mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-11 15:37:23 +00:00
ebdea88d57
We are ignoring the alignment communicated via the PE/COFF header. Starting 5.10 the Linux kernel will loudly complain about it. For more details look at [1] (in linux kernel). So add a function that can allocate aligned EFI memory and use it for our relocated loaded image. [1] c32ac11da3f83 ("efi/libstub: arm64: Double check image alignment at entry") Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Tested-by: Vincent Stehlé <vincent.stehle@arm.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
989 lines
27 KiB
C
989 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* EFI image loader
|
|
*
|
|
* based partly on wine code
|
|
*
|
|
* Copyright (c) 2016 Alexander Graf
|
|
*/
|
|
|
|
#define LOG_CATEGORY LOGC_EFI
|
|
|
|
#include <common.h>
|
|
#include <cpu_func.h>
|
|
#include <efi_loader.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <pe.h>
|
|
#include <sort.h>
|
|
#include <crypto/pkcs7_parser.h>
|
|
#include <linux/err.h>
|
|
|
|
const efi_guid_t efi_global_variable_guid = EFI_GLOBAL_VARIABLE_GUID;
|
|
const efi_guid_t efi_guid_device_path = EFI_DEVICE_PATH_PROTOCOL_GUID;
|
|
const efi_guid_t efi_guid_loaded_image = EFI_LOADED_IMAGE_PROTOCOL_GUID;
|
|
const efi_guid_t efi_guid_loaded_image_device_path =
|
|
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID;
|
|
const efi_guid_t efi_simple_file_system_protocol_guid =
|
|
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID;
|
|
const efi_guid_t efi_file_info_guid = EFI_FILE_INFO_GUID;
|
|
|
|
static int machines[] = {
|
|
#if defined(__aarch64__)
|
|
IMAGE_FILE_MACHINE_ARM64,
|
|
#elif defined(__arm__)
|
|
IMAGE_FILE_MACHINE_ARM,
|
|
IMAGE_FILE_MACHINE_THUMB,
|
|
IMAGE_FILE_MACHINE_ARMNT,
|
|
#endif
|
|
|
|
#if defined(__x86_64__)
|
|
IMAGE_FILE_MACHINE_AMD64,
|
|
#elif defined(__i386__)
|
|
IMAGE_FILE_MACHINE_I386,
|
|
#endif
|
|
|
|
#if defined(__riscv) && (__riscv_xlen == 32)
|
|
IMAGE_FILE_MACHINE_RISCV32,
|
|
#endif
|
|
|
|
#if defined(__riscv) && (__riscv_xlen == 64)
|
|
IMAGE_FILE_MACHINE_RISCV64,
|
|
#endif
|
|
0 };
|
|
|
|
/**
|
|
* efi_print_image_info() - print information about a loaded image
|
|
*
|
|
* If the program counter is located within the image the offset to the base
|
|
* address is shown.
|
|
*
|
|
* @obj: EFI object
|
|
* @image: loaded image
|
|
* @pc: program counter (use NULL to suppress offset output)
|
|
* Return: status code
|
|
*/
|
|
static efi_status_t efi_print_image_info(struct efi_loaded_image_obj *obj,
|
|
struct efi_loaded_image *image,
|
|
void *pc)
|
|
{
|
|
printf("UEFI image");
|
|
printf(" [0x%p:0x%p]",
|
|
image->image_base, image->image_base + image->image_size - 1);
|
|
if (pc && pc >= image->image_base &&
|
|
pc < image->image_base + image->image_size)
|
|
printf(" pc=0x%zx", pc - image->image_base);
|
|
if (image->file_path)
|
|
printf(" '%pD'", image->file_path);
|
|
printf("\n");
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* efi_print_image_infos() - print information about all loaded images
|
|
*
|
|
* @pc: program counter (use NULL to suppress offset output)
|
|
*/
|
|
void efi_print_image_infos(void *pc)
|
|
{
|
|
struct efi_object *efiobj;
|
|
struct efi_handler *handler;
|
|
|
|
list_for_each_entry(efiobj, &efi_obj_list, link) {
|
|
list_for_each_entry(handler, &efiobj->protocols, link) {
|
|
if (!guidcmp(handler->guid, &efi_guid_loaded_image)) {
|
|
efi_print_image_info(
|
|
(struct efi_loaded_image_obj *)efiobj,
|
|
handler->protocol_interface, pc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* efi_loader_relocate() - relocate UEFI binary
|
|
*
|
|
* @rel: pointer to the relocation table
|
|
* @rel_size: size of the relocation table in bytes
