimmInfo->RefreshInterval);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 13: /* Sdram Width */
|
|
dimmInfo->sdramWidth = data[i];
|
|
debug("Sdram Width: %d\n",
|
|
dimmInfo->sdramWidth);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 14: /* Error Check Data Width */
|
|
dimmInfo->errorCheckDataWidth = data[i];
|
|
debug("Error Check Data Width: %d\n",
|
|
dimmInfo->errorCheckDataWidth);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 15: /* Minimum Clock Delay */
|
|
dimmInfo->minClkDelay = data[i];
|
|
debug("Minimum Clock Delay: %d\n",
|
|
dimmInfo->minClkDelay);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 16: /* Burst Length Supported */
|
|
/******-******-******-*******
|
|
* bit3 | bit2 | bit1 | bit0 *
|
|
*******-******-******-*******
|
|
burst length = * 8 | 4 | 2 | 1 *
|
|
*****************************
|
|
|
|
If for example bit0 and bit2 are set, the burst
|
|
length supported are 1 and 4. */
|
|
|
|
dimmInfo->burstLengthSupported = data[i];
|
|
#ifdef DEBUG
|
|
debug("Burst Length Supported: ");
|
|
if (dimmInfo->burstLengthSupported & 0x01)
|
|
debug("1, ");
|
|
if (dimmInfo->burstLengthSupported & 0x02)
|
|
debug("2, ");
|
|
if (dimmInfo->burstLengthSupported & 0x04)
|
|
debug("4, ");
|
|
if (dimmInfo->burstLengthSupported & 0x08)
|
|
debug("8, ");
|
|
debug(" Bit \n");
|
|
#endif
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 17: /* Number Of Banks On Each Device */
|
|
dimmInfo->numOfBanksOnEachDevice = data[i];
|
|
debug("Number Of Banks On Each Chip: %d\n",
|
|
dimmInfo->numOfBanksOnEachDevice);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 18: /* Suported Cas Latencies */
|
|
|
|
/* DDR:
|
|
*******-******-******-******-******-******-******-*******
|
|
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
|
|
*******-******-******-******-******-******-******-*******
|
|
CAS = * TBD | TBD | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 *
|
|
*********************************************************
|
|
SDRAM:
|
|
*******-******-******-******-******-******-******-*******
|
|
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
|
|
*******-******-******-******-******-******-******-*******
|
|
CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 *
|
|
********************************************************/
|
|
dimmInfo->suportedCasLatencies = data[i];
|
|
#ifdef DEBUG
|
|
debug("Suported Cas Latencies: (CL) ");
|
|
if (dimmInfo->memoryType == 0) { /* SDRAM */
|
|
for (k = 0; k <= 7; k++) {
|
|
if (dimmInfo->
|
|
suportedCasLatencies & (1 << k))
|
|
debug("%d, ",
|
|
k + 1);
|
|
}
|
|
|
|
} else { /* DDR-RAM */
|
|
|
|
if (dimmInfo->suportedCasLatencies & 1)
|
|
debug("1, ");
|
|
if (dimmInfo->suportedCasLatencies & 2)
|
|
debug("1.5, ");
|
|
if (dimmInfo->suportedCasLatencies & 4)
|
|
debug("2, ");
|
|
if (dimmInfo->suportedCasLatencies & 8)
|
|
debug("2.5, ");
|
|
if (dimmInfo->suportedCasLatencies & 16)
|
|
debug("3, ");
|
|
if (dimmInfo->suportedCasLatencies & 32)
|
|
debug("3.5, ");
|
|
|
|
}
|
|
debug("\n");
|
|
#endif
|
|
/* Calculating MAX CAS latency */
|
|
for (j = 7; j > 0; j--) {
|
|
if (((dimmInfo->
|
|
suportedCasLatencies >> j) & 0x1) ==
|
|
1) {
|
|
switch (dimmInfo->memoryType) {
|
|
case DDR:
|
|
/* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */
|
|
switch (j) {
|
|
case 7:
|
|
debug("Max. Cas Latencies (DDR): ERROR !!!\n");
|
|
dimmInfo->
|
|
maxClSupported_DDR
|
|
=
|
|
DDR_CL_FAULT;
|
|
hang ();
|
|
break;
|
|
case 6:
|
|
debug("Max. Cas Latencies (DDR): ERROR !!!\n");
|
|
dimmInfo->
|
|
maxClSupported_DDR
|
|
=
|
|
DDR_CL_FAULT;
|
|
hang ();
|
|
break;
|
|
case 5:
|
|
debug("Max. Cas Latencies (DDR): 3.5 clk's\n");
|
|
dimmInfo->
|
|
maxClSupported_DDR
|
|
= DDR_CL_3_5;
|
|
break;
|
|
case 4:
|
|
debug("Max. Cas Latencies (DDR): 3 clk's \n");
|
|
dimmInfo->
|
|
maxClSupported_DDR
|
|
= DDR_CL_3;
|
|
break;
|
|
case 3:
|
|
debug("Max. Cas Latencies (DDR): 2.5 clk's \n");
|
|
dimmInfo->
|
|
maxClSupported_DDR
|
|
= DDR_CL_2_5;
|
|
break;
|
|
case 2:
|
|
debug("Max. Cas Latencies (DDR): 2 clk's \n");
|
|
dimmInfo->
|
|
maxClSupported_DDR
|
|
= DDR_CL_2;
|
|
break;
|
|
case 1:
|
|
debug("Max. Cas Latencies (DDR): 1.5 clk's \n");
|
|
dimmInfo->
|
|
maxClSupported_DDR
|
|
= DDR_CL_1_5;
|
|
break;
|
|
}
|
|
dimmInfo->
|
|
maxCASlatencySupported_LoP
|
|
=
|
|
1 +
|
|
(int) (5 * j / 10);
|
|
if (((5 * j) % 10) != 0)
|
|
dimmInfo->
|
|
maxCASlatencySupported_RoP
|
|
= 5;
|
|
else
|
|
dimmInfo->
|
|
maxCASlatencySupported_RoP
|
|
= 0;
|
|
debug("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
|
|