|
|
* @efi_reloc: actual load address of the image
|
|
* @pref_address: preferred load address of the image
|
|
* Return: status code
|
|
*/
|
|
static efi_status_t efi_loader_relocate(const IMAGE_BASE_RELOCATION *rel,
|
|
unsigned long rel_size, void *efi_reloc,
|
|
unsigned long pref_address)
|
|
{
|
|
unsigned long delta = (unsigned long)efi_reloc - pref_address;
|
|
const IMAGE_BASE_RELOCATION *end;
|
|
int i;
|
|
|
|
if (delta == 0)
|
|
return EFI_SUCCESS;
|
|
|
|
end = (const IMAGE_BASE_RELOCATION *)((const char *)rel + rel_size);
|
|
while (rel < end && rel->SizeOfBlock) {
|
|
const uint16_t *relocs = (const uint16_t *)(rel + 1);
|
|
i = (rel->SizeOfBlock - sizeof(*rel)) / sizeof(uint16_t);
|
|
while (i--) {
|
|
uint32_t offset = (uint32_t)(*relocs & 0xfff) +
|
|
rel->VirtualAddress;
|
|
int type = *relocs >> EFI_PAGE_SHIFT;
|
|
uint64_t *x64 = efi_reloc + offset;
|
|
uint32_t *x32 = efi_reloc + offset;
|
|
uint16_t *x16 = efi_reloc + offset;
|
|
|
|
switch (type) {
|
|
case IMAGE_REL_BASED_ABSOLUTE:
|
|
break;
|
|
case IMAGE_REL_BASED_HIGH:
|
|
*x16 += ((uint32_t)delta) >> 16;
|
|
break;
|
|
case IMAGE_REL_BASED_LOW:
|
|
*x16 += (uint16_t)delta;
|
|
break;
|
|
case IMAGE_REL_BASED_HIGHLOW:
|
|
*x32 += (uint32_t)delta;
|
|
break;
|
|
case IMAGE_REL_BASED_DIR64:
|
|
*x64 += (uint64_t)delta;
|
|
break;
|
|
#ifdef __riscv
|
|
case IMAGE_REL_BASED_RISCV_HI20:
|
|
*x32 = ((*x32 & 0xfffff000) + (uint32_t)delta) |
|
|
(*x32 & 0x00000fff);
|
|
break;
|
|
case IMAGE_REL_BASED_RISCV_LOW12I:
|
|
case IMAGE_REL_BASED_RISCV_LOW12S:
|
|
/* We know that we're 4k aligned */
|
|
if (delta & 0xfff) {
|
|
log_err("Unsupported reloc offset\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
log_err("Unknown Relocation off %x type %x\n",
|
|
offset, type);
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
relocs++;
|
|
}
|
|
rel = (const IMAGE_BASE_RELOCATION *)relocs;
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
void __weak invalidate_icache_all(void)
|
|
{
|
|
/* If the system doesn't support icache_all flush, cross our fingers */
|
|
}
|
|
|
|
/**
|
|
* efi_set_code_and_data_type() - determine the memory types to be used for code
|
|
* and data.
|
|
*
|
|
* @loaded_image_info: image descriptor
|
|
* @image_type: field Subsystem of the optional header for
|
|
* Windows specific field
|
|
*/
|
|
static void efi_set_code_and_data_type(
|
|
struct efi_loaded_image *loaded_image_info,
|
|
uint16_t image_type)
|
|
{
|
|
switch (image_type) {
|
|
case IMAGE_SUBSYSTEM_EFI_APPLICATION:
|
|
loaded_image_info->image_code_type = EFI_LOADER_CODE;
|
|
loaded_image_info->image_data_type = EFI_LOADER_DATA;
|
|
break;
|
|
case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
|
|
loaded_image_info->image_code_type = EFI_BOOT_SERVICES_CODE;
|
|
loaded_image_info->image_data_type = EFI_BOOT_SERVICES_DATA;
|
|
break;
|
|
case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
|
|
case IMAGE_SUBSYSTEM_EFI_ROM:
|
|
loaded_image_info->image_code_type = EFI_RUNTIME_SERVICES_CODE;
|
|
loaded_image_info->image_data_type = EFI_RUNTIME_SERVICES_DATA;
|
|
break;
|
|
default:
|
|
log_err("invalid image type: %u\n", image_type);
|
|
/* Let's assume it is an application */
|
|
loaded_image_info->image_code_type = EFI_LOADER_CODE;
|
|
loaded_image_info->image_data_type = EFI_LOADER_DATA;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* efi_image_region_add() - add an entry of region
|
|
* @regs: Pointer to array of regions
|
|
* @start: Start address of region (included)
|
|
* @end: End address of region (excluded)
|
|
* @nocheck: flag against overlapped regions
|
|
*
|
|
* Take one entry of region \[@start, @end\[ and insert it into the list.
|
|
*
|
|
* * If @nocheck is false, the list will be sorted ascending by address.
|
|
* Overlapping entries will not be allowed.
|
|
*
|
|
* * If @nocheck is true, the list will be sorted ascending by sequence
|
|
* of adding the entries. Overlapping is allowed.
|
|
*
|
|
* Return: status code
|
|
*/
|
|
efi_status_t efi_image_region_add(struct efi_image_regions *regs,
|
|
const void *start, const void *end,
|
|
int nocheck)
|
|
{
|
|
struct image_region *reg;
|
|
int i, j;
|
|
|
|
if (regs->num >= regs->max) {
|
|
EFI_PRINT("%s: no more room for regions\n", __func__);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (end < start)
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
for (i = 0; i < regs->num; i++) {
|
|
reg = ®s->reg[i];
|
|
if (nocheck)
|
|
continue;
|
|
|
|
/* new data after registered region */
|
|
if (start >= reg->data + reg->size)
|
|
continue;
|
|
|
|
/* new data preceding registered region */
|
|
if (end <= reg->data) {
|
|
for (j = regs->num - 1; j >= i; j--)
|
|
memcpy(®s->reg[j + 1], ®s->reg[j],
|
|
sizeof(*reg));
|
|
break;
|
|
}
|
|
|
|
/* new data overlapping registered region */
|
|
EFI_PRINT("%s: new region already part of another\n", __func__);
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
reg = ®s->reg[i];
|
|
reg->data = start;
|
|
reg->size = end - start;
|
|
regs->num++;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* cmp_pe_section() - compare virtual addresses of two PE image sections
|
|
* @arg1: pointer to pointer to first section header
|
|
* @arg2: pointer to pointer to second section header
|
|
*
|
|
* Compare the virtual addresses of two sections of an portable executable.
|
|
* The arguments are defined as const void * to allow usage with qsort().
|
|
*
|
|
* Return: -1 if the virtual address of arg1 is less than that of arg2,
|
|
* 0 if the virtual addresses are equal, 1 if the virtual address
|
|
* of arg1 is greater than that of arg2.
|
|
*/
|
|
static int cmp_pe_section(const void *arg1, const void *arg2)
|
|
{
|
|
const IMAGE_SECTION_HEADER *section1, *section2;
|
|
|
|
section1 = *((const IMAGE_SECTION_HEADER **)arg1);
|
|
section2 = *((const IMAGE_SECTION_HEADER **)arg2);
|
|
|
|
if (section1->VirtualAddress < section2->VirtualAddress)
|
|
return -1;
|
|
else if (section1->VirtualAddress == section2->VirtualAddress)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* efi_prepare_aligned_image() - prepare 8-byte aligned image
|
|
* @efi: pointer to the EFI binary
|
|
* @efi_size: size of @efi binary
|
|
*
|
|
* If @efi is not 8-byte aligned, this function newly allocates
|
|
* the image buffer.
|
|
*
|
|
* Return: valid pointer to a image, return NULL if allocation fails.
|
|
*/
|
|
void *efi_prepare_aligned_image(void *efi, u64 *efi_size)
|
|
{
|
|
size_t new_efi_size;
|
|
void *new_efi;
|
|
|
|
/*
|
|
* Size must be 8-byte aligned and the trailing bytes must be
|
|
* zero'ed. Otherwise hash value may be incorrect.
|
|
*/
|
|
if (!IS_ALIGNED(*efi_size, 8)) {
|
|
new_efi_size = ALIGN(*efi_size, 8);
|
|
new_efi = calloc(new_efi_size, 1);
|
|
if (!new_efi)
|
|
return NULL;
|
|
memcpy(new_efi, efi, *efi_size);
|
|
*efi_size = new_efi_size;
|
|
return new_efi;
|
|
} else {
|
|
return efi;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* efi_image_parse() - parse a PE image
|
|
* @efi: Pointer to image
|
|
* @len: Size of @efi
|
|
* @regp: Pointer to a list of regions
|
|
* @auth: Pointer to a pointer to authentication data in PE
|
|
* @auth_len: Size of @auth
|
|
*
|
|
* Parse image binary in PE32(+) format, assuming that sanity of PE image
|
|
* has been checked by a caller.