dimmInfo->
|
|
maxCASlatencySupported_LoP,
|
|
dimmInfo->
|
|
maxCASlatencySupported_RoP);
|
|
break;
|
|
case SDRAM:
|
|
/* CAS latency 1, 2, 3, 4, 5, 6, 7 */
|
|
dimmInfo->maxClSupported_SD = j; /* Cas Latency DDR-RAM Coded */
|
|
debug("Max. Cas Latencies (SD): %d\n",
|
|
dimmInfo->
|
|
maxClSupported_SD);
|
|
dimmInfo->
|
|
maxCASlatencySupported_LoP
|
|
= j;
|
|
dimmInfo->
|
|
maxCASlatencySupported_RoP
|
|
= 0;
|
|
debug("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
|
|
dimmInfo->
|
|
maxCASlatencySupported_LoP,
|
|
dimmInfo->
|
|
maxCASlatencySupported_RoP);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 21: /* Buffered Address And Control Inputs */
|
|
debug("\nModul Attributes (SPD Byte 21): \n");
|
|
dimmInfo->bufferedAddrAndControlInputs =
|
|
data[i] & BIT0;
|
|
dimmInfo->registeredAddrAndControlInputs =
|
|
(data[i] & BIT1) >> 1;
|
|
dimmInfo->onCardPLL = (data[i] & BIT2) >> 2;
|
|
dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3;
|
|
dimmInfo->registeredDQMBinputs =
|
|
(data[i] & BIT4) >> 4;
|
|
dimmInfo->differentialClockInput =
|
|
(data[i] & BIT5) >> 5;
|
|
dimmInfo->redundantRowAddressing =
|
|
(data[i] & BIT6) >> 6;
|
|
|
|
if (dimmInfo->bufferedAddrAndControlInputs == 1)
|
|
debug(" - Buffered Address/Control Input: Yes \n");
|
|
else
|
|
debug(" - Buffered Address/Control Input: No \n");
|
|
|
|
if (dimmInfo->registeredAddrAndControlInputs == 1)
|
|
debug(" - Registered Address/Control Input: Yes \n");
|
|
else
|
|
debug(" - Registered Address/Control Input: No \n");
|
|
|
|
if (dimmInfo->onCardPLL == 1)
|
|
debug(" - On-Card PLL (clock): Yes \n");
|
|
else
|
|
debug(" - On-Card PLL (clock): No \n");
|
|
|
|
if (dimmInfo->bufferedDQMBinputs == 1)
|
|
debug(" - Bufferd DQMB Inputs: Yes \n");
|
|
else
|
|
debug(" - Bufferd DQMB Inputs: No \n");
|
|
|
|
if (dimmInfo->registeredDQMBinputs == 1)
|
|
debug(" - Registered DQMB Inputs: Yes \n");
|
|
else
|
|
debug(" - Registered DQMB Inputs: No \n");
|
|
|
|
if (dimmInfo->differentialClockInput == 1)
|
|
debug(" - Differential Clock Input: Yes \n");
|
|
else
|
|
debug(" - Differential Clock Input: No \n");
|
|
|
|
if (dimmInfo->redundantRowAddressing == 1)
|
|
debug(" - redundant Row Addressing: Yes \n");
|
|
else
|
|
debug(" - redundant Row Addressing: No \n");
|
|
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 22: /* Suported AutoPreCharge */
|
|
debug("\nModul Attributes (SPD Byte 22): \n");
|
|
dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0;
|
|
dimmInfo->suportedAutoPreCharge =
|
|
(data[i] & BIT1) >> 1;
|
|
dimmInfo->suportedPreChargeAll =
|
|
(data[i] & BIT2) >> 2;
|
|
dimmInfo->suportedWrite1ReadBurst =
|
|
(data[i] & BIT3) >> 3;
|
|
dimmInfo->suported5PercentLowVCC =
|
|
(data[i] & BIT4) >> 4;
|
|
dimmInfo->suported5PercentUpperVCC =
|
|
(data[i] & BIT5) >> 5;
|
|
|
|
if (dimmInfo->suportedEarlyRasPreCharge == 1)
|
|
debug(" - Early Ras Precharge: Yes \n");
|
|
else
|
|
debug(" - Early Ras Precharge: No \n");
|
|
|
|
if (dimmInfo->suportedAutoPreCharge == 1)
|
|
debug(" - AutoPreCharge: Yes \n");
|
|
else
|
|
debug(" - AutoPreCharge: No \n");
|
|
|
|
if (dimmInfo->suportedPreChargeAll == 1)
|
|
debug(" - Precharge All: Yes \n");
|
|
else
|
|
debug(" - Precharge All: No \n");
|
|
|
|
if (dimmInfo->suportedWrite1ReadBurst == 1)
|
|
debug(" - Write 1/ReadBurst: Yes \n");
|
|
else
|
|
debug(" - Write 1/ReadBurst: No \n");
|
|
|
|
if (dimmInfo->suported5PercentLowVCC == 1)
|
|
debug(" - lower VCC tolerance: 5 Percent \n");
|
|
else
|
|
debug(" - lower VCC tolerance: 10 Percent \n");
|
|
|
|
if (dimmInfo->suported5PercentUpperVCC == 1)
|
|
debug(" - upper VCC tolerance: 5 Percent \n");
|
|
else
|
|
debug(" - upper VCC tolerance: 10 Percent \n");
|
|
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */
|
|
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
|
|
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
|
|
maskLeftOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
|
|
maskRightOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
|
|
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
|
|
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
|
|
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP =
|
|
leftOfPoint;
|
|
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP =
|
|
rightOfPoint;
|
|
debug("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n",
|
|
leftOfPoint, rightOfPoint);
|
|
/*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 24: /* Clock To Data Out 2nd highest Cas Latency Value */
|
|
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