|
|
* On success, an address of authentication data in @efi and its size will
|
|
* be returned in @auth and @auth_len, respectively.
|
|
*
|
|
* Return: true on success, false on error
|
|
*/
|
|
bool efi_image_parse(void *efi, size_t len, struct efi_image_regions **regp,
|
|
WIN_CERTIFICATE **auth, size_t *auth_len)
|
|
{
|
|
struct efi_image_regions *regs;
|
|
IMAGE_DOS_HEADER *dos;
|
|
IMAGE_NT_HEADERS32 *nt;
|
|
IMAGE_SECTION_HEADER *sections, **sorted;
|
|
int num_regions, num_sections, i;
|
|
int ctidx = IMAGE_DIRECTORY_ENTRY_SECURITY;
|
|
u32 align, size, authsz, authoff;
|
|
size_t bytes_hashed;
|
|
|
|
dos = (void *)efi;
|
|
nt = (void *)(efi + dos->e_lfanew);
|
|
authoff = 0;
|
|
authsz = 0;
|
|
|
|
/*
|
|
* Count maximum number of regions to be digested.
|
|
* We don't have to have an exact number here.
|
|
* See efi_image_region_add()'s in parsing below.
|
|
*/
|
|
num_regions = 3; /* for header */
|
|
num_regions += nt->FileHeader.NumberOfSections;
|
|
num_regions++; /* for extra */
|
|
|
|
regs = calloc(sizeof(*regs) + sizeof(struct image_region) * num_regions,
|
|
1);
|
|
if (!regs)
|
|
goto err;
|
|
regs->max = num_regions;
|
|
|
|
/*
|
|
* Collect data regions for hash calculation
|
|
* 1. File headers
|
|
*/
|
|
if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
|
|
IMAGE_NT_HEADERS64 *nt64 = (void *)nt;
|
|
IMAGE_OPTIONAL_HEADER64 *opt = &nt64->OptionalHeader;
|
|
|
|
/* Skip CheckSum */
|
|
efi_image_region_add(regs, efi, &opt->CheckSum, 0);
|
|
if (nt64->OptionalHeader.NumberOfRvaAndSizes <= ctidx) {
|
|
efi_image_region_add(regs,
|
|
&opt->Subsystem,
|
|
efi + opt->SizeOfHeaders, 0);
|
|
} else {
|
|
/* Skip Certificates Table */
|
|
efi_image_region_add(regs,
|
|
&opt->Subsystem,
|
|
&opt->DataDirectory[ctidx], 0);
|
|
efi_image_region_add(regs,
|
|
&opt->DataDirectory[ctidx] + 1,
|
|
efi + opt->SizeOfHeaders, 0);
|
|
|
|
authoff = opt->DataDirectory[ctidx].VirtualAddress;
|
|
authsz = opt->DataDirectory[ctidx].Size;
|
|
}
|
|
|
|
bytes_hashed = opt->SizeOfHeaders;
|
|
align = opt->FileAlignment;
|
|
} else if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
IMAGE_OPTIONAL_HEADER32 *opt = &nt->OptionalHeader;
|
|
|
|
/* Skip CheckSum */
|
|
efi_image_region_add(regs, efi, &opt->CheckSum, 0);
|
|
if (nt->OptionalHeader.NumberOfRvaAndSizes <= ctidx) {
|
|
efi_image_region_add(regs,
|
|
&opt->Subsystem,
|
|
efi + opt->SizeOfHeaders, 0);
|
|
} else {
|
|
/* Skip Certificates Table */
|
|
efi_image_region_add(regs, &opt->Subsystem,
|
|
&opt->DataDirectory[ctidx], 0);
|
|
efi_image_region_add(regs,
|
|
&opt->DataDirectory[ctidx] + 1,
|
|
efi + opt->SizeOfHeaders, 0);
|
|
|
|
authoff = opt->DataDirectory[ctidx].VirtualAddress;
|
|
authsz = opt->DataDirectory[ctidx].Size;
|
|
}
|
|
|
|
bytes_hashed = opt->SizeOfHeaders;
|
|
align = opt->FileAlignment;
|
|
} else {
|
|
EFI_PRINT("%s: Invalid optional header magic %x\n", __func__,
|
|
nt->OptionalHeader.Magic);
|
|
goto err;
|
|
}
|
|
|
|
/* 2. Sections */
|
|
num_sections = nt->FileHeader.NumberOfSections;
|
|
sections = (void *)((uint8_t *)&nt->OptionalHeader +
|
|
nt->FileHeader.SizeOfOptionalHeader);
|
|
sorted = calloc(sizeof(IMAGE_SECTION_HEADER *), num_sections);
|
|
if (!sorted) {
|
|
EFI_PRINT("%s: Out of memory\n", __func__);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Make sure the section list is in ascending order.
|
|
*/
|
|
for (i = 0; i < num_sections; i++)
|
|
sorted[i] = §ions[i];
|
|
qsort(sorted, num_sections, sizeof(sorted[0]), cmp_pe_section);
|
|
|
|
for (i = 0; i < num_sections; i++) {
|
|
if (!sorted[i]->SizeOfRawData)
|
|
continue;
|
|
|
|
size = (sorted[i]->SizeOfRawData + align - 1) & ~(align - 1);
|
|
efi_image_region_add(regs, efi + sorted[i]->PointerToRawData,
|
|
efi + sorted[i]->PointerToRawData + size,
|
|
0);
|
|
EFI_PRINT("section[%d](%s): raw: 0x%x-0x%x, virt: %x-%x\n",
|
|
i, sorted[i]->Name,
|
|
sorted[i]->PointerToRawData,
|
|
sorted[i]->PointerToRawData + size,
|
|
sorted[i]->VirtualAddress,
|
|
sorted[i]->VirtualAddress
|
|
+ sorted[i]->Misc.VirtualSize);
|
|
|
|
bytes_hashed += size;
|
|
}
|
|
free(sorted);
|
|
|
|
/* 3. Extra data excluding Certificates Table */
|
|
if (bytes_hashed + authsz < len) {
|
|
EFI_PRINT("extra data for hash: %zu\n",
|
|
len - (bytes_hashed + authsz));
|
|
efi_image_region_add(regs, efi + bytes_hashed,
|
|
efi + len - authsz, 0);
|
|
}
|
|
|
|
/* Return Certificates Table */
|
|
if (authsz) {
|
|
if (len < authoff + authsz) {
|
|
EFI_PRINT("%s: Size for auth too large: %u >= %zu\n",
|
|
__func__, authsz, len - authoff);
|
|
goto err;
|
|
}
|
|
if (authsz < sizeof(*auth)) {
|
|
EFI_PRINT("%s: Size for auth too small: %u < %zu\n",
|
|
__func__, authsz, sizeof(*auth));
|
|
goto err;
|
|
}
|
|
*auth = efi + authoff;
|
|
*auth_len = authsz;
|
|
EFI_PRINT("WIN_CERTIFICATE: 0x%x, size: 0x%x\n", authoff,
|
|
authsz);
|
|
} else {
|
|
*auth = NULL;
|
|
*auth_len = 0;
|
|
}
|
|
|
|
*regp = regs;
|
|
|
|
return true;
|
|
|
|
err:
|
|
free(regs);
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_EFI_SECURE_BOOT
|
|
/**
|
|
* efi_image_unsigned_authenticate() - authenticate unsigned image with
|
|
* SHA256 hash
|
|
* @regs: List of regions to be verified
|
|
*
|
|
* If an image is not signed, it doesn't have a signature. In this case,
|
|
* its message digest is calculated and it will be compared with one of
|
|
* hash values stored in signature databases.
|
|
*
|
|
* Return: true if authenticated, false if not
|
|
*/
|
|
static bool efi_image_unsigned_authenticate(struct efi_image_regions *regs)
|
|
{
|
|
struct efi_signature_store *db = NULL, *dbx = NULL;
|
|
bool ret = false;
|
|
|
|
dbx = efi_sigstore_parse_sigdb(L"dbx");
|
|
if (!dbx) {
|
|
EFI_PRINT("Getting signature database(dbx) failed\n");
|
|
goto out;
|
|
}
|
|
|
|
db = efi_sigstore_parse_sigdb(L"db");
|
|
if (!db) {
|
|
EFI_PRINT("Getting signature database(db) failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/* try black-list first */
|
|
if (efi_signature_lookup_digest(regs, dbx)) {
|
|
EFI_PRINT("Image is not signed and its digest found in \"dbx\"\n");
|
|
goto out;
|
|
}
|
|
|
|
/* try white-list */
|
|
if (efi_signature_lookup_digest(regs, db))
|
|
ret = true;
|
|
else
|
|
EFI_PRINT("Image is not signed and its digest not found in \"db\" or \"dbx\"\n");
|
|
|
|
out:
|
|
efi_sigstore_free(db);
|
|
efi_sigstore_free(dbx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* efi_image_authenticate() - verify a signature of signed image
|
|
* @efi: Pointer to image
|
|
* @efi_size: Size of @efi
|
|
*
|
|
* A signed image should have its signature stored in a table of its PE header.