|
|
time_tmp =
|
|
(((data[i] & 0xf0) >> 4) * 10) +
|
|
((data[i] & 0x0f));
|
|
leftOfPoint = time_tmp / div;
|
|
rightOfPoint = time_tmp % div;
|
|
dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint;
|
|
dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint;
|
|
debug("Clock To Data Out (2nd CL value): %d.%2d [ns]\n",
|
|
leftOfPoint, rightOfPoint);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */
|
|
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
|
|
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
|
|
maskLeftOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
|
|
maskRightOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
|
|
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
|
|
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
|
|
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP =
|
|
leftOfPoint;
|
|
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP =
|
|
rightOfPoint;
|
|
debug("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n",
|
|
leftOfPoint, rightOfPoint);
|
|
/*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 26: /* Clock To Data Out 3rd highest Cas Latency Value */
|
|
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
|
|
time_tmp =
|
|
(((data[i] & 0xf0) >> 4) * 10) +
|
|
((data[i] & 0x0f));
|
|
leftOfPoint = time_tmp / div;
|
|
rightOfPoint = time_tmp % div;
|
|
dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint;
|
|
dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint;
|
|
debug("Clock To Data Out (3rd CL value): %d.%2d [ns]\n",
|
|
leftOfPoint, rightOfPoint);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 27: /* Minimum Row Precharge Time */
|
|
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
|
|
maskLeftOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
|
|
maskRightOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
|
|
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
|
|
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
|
|
|
|
dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint); /* measured in n times 10ps Intervals */
|
|
trp_clocks =
|
|
(dimmInfo->minRowPrechargeTime +
|
|
(tmemclk - 1)) / tmemclk;
|
|
debug("*** 1 clock cycle = %ld 10ps intervalls = %ld.%ld ns****\n",
|
|
tmemclk, tmemclk / 100, tmemclk % 100);
|
|
debug("Minimum Row Precharge Time [ns]: %d.%2d = in Clk cycles %d\n",
|
|
leftOfPoint, rightOfPoint, trp_clocks);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 28: /* Minimum Row Active to Row Active Time */
|
|
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
|
|
maskLeftOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
|
|
maskRightOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
|
|
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
|
|
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
|
|
|
|
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
|
|
debug("Minimum Row Active -To- Row Active Delay [ns]: %d.%2d = in Clk cycles %d\n",
|
|
leftOfPoint, rightOfPoint, trp_clocks);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 29: /* Minimum Ras-To-Cas Delay */
|
|
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
|
|
maskLeftOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
|
|
maskRightOfPoint =
|
|
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
|
|
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
|
|
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
|
|
|
|
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
|
|
debug("Minimum Ras-To-Cas Delay [ns]: %d.%2d = in Clk cycles %d\n",
|
|
leftOfPoint, rightOfPoint, trp_clocks);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 30: /* Minimum Ras Pulse Width */
|
|
dimmInfo->minRasPulseWidth = data[i];
|
|
tras_clocks =
|
|
(NSto10PS (data[i]) +
|
|
(tmemclk - 1)) / tmemclk;
|
|
debug("Minimum Ras Pulse Width [ns]: %d = in Clk cycles %d\n",
|
|
dimmInfo->minRasPulseWidth, tras_clocks);
|
|
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 31: /* Module Bank Density */
|
|
dimmInfo->moduleBankDensity = data[i];
|
|
debug("Module Bank Density: %d\n",
|
|
dimmInfo->moduleBankDensity);
|
|
#ifdef DEBUG
|
|
debug("*** Offered Densities (more than 1 = Multisize-Module): ");
|
|
{
|
|
if (dimmInfo->moduleBankDensity & 1)
|
|
debug("4MB, ");
|
|
if (dimmInfo->moduleBankDensity & 2)
|
|
debug("8MB, ");
|
|
if (dimmInfo->moduleBankDensity & 4)
|
|
debug("16MB, ");
|
|
if (dimmInfo->moduleBankDensity & 8)
|
|
debug("32MB, ");
|
|
if (dimmInfo->moduleBankDensity & 16)
|
|
debug("64MB, ");
|
|
if (dimmInfo->moduleBankDensity & 32)
|