|
|
* So if an image is signed and only if if its signature is verified using
|
|
* signature databases, an image is authenticated.
|
|
* If an image is not signed, its validity is checked by using
|
|
* efi_image_unsigned_authenticated().
|
|
* TODO:
|
|
* When AuditMode==0, if the image's signature is not found in
|
|
* the authorized database, or is found in the forbidden database,
|
|
* the image will not be started and instead, information about it
|
|
* will be placed in this table.
|
|
* When AuditMode==1, an EFI_IMAGE_EXECUTION_INFO element is created
|
|
* in the EFI_IMAGE_EXECUTION_INFO_TABLE for every certificate found
|
|
* in the certificate table of every image that is validated.
|
|
*
|
|
* Return: true if authenticated, false if not
|
|
*/
|
|
static bool efi_image_authenticate(void *efi, size_t efi_size)
|
|
{
|
|
struct efi_image_regions *regs = NULL;
|
|
WIN_CERTIFICATE *wincerts = NULL, *wincert;
|
|
size_t wincerts_len;
|
|
struct pkcs7_message *msg = NULL;
|
|
struct efi_signature_store *db = NULL, *dbx = NULL;
|
|
void *new_efi = NULL;
|
|
u8 *auth, *wincerts_end;
|
|
size_t auth_size;
|
|
bool ret = false;
|
|
|
|
EFI_PRINT("%s: Enter, %d\n", __func__, ret);
|
|
|
|
if (!efi_secure_boot_enabled())
|
|
return true;
|
|
|
|
new_efi = efi_prepare_aligned_image(efi, (u64 *)&efi_size);
|
|
if (!new_efi)
|
|
return false;
|
|
|
|
if (!efi_image_parse(new_efi, efi_size, ®s, &wincerts,
|
|
&wincerts_len)) {
|
|
EFI_PRINT("Parsing PE executable image failed\n");
|
|
goto err;
|
|
}
|
|
|
|
if (!wincerts) {
|
|
/* The image is not signed */
|
|
ret = efi_image_unsigned_authenticate(regs);
|
|
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* verify signature using db and dbx
|
|
*/
|
|
db = efi_sigstore_parse_sigdb(L"db");
|
|
if (!db) {
|
|
EFI_PRINT("Getting signature database(db) failed\n");
|
|
goto err;
|
|
}
|
|
|
|
dbx = efi_sigstore_parse_sigdb(L"dbx");
|
|
if (!dbx) {
|
|
EFI_PRINT("Getting signature database(dbx) failed\n");
|
|
goto err;
|
|
}
|
|
|
|
if (efi_signature_lookup_digest(regs, dbx)) {
|
|
EFI_PRINT("Image's digest was found in \"dbx\"\n");
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* go through WIN_CERTIFICATE list
|
|
* NOTE:
|
|
* We may have multiple signatures either as WIN_CERTIFICATE's
|
|
* in PE header, or as pkcs7 SignerInfo's in SignedData.
|
|
* So the verification policy here is:
|
|
* - Success if, at least, one of signatures is verified
|
|
* - unless signature is rejected explicitly with its digest.
|
|
*/
|
|
|
|
for (wincert = wincerts, wincerts_end = (u8 *)wincerts + wincerts_len;
|
|
(u8 *)wincert < wincerts_end;
|
|
wincert = (WIN_CERTIFICATE *)
|
|
((u8 *)wincert + ALIGN(wincert->dwLength, 8))) {
|
|
if ((u8 *)wincert + sizeof(*wincert) >= wincerts_end)
|
|
break;
|
|
|
|
if (wincert->dwLength <= sizeof(*wincert)) {
|
|
EFI_PRINT("dwLength too small: %u < %zu\n",
|
|
wincert->dwLength, sizeof(*wincert));
|
|
continue;
|
|
}
|
|
|
|
EFI_PRINT("WIN_CERTIFICATE_TYPE: 0x%x\n",
|
|
wincert->wCertificateType);
|
|
|
|
auth = (u8 *)wincert + sizeof(*wincert);
|
|
auth_size = wincert->dwLength - sizeof(*wincert);
|
|
if (wincert->wCertificateType == WIN_CERT_TYPE_EFI_GUID) {
|
|
if (auth + sizeof(efi_guid_t) >= wincerts_end)
|
|
break;
|
|
|
|
if (auth_size <= sizeof(efi_guid_t)) {
|
|
EFI_PRINT("dwLength too small: %u < %zu\n",
|
|
wincert->dwLength, sizeof(*wincert));
|
|
continue;
|
|
}
|
|
if (guidcmp(auth, &efi_guid_cert_type_pkcs7)) {
|
|
EFI_PRINT("Certificate type not supported: %pUl\n",
|
|
auth);
|
|
continue;
|
|
}
|
|
|
|
auth += sizeof(efi_guid_t);
|
|
auth_size -= sizeof(efi_guid_t);
|
|
} else if (wincert->wCertificateType
|
|
!= WIN_CERT_TYPE_PKCS_SIGNED_DATA) {
|
|
EFI_PRINT("Certificate type not supported\n");
|
|
continue;
|
|
}
|
|
|
|
msg = pkcs7_parse_message(auth, auth_size);
|
|
if (IS_ERR(msg)) {
|
|
EFI_PRINT("Parsing image's signature failed\n");
|
|
msg = NULL;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* NOTE:
|
|
* UEFI specification defines two signature types possible
|
|
* in signature database:
|
|
* a. x509 certificate, where a signature in image is
|
|
* a message digest encrypted by RSA public key
|
|
* (EFI_CERT_X509_GUID)
|
|
* b. bare hash value of message digest
|
|
* (EFI_CERT_SHAxxx_GUID)
|
|
*
|
|
* efi_signature_verify() handles case (a), while
|
|
* efi_signature_lookup_digest() handles case (b).
|
|
*
|
|
* There is a third type:
|
|
* c. message digest of a certificate
|
|
* (EFI_CERT_X509_SHAAxxx_GUID)
|
|
* This type of signature is used only in revocation list
|
|
* (dbx) and handled as part of efi_signatgure_verify().
|
|
*/
|
|
/* try black-list first */
|
|
if (efi_signature_verify_one(regs, msg, dbx)) {
|
|
EFI_PRINT("Signature was rejected by \"dbx\"\n");
|
|
continue;
|
|
}
|
|
|
|
if (!efi_signature_check_signers(msg, dbx)) {
|
|
EFI_PRINT("Signer(s) in \"dbx\"\n");
|
|
continue;
|
|
}
|
|
|
|
/* try white-list */
|
|
if (efi_signature_verify(regs, msg, db, dbx)) {
|
|
ret = true;
|
|
break;
|
|
}
|
|
|
|
EFI_PRINT("Signature was not verified by \"db\"\n");
|
|
|
|
if (efi_signature_lookup_digest(regs, db)) {
|
|
ret = true;
|
|
break;
|
|
}
|
|
|
|
EFI_PRINT("Image's digest was not found in \"db\" or \"dbx\"\n");
|
|
}
|
|
|
|
err:
|
|
efi_sigstore_free(db);
|
|
efi_sigstore_free(dbx);
|
|
pkcs7_free_message(msg);
|
|
free(regs);
|
|
if (new_efi != efi)
|
|
free(new_efi);
|
|
|
|
EFI_PRINT("%s: Exit, %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
#else
|
|
static bool efi_image_authenticate(void *efi, size_t efi_size)
|
|
{
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_EFI_SECURE_BOOT */
|
|
|
|
|
|
/**
|
|
* efi_check_pe() - check if a memory buffer contains a PE-COFF image
|
|
*
|
|
* @buffer: buffer to check
|
|
* @size: size of buffer
|
|
* @nt_header: on return pointer to NT header of PE-COFF image
|
|
* Return: EFI_SUCCESS if the buffer contains a PE-COFF image
|
|
*/
|
|
efi_status_t efi_check_pe(void *buffer, size_t size, void **nt_header)
|
|
{
|
|
IMAGE_DOS_HEADER *dos = buffer;
|
|
IMAGE_NT_HEADERS32 *nt;
|
|
|
|
if (size < sizeof(*dos))
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
/* Check for DOS magix */
|
|
if (dos->e_magic != IMAGE_DOS_SIGNATURE)
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
/*
|
|
* Check if the image section header fits into the file. Knowing that at
|
|
* least one section header follows we only need to check for the length
|
|
* of the 64bit header which is longer than the 32bit header.