|
debug("128MB, ");
|
|
if ((dimmInfo->moduleBankDensity & 64)
|
|
|| (dimmInfo->moduleBankDensity & 128)) {
|
|
debug("ERROR, ");
|
|
hang ();
|
|
}
|
|
}
|
|
debug("\n");
|
|
#endif
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 32: /* Address And Command Setup Time (measured in ns/1000) */
|
|
sign = 1;
|
|
switch (dimmInfo->memoryType) {
|
|
case DDR:
|
|
time_tmp =
|
|
(((data[i] & 0xf0) >> 4) * 10) +
|
|
((data[i] & 0x0f));
|
|
leftOfPoint = time_tmp / 100;
|
|
rightOfPoint = time_tmp % 100;
|
|
break;
|
|
case SDRAM:
|
|
leftOfPoint = (data[i] & 0xf0) >> 4;
|
|
if (leftOfPoint > 7) {
|
|
leftOfPoint = data[i] & 0x70 >> 4;
|
|
sign = -1;
|
|
}
|
|
rightOfPoint = (data[i] & 0x0f);
|
|
break;
|
|
}
|
|
dimmInfo->addrAndCommandSetupTime =
|
|
(leftOfPoint * 100 + rightOfPoint) * sign;
|
|
debug("Address And Command Setup Time [ns]: %d.%d\n",
|
|
sign * leftOfPoint, rightOfPoint);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 33: /* Address And Command Hold Time */
|
|
sign = 1;
|
|
switch (dimmInfo->memoryType) {
|
|
case DDR:
|
|
time_tmp =
|
|
(((data[i] & 0xf0) >> 4) * 10) +
|
|
((data[i] & 0x0f));
|
|
leftOfPoint = time_tmp / 100;
|
|
rightOfPoint = time_tmp % 100;
|
|
break;
|
|
case SDRAM:
|
|
leftOfPoint = (data[i] & 0xf0) >> 4;
|
|
if (leftOfPoint > 7) {
|
|
leftOfPoint = data[i] & 0x70 >> 4;
|
|
sign = -1;
|
|
}
|
|
rightOfPoint = (data[i] & 0x0f);
|
|
break;
|
|
}
|
|
dimmInfo->addrAndCommandHoldTime =
|
|
(leftOfPoint * 100 + rightOfPoint) * sign;
|
|
debug("Address And Command Hold Time [ns]: %d.%d\n",
|
|
sign * leftOfPoint, rightOfPoint);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 34: /* Data Input Setup Time */
|
|
sign = 1;
|
|
switch (dimmInfo->memoryType) {
|
|
case DDR:
|
|
time_tmp =
|
|
(((data[i] & 0xf0) >> 4) * 10) +
|
|
((data[i] & 0x0f));
|
|
leftOfPoint = time_tmp / 100;
|
|
rightOfPoint = time_tmp % 100;
|
|
break;
|
|
case SDRAM:
|
|
leftOfPoint = (data[i] & 0xf0) >> 4;
|
|
if (leftOfPoint > 7) {
|
|
leftOfPoint = data[i] & 0x70 >> 4;
|
|
sign = -1;
|
|
}
|
|
rightOfPoint = (data[i] & 0x0f);
|
|
break;
|
|
}
|
|
dimmInfo->dataInputSetupTime =
|
|
(leftOfPoint * 100 + rightOfPoint) * sign;
|
|
debug("Data Input Setup Time [ns]: %d.%d\n",
|
|
sign * leftOfPoint, rightOfPoint);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
|
|
case 35: /* Data Input Hold Time */
|
|
sign = 1;
|
|
switch (dimmInfo->memoryType) {
|
|
case DDR:
|
|
time_tmp =
|
|
(((data[i] & 0xf0) >> 4) * 10) +
|
|
((data[i] & 0x0f));
|
|
leftOfPoint = time_tmp / 100;
|
|
rightOfPoint = time_tmp % 100;
|
|
break;
|
|
case SDRAM:
|
|
leftOfPoint = (data[i] & 0xf0) >> 4;
|
|
if (leftOfPoint > 7) {
|
|
leftOfPoint = data[i] & 0x70 >> 4;
|
|
sign = -1;
|
|
}
|
|
rightOfPoint = (data[i] & 0x0f);
|
|
break;
|
|
}
|
|
dimmInfo->dataInputHoldTime =
|
|
(leftOfPoint * 100 + rightOfPoint) * sign;
|
|
debug("Data Input Hold Time [ns]: %d.%d\n\n",
|
|
sign * leftOfPoint, rightOfPoint);
|
|
break;
|
|
/*------------------------------------------------------------------------------------------------------------------------------*/
|
|
}
|
|
}
|
|
/* calculating the sdram density */
|
|
for (i = 0;
|
|
i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses;
|
|
i++) {
|
|
density = density * 2;
|
|
}
|
|
dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice *
|
|
dimmInfo->sdramWidth;
|
|
dimmInfo->numberOfDevices =
|
|
(dimmInfo->dataWidth / dimmInfo->sdramWidth) *
|
|
dimmInfo->numOfModuleBanks;
|
|
devicesForErrCheck =
|
|
(dimmInfo->dataWidth - 64) / dimmInfo->sdramWidth;
|
|
if ((dimmInfo->errorCheckType == 0x1)
|
|
|| (dimmInfo->errorCheckType == 0x2)
|
|
|| (dimmInfo->errorCheckType == 0x3)) {
|
|
dimmInfo->size =
|
|
(dimmInfo->deviceDensity / 8) *
|
|
(dimmInfo->numberOfDevices - devicesForErrCheck);
|
|
} else {
|
|
dimmInfo->size =
|
|
(dimmInfo->deviceDensity / 8) *
|
|
dimmInfo->numberOfDevices;
|
|
}
|
|
|
|
/* compute the module DRB size */
|
|
tmp = (1 <<
|
|
(dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses));
|
|
tmp *= dimmInfo->numOfModuleBanks;
|
|
tmp *= dimmInfo->sdramWidth;
|
|
tmp = tmp >> 24; /* div by 0x4000000 (64M) */
|
|
dimmInfo->drb_size = (uchar) tmp;
|
|
debug("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size);
|
|
|
|
/* try a CAS latency of 3 first... */
|
|
|
|
/* bit 1 is CL2, bit 2 is CL3 */
|
|
supp_cal = (dimmInfo->suportedCasLatencies & 0x1c) >> 1;
|
|
|
|
cal_val = 0;
|
|
if (supp_cal & 8) {
|
|
if (NS10to10PS (data[9]) <= tmemclk)
|
|
cal_val = 6;
|
|
}
|
|
if (supp_cal & 4) {
|
|
if (NS10to10PS (data[9]) <= tmemclk)
|
|
cal_val = 5;
|
|
}
|
|
|
|
/* then 2... */
|
|
if (supp_cal & 2) {
|
|
if (NS10to10PS (data[23]) <= tmemclk)
|
|
cal_val = 4;
|
|
}
|
|
|
|
debug("cal_val = %d\n", cal_val * 5);
|
|
|
|
/* bummer, did't work... */
|
|
if (cal_val == 0) {
|
|
debug("Couldn't find a good CAS latency\n");
|
|
hang ();
|
|
return 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* sets up the GT properly with information passed in */
|
|
int setup_sdram (AUX_MEM_DIMM_INFO * info)
|
|
{
|
|
ulong tmp;
|
|
ulong tmp_sdram_mode = 0; /* 0x141c */
|
|
ulong tmp_dunit_control_low = 0; /* 0x1404 */
|
|
uint sdram_config_reg = CONFIG_SYS_SDRAM_CONFIG;
|
|
int i;
|
|
|
|
/* sanity checking */
|
|
if (!info->numOfModuleBanks) {
|
|
printf ("setup_sdram called with 0 banks\n");
|
|
return 1;
|
|
}
|
|
|
|
/* delay line */
|
|
|
|
/* Program the GT with the discovered data */
|
|
if (info->registeredAddrAndControlInputs == true)
|
|
debug("Module is registered, but we do not support registered Modules !!!\n");
|
|
|
|
/* delay line */
|
|
set_dfcdlInit (); /* may be its not needed */
|
|
debug("Delay line set done\n");
|
|
|
|
/* set SDRAM mode NOP */ /* To_do check it */
|
|
GT_REG_WRITE (SDRAM_OPERATION, 0x5);
|
|
while (GTREGREAD (SDRAM_OPERATION) != 0) {
|
|
debug("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n");
|
|
}
|
|
|
|
#ifdef CONFIG_MV64360_ECC
|
|
if ((info->errorCheckType == 0x2) && (CPCI750_ECC_TEST)) {
|
|
/* DRAM has ECC, so turn it on */
|
|
sdram_config_reg |= BIT18;
|
|
debug("Enabling ECC\n");
|
|
}
|
|
#endif /* of ifdef CONFIG_MV64360_ECC */
|
|
|
|
/* SDRAM configuration */
|
|
GT_REG_WRITE(SDRAM_CONFIG, sdram_config_reg);
|
|
debug("sdram_conf 0x1400: %08x\n", GTREGREAD (SDRAM_CONFIG));
|
|
|
|
/* SDRAM open pages controll keep open as much as I can */
|
|
GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0);
|
|
debug("sdram_open_pages_controll 0x1414: %08x\n",
|
|
GTREGREAD (SDRAM_OPEN_PAGES_CONTROL));
|
|
|
|
|
|
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
|
|
tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */
|
|
if (tmp == 0)
|
|
debug("Core Signals are sync (by HW-Setting)!!!\n");
|
|
else
|
|
debug("Core Signals syncs. are bypassed (by HW-Setting)!!!\n");
|
|
|
|
/* SDRAM set CAS Lentency according to SPD information */
|
|
switch (info->memoryType) {
|
|
case SDRAM:
|
|
debug("### SD-RAM not supported yet !!!\n");
|
|
hang ();
|
|
/* ToDo fill SD-RAM if needed !!!!! */
|
|
break;
|
|
|
|
case DDR:
|
|
debug("### SET-CL for DDR-RAM\n");
|
|
|
|
switch (info->maxClSupported_DDR) {
|
|
case DDR_CL_3:
|
|
tmp_dunit_control_low = 0x3c000000; /* Read-Data sampled on falling edge of Clk */
|
|
tmp_sdram_mode = 0x32; /* CL=3 Burstlength = 4 */
|
|
debug("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
|
|
tmp_sdram_mode, tmp_dunit_control_low);
|
|
break;
|
|
|
|
case DDR_CL_2_5:
|
|
if (tmp == 1) { /* clocks sync */
|
|
tmp_dunit_control_low = 0x24000000; /* Read-Data sampled on falling edge of Clk */
|
|
tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4 */
|
|
debug("Max. CL is 2,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
|
|
tmp_sdram_mode, tmp_dunit_control_low);
|
|
} else { /* clk sync. bypassed */
|
|
|
|
tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk */
|
|
tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4 */
|
|
debug("Max. CL is 2,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
|
|
tmp_sdram_mode, tmp_dunit_control_low);
|
|
}
|
|
break;
|
|
|
|
case DDR_CL_2:
|
|
if (tmp == 1) { /* Sync */
|
|
tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk */
|
|
tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */
|
|
debug("Max. CL is 2s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
|
|
tmp_sdram_mode, tmp_dunit_control_low);
|
|
} else { /* Not sync. */
|
|
|
|
tmp_dunit_control_low = 0x3b000000; /* Read-Data sampled on rising edge of Clk */
|
|
tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */
|
|
debug("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
|
|
tmp_sdram_mode, tmp_dunit_control_low);
|
|
}
|
|
break;
|
|
|
|
case DDR_CL_1_5:
|
|
if (tmp == 1) { /* Sync */
|
|
tmp_dunit_control_low = 0x23000000; /* Read-Data sampled on falling edge of Clk */
|
|
tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4 */
|
|
debug("Max. CL is 1,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
|
|
tmp_sdram_mode, tmp_dunit_control_low);
|
|
} else { /* not sync */
|
|
|
|
tmp_dunit_control_low = 0x1a000000; /* Read-Data sampled on rising edge of Clk */
|
|
tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4 */
|
|
debug("Max. CL is 1,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
|
|
tmp_sdram_mode, tmp_dunit_control_low);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
printf ("Max. CL is out of range %d\n",
|
|
info->maxClSupported_DDR);
|
|
hang ();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Write results of CL detection procedure */
|
|
GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode);
|
|
/* set SDRAM mode SetCommand 0x1418 */
|
|
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
|
|
while (GTREGREAD (SDRAM_OPERATION) != 0) {
|
|
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
|
|
}
|
|
|
|
|
|
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
|
|
tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */
|
|
if (tmp != 1) { /*clocks are not sync */
|
|
/* asyncmode */
|
|
GT_REG_WRITE (D_UNIT_CONTROL_LOW,
|
|
(GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) |
|
|
0x18110780 | tmp_dunit_control_low);
|
|
} else {
|
|
/* syncmode */
|
|
GT_REG_WRITE (D_UNIT_CONTROL_LOW,
|
|
(GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) |
|
|
0x00110000 | tmp_dunit_control_low);
|
|
}
|
|
|
|
/* set SDRAM mode SetCommand 0x1418 */
|
|
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
|
|
while (GTREGREAD (SDRAM_OPERATION) != 0) {
|
|
debug("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n");
|
|
}
|
|
|
|
/*------------------------------------------------------------------------------ */
|
|
|
|
|
|
/* bank parameters */
|
|
/* SDRAM address decode register */
|
|
/* program this with the default value */
|
|
tmp = 0x02;
|
|
|
|
|
|
debug("drb_size (n*64Mbit): %d\n", info->drb_size);
|
|
switch (info->drb_size) {
|
|
case 1: /* 64 Mbit */
|
|
case 2: /* 128 Mbit */
|
|
debug("RAM-Device_size 64Mbit or 128Mbit)\n");
|
|
tmp |= (0x00 << 4);
|
|
break;
|
|
case 4: /* 256 Mbit */
|
|
case 8: /* 512 Mbit */
|
|
debug("RAM-Device_size 256Mbit or 512Mbit)\n");
|
|
tmp |= (0x01 << 4);
|
|
break;
|
|
case 16: /* 1 Gbit */
|
|
case 32: /* 2 Gbit */
|
|
debug("RAM-Device_size 1Gbit or 2Gbit)\n");
|
|
tmp |= (0x02 << 4);
|
|
break;
|
|
default:
|
|
printf ("Error in dram size calculation\n");
|
|
debug("Assume: RAM-Device_size 1Gbit or 2Gbit)\n");
|
|
tmp |= (0x02 << 4);
|
|
return 1;
|
|
}
|
|
|
|
/* SDRAM bank parameters */
|
|
/* the param registers for slot 1 (banks 2+3) are offset by 0x8 */
|
|
debug("setting up slot %d config with: %08lx \n", info->slot, tmp);
|
|
GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp);
|
|
|
|
/* ------------------------------------------------------------------------------ */
|
|
|
|
debug("setting up sdram_timing_control_low with: %08x \n",
|
|
0x11511220);
|
|
GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x11511220);
|
|
|
|
|
|
/* ------------------------------------------------------------------------------ */
|
|
|
|
/* SDRAM configuration */
|
|
tmp = GTREGREAD (SDRAM_CONFIG);
|
|
|
|
if (info->registeredAddrAndControlInputs
|
|
|| info->registeredDQMBinputs) {
|
|
tmp |= (1 << 17);
|
|
debug("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n",
|
|
info->registeredAddrAndControlInputs,
|
|
info->registeredDQMBinputs);
|
|
}
|
|
|
|
/* Use buffer 1 to return read data to the CPU
|
|
* Page 426 MV64360 */
|
|
tmp |= (1 << 26);
|
|
debug("Before Buffer assignment - sdram_conf: %08x\n",
|
|
GTREGREAD (SDRAM_CONFIG));
|
|
debug("After Buffer assignment - sdram_conf: %08x\n",
|
|
GTREGREAD (SDRAM_CONFIG));
|
|
|
|
/* SDRAM timing To_do: */
|
|
|
|
|
|
tmp = GTREGREAD (SDRAM_TIMING_CONTROL_HIGH);
|
|
debug("# sdram_timing_control_high is : %08lx \n", tmp);
|
|
|
|
/* SDRAM address decode register */
|
|
/* program this with the default value */
|
|
tmp = GTREGREAD (SDRAM_ADDR_CONTROL);
|
|
debug("SDRAM address control (before: decode): %08x ",
|
|
GTREGREAD (SDRAM_ADDR_CONTROL));
|
|
GT_REG_WRITE (SDRAM_ADDR_CONTROL, (tmp | 0x2));
|
|
debug("SDRAM address control (after: decode): %08x\n",
|
|
GTREGREAD (SDRAM_ADDR_CONTROL));
|
|
|
|
/* set the SDRAM configuration for each bank */
|
|
|
|
/* for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */
|
|
{
|
|
int l, l1;
|
|
|
|
i = info->slot;
|
|
debug("\n*** Running a MRS cycle for bank %d ***\n", i);
|
|
|
|
/* map the bank */
|
|
memory_map_bank (i, 0, GB / 4);
|
|
#if 1 /* test only */
|
|
|
|
tmp = GTREGREAD (SDRAM_MODE);
|
|
GT_REG_WRITE (EXTENDED_DRAM_MODE, 0x0);
|
|
GT_REG_WRITE (SDRAM_OPERATION, 0x4);
|
|
while (GTREGREAD (SDRAM_OPERATION) != 0) {
|
|
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
|
|
}
|
|
|
|
GT_REG_WRITE (SDRAM_MODE, tmp | 0x80);
|
|
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
|
|
while (GTREGREAD (SDRAM_OPERATION) != 0) {
|
|
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
|
|
}
|
|
l1 = 0;
|
|
for (l=0;l<200;l++)
|
|
l1 += GTREGREAD (SDRAM_OPERATION);
|
|
|
|
GT_REG_WRITE (SDRAM_MODE, tmp);
|
|
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
|
|
while (GTREGREAD (SDRAM_OPERATION) != 0) {
|
|
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
|
|
}
|
|
|
|
/* switch back to normal operation mode */
|
|
GT_REG_WRITE (SDRAM_OPERATION, 0x5);
|
|
while (GTREGREAD (SDRAM_OPERATION) != 0) {
|
|
debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
|
|
}
|
|
|
|
#endif /* test only */
|
|
/* unmap the bank */
|
|
memory_map_bank (i, 0, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check memory range for valid RAM. A simple memory test determines
|
|
* the actually available RAM size between addresses `base' and
|
|
* `base + maxsize'. Some (not all) hardware errors are detected:
|
|
* - short between address lines
|
|
* - short between data lines
|
|
*/
|
|
long int
|
|
dram_size(long int *base, long int maxsize)
|
|
{
|
|
volatile long int *addr, *b=base;
|
|
long int cnt, val, save1, save2;
|
|
|
|
#define STARTVAL (1<<20) /* start test at 1M */
|
|
for (cnt = STARTVAL/sizeof(long); cnt < maxsize/sizeof(long); cnt <<= 1) {
|
|
addr = base + cnt; /* pointer arith! */
|
|
|
|
save1 = *addr; /* save contents of addr */
|
|
save2 = *b; /* save contents of base */
|
|
|
|
*addr=cnt; /* write cnt to addr */
|
|
*b=0; /* put null at base */
|
|
|
|
/* check at base address */
|
|
if ((*b) != 0) {
|
|
*addr=save1; /* restore *addr */
|
|
*b=save2; /* restore *b */
|
|
return (0);
|
|
}
|
|
val = *addr; /* read *addr */
|
|
val = *addr; /* read *addr */
|
|
|
|
*addr=save1;
|
|
*b=save2;
|
|
|
|
if (val != cnt) {
|
|
debug("Found %08x at Address %08x (failure)\n", (unsigned int)val, (unsigned int) addr);
|
|
/* fix boundary condition.. STARTVAL means zero */
|
|
if(cnt==STARTVAL/sizeof(long)) cnt=0;
|
|
return (cnt * sizeof(long));
|
|
}
|
|
}
|
|
return maxsize;
|
|
}
|
|
|
|
#ifdef CONFIG_MV64360_ECC
|
|
/*
|
|
* mv_dma_is_channel_active:
|
|
* Checks if a engine is busy.
|
|
*/
|
|
int mv_dma_is_channel_active(int engine)
|
|
{
|
|
ulong data;
|
|
|
|
data = GTREGREAD(MV64360_DMA_CHANNEL0_CONTROL + 4 * engine);
|
|
if (data & BIT14) /* activity status */
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* mv_dma_set_memory_space:
|
|
* Set a DMA memory window for the DMA's address decoding map.
|
|
*/
|
|
int mv_dma_set_memory_space(ulong mem_space, ulong mem_space_target,
|
|
ulong mem_space_attr, ulong base_address,
|
|
ulong size)
|
|
{
|
|
ulong temp;
|
|
|
|
/* The base address must be aligned to the size. */
|
|
if (base_address % size != 0)
|
|
return 0;
|
|
|
|
if (size >= 0x10000) {
|
|
size &= 0xffff0000;
|
|
base_address = (base_address & 0xffff0000);
|
|
/* Set the new attributes */
|
|
GT_REG_WRITE(MV64360_DMA_BASE_ADDR_REG0 + mem_space * 8,
|
|
(base_address | mem_space_target |
|
|
mem_space_attr));
|
|
GT_REG_WRITE((MV64360_DMA_SIZE_REG0 + mem_space * 8),
|
|
(size - 1) & 0xffff0000);
|
|
temp = GTREGREAD(MV64360_DMA_BASE_ADDR_ENABLE_REG);
|
|
GT_REG_WRITE(DMA_BASE_ADDR_ENABLE_REG,
|
|
(temp & ~(BIT0 << mem_space)));
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* mv_dma_transfer:
|
|
* Transfer data from source_addr to dest_addr on one of the 4 DMA channels.
|
|
*/
|
|
int mv_dma_transfer(int engine, ulong source_addr,
|
|
ulong dest_addr, ulong bytes, ulong command)
|
|
{
|
|
ulong eng_off_reg; /* Engine Offset Register */
|
|
|
|
if (bytes > 0xffff)
|
|
command = command | BIT31; /* DMA_16M_DESCRIPTOR_MODE */
|
|
|
|
command = command | ((command >> 6) & 0x7);
|
|
eng_off_reg = engine * 4;
|
|
GT_REG_WRITE(MV64360_DMA_CHANNEL0_BYTE_COUNT + eng_off_reg,
|
|
bytes);
|
|
GT_REG_WRITE(MV64360_DMA_CHANNEL0_SOURCE_ADDR + eng_off_reg,
|
|
source_addr);
|
|
GT_REG_WRITE(MV64360_DMA_CHANNEL0_DESTINATION_ADDR + eng_off_reg,
|
|
dest_addr);
|
|
command |= BIT12 /* DMA_CHANNEL_ENABLE */
|
|
| BIT9; /* DMA_NON_CHAIN_MODE */
|
|
|
|
/* Activate DMA engine By writting to mv_dma_control_register */
|
|
GT_REG_WRITE(MV64360_DMA_CHANNEL0_CONTROL + eng_off_reg, command);
|
|
|
|
return 1;
|
|
}
|
|
#endif /* of ifdef CONFIG_MV64360_ECC */
|
|
|
|
/* ppcboot interface function to SDRAM init - this is where all the
|
|
* controlling logic happens */
|
|
phys_size_t
|
|
initdram(int board_type)
|
|
{
|
|
int checkbank[4] = { [0 ... 3] = 0 };
|
|
ulong realsize, total, check;
|
|
AUX_MEM_DIMM_INFO dimmInfo1;
|
|
AUX_MEM_DIMM_INFO dimmInfo2;
|
|
int bank_no, nhr;
|
|
#ifdef CONFIG_MV64360_ECC
|
|
ulong dest, mem_space_attr;
|
|
#endif /* of ifdef CONFIG_MV64360_ECC */
|
|
|
|
/* first, use the SPD to get info about the SDRAM/ DDRRAM */
|
|
|
|
/* check the NHR bit and skip mem init if it's already done */
|
|
nhr = get_hid0() & (1 << 16);
|
|
|
|
if (nhr) {
|
|
printf("Skipping SD- DDRRAM setup due to NHR bit being set\n");
|
|
} else {
|
|
/* DIMM0 */
|
|
(void)check_dimm(0, &dimmInfo1);
|
|
|
|
/* DIMM1 */
|
|
(void)check_dimm(1, &dimmInfo2);
|
|
|
|
memory_map_bank(0, 0, 0);
|
|
memory_map_bank(1, 0, 0);
|
|
memory_map_bank(2, 0, 0);
|
|
memory_map_bank(3, 0, 0);
|
|
|
|
if (dimmInfo1.numOfModuleBanks && setup_sdram(&dimmInfo1)) {
|
|
printf("Setup for DIMM1 failed.\n");
|
|
}
|
|
|
|
if (dimmInfo2.numOfModuleBanks && setup_sdram(&dimmInfo2)) {
|
|
printf("Setup for DIMM2 failed.\n");
|
|
}
|
|
|
|
/* set the NHR bit */
|
|
set_hid0(get_hid0() | (1 << 16));
|
|
}
|
|
/* next, size the SDRAM banks */
|
|
|
|
realsize = total = 0;
|
|
check = GB/4;
|
|
if (dimmInfo1.numOfModuleBanks > 0) {checkbank[0] = 1; printf("-- DIMM1 has 1 bank\n");}
|
|
if (dimmInfo1.numOfModuleBanks > 1) {checkbank[1] = 1; printf("-- DIMM1 has 2 banks\n");}
|
|
if (dimmInfo1.numOfModuleBanks > 2)
|
|
printf("Error, SPD claims DIMM1 has >2 banks\n");
|
|
|
|
if (dimmInfo2.numOfModuleBanks > 0) {checkbank[2] = 1; printf("-- DIMM2 has 1 bank\n");}
|
|
if (dimmInfo2.numOfModuleBanks > 1) {checkbank[3] = 1; printf("-- DIMM2 has 2 banks\n");}
|
|
if (dimmInfo2.numOfModuleBanks > 2)
|
|
printf("Error, SPD claims DIMM2 has >2 banks\n");
|
|
|
|
for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) {
|
|
/* skip over banks that are not populated */
|
|
if (! checkbank[bank_no])
|
|
continue;
|
|
|
|
if ((total + check) > CONFIG_SYS_GT_REGS)
|
|
check = CONFIG_SYS_GT_REGS - total;
|
|
|
|
memory_map_bank(bank_no, total, check);
|
|
realsize = dram_size((long int *)total, check);
|
|
memory_map_bank(bank_no, total, realsize);
|
|
|
|
#ifdef CONFIG_MV64360_ECC
|
|
if (((dimmInfo1.errorCheckType != 0) &&
|
|
((dimmInfo2.errorCheckType != 0) ||
|
|
(dimmInfo2.numOfModuleBanks == 0))) &&
|
|
(CPCI750_ECC_TEST)) {
|
|
printf("ECC Initialization of Bank %d:", bank_no);
|
|
mem_space_attr = ((~(BIT0 << bank_no)) & 0xf) << 8;
|
|
mv_dma_set_memory_space(0, 0, mem_space_attr, total,
|
|
realsize);
|
|
for (dest = total; dest < total + realsize;
|
|
dest += _8M) {
|
|
mv_dma_transfer(0, total, dest, _8M,
|
|
BIT8 | /* DMA_DTL_128BYTES */
|
|
BIT3 | /* DMA_HOLD_SOURCE_ADDR */
|
|
BIT11); /* DMA_BLOCK_TRANSFER_MODE */
|
|
while (mv_dma_is_channel_active(0))
|
|
;
|
|
}
|
|
printf(" PASS\n");
|
|
}
|
|
#endif /* of ifdef CONFIG_MV64360_ECC */
|
|
|
|
total += realsize;
|
|
}
|
|
|
|
/* Setup Ethernet DMA Adress window to DRAM Area */
|
|
return(total);
|
|
}
|
|
|
|
/* ***************************************************************************************
|
|
! * SDRAM INIT *
|
|
! * This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb *
|
|
! * This procedure fits only the Atlantis *
|
|
! * *
|
|
! *************************************************************************************** */
|
|
|
|
|
|
/* ***************************************************************************************
|
|
! * DFCDL initialize MV643xx Design Considerations *
|
|
! * *
|
|
! *************************************************************************************** */
|
|
int set_dfcdlInit (void)
|
|
{
|
|
int i;
|
|
unsigned int dfcdl_word = 0x0000014f;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
GT_REG_WRITE (SRAM_DATA0, dfcdl_word);
|
|
}
|
|
GT_REG_WRITE (DFCDL_CONFIG0, 0x00300000); /* enable dynamic delay line updating */
|
|
|
|
|
|
return (0);
|
|
}
|
|
|
|
int do_show_ecc(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
|
|
{
|
|
unsigned int ecc_counter;
|
|
unsigned int ecc_addr;
|
|
|
|
GT_REG_READ(0x1458, &ecc_counter);
|
|
GT_REG_READ(0x1450, &ecc_addr);
|
|
GT_REG_WRITE(0x1450, 0);
|
|
|
|
printf("Error Counter since Reset: %8d\n", ecc_counter);
|
|
printf("Last error address :0x%08x (" , ecc_addr & 0xfffffff8);
|
|
if (ecc_addr & 0x01)
|
|
printf("double");
|
|
else
|
|
printf("single");
|
|
printf(" bit) at DDR-RAM CS#%d\n", ((ecc_addr & 0x6) >> 1));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
U_BOOT_CMD(
|
|
show_ecc, 1, 1, do_show_ecc,
|
|
"Show Marvell MV64360 ECC Info",
|
|
"Show Marvell MV64360 ECC Counter and last error."
|
|
);
|