|
|
*/
|
|
if (size < dos->e_lfanew + sizeof(IMAGE_NT_HEADERS32))
|
|
return EFI_INVALID_PARAMETER;
|
|
nt = (IMAGE_NT_HEADERS32 *)((u8 *)buffer + dos->e_lfanew);
|
|
|
|
/* Check for PE-COFF magic */
|
|
if (nt->Signature != IMAGE_NT_SIGNATURE)
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
if (nt_header)
|
|
*nt_header = nt;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* section_size() - determine size of section
|
|
*
|
|
* The size of a section in memory if normally given by VirtualSize.
|
|
* If VirtualSize is not provided, use SizeOfRawData.
|
|
*
|
|
* @sec: section header
|
|
* Return: size of section in memory
|
|
*/
|
|
static u32 section_size(IMAGE_SECTION_HEADER *sec)
|
|
{
|
|
if (sec->Misc.VirtualSize)
|
|
return sec->Misc.VirtualSize;
|
|
else
|
|
return sec->SizeOfRawData;
|
|
}
|
|
|
|
/**
|
|
* efi_load_pe() - relocate EFI binary
|
|
*
|
|
* This function loads all sections from a PE binary into a newly reserved
|
|
* piece of memory. On success the entry point is returned as handle->entry.
|
|
*
|
|
* @handle: loaded image handle
|
|
* @efi: pointer to the EFI binary
|
|
* @efi_size: size of @efi binary
|
|
* @loaded_image_info: loaded image protocol
|
|
* Return: status code
|
|
*/
|
|
efi_status_t efi_load_pe(struct efi_loaded_image_obj *handle,
|
|
void *efi, size_t efi_size,
|
|
struct efi_loaded_image *loaded_image_info)
|
|
{
|
|
IMAGE_NT_HEADERS32 *nt;
|
|
IMAGE_DOS_HEADER *dos;
|
|
IMAGE_SECTION_HEADER *sections;
|
|
int num_sections;
|
|
void *efi_reloc;
|
|
int i;
|
|
const IMAGE_BASE_RELOCATION *rel;
|
|
unsigned long rel_size;
|
|
int rel_idx = IMAGE_DIRECTORY_ENTRY_BASERELOC;
|
|
uint64_t image_base;
|
|
unsigned long virt_size = 0;
|
|
int supported = 0;
|
|
efi_status_t ret;
|
|
|
|
ret = efi_check_pe(efi, efi_size, (void **)&nt);
|
|
if (ret != EFI_SUCCESS) {
|
|
log_err("Not a PE-COFF file\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
for (i = 0; machines[i]; i++)
|
|
if (machines[i] == nt->FileHeader.Machine) {
|
|
supported = 1;
|
|
break;
|
|
}
|
|
|
|
if (!supported) {
|
|
log_err("Machine type 0x%04x is not supported\n",
|
|
nt->FileHeader.Machine);
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
num_sections = nt->FileHeader.NumberOfSections;
|
|
sections = (void *)&nt->OptionalHeader +
|
|
nt->FileHeader.SizeOfOptionalHeader;
|
|
|
|
if (efi_size < ((void *)sections + sizeof(sections[0]) * num_sections
|
|
- efi)) {
|
|
log_err("Invalid number of sections: %d\n", num_sections);
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
/* Authenticate an image */
|
|
if (efi_image_authenticate(efi, efi_size)) {
|
|
handle->auth_status = EFI_IMAGE_AUTH_PASSED;
|
|
} else {
|
|
handle->auth_status = EFI_IMAGE_AUTH_FAILED;
|
|
log_err("Image not authenticated\n");
|
|
}
|
|
|
|
/* Calculate upper virtual address boundary */
|
|
for (i = num_sections - 1; i >= 0; i--) {
|
|
IMAGE_SECTION_HEADER *sec = §ions[i];
|
|
|
|
virt_size = max_t(unsigned long, virt_size,
|
|
sec->VirtualAddress + section_size(sec));
|
|
}
|
|
|
|
/* Read 32/64bit specific header bits */
|
|
if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
|
|
IMAGE_NT_HEADERS64 *nt64 = (void *)nt;
|
|
IMAGE_OPTIONAL_HEADER64 *opt = &nt64->OptionalHeader;
|
|
image_base = opt->ImageBase;
|
|
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
|
|
handle->image_type = opt->Subsystem;
|
|
efi_reloc = efi_alloc_aligned_pages(virt_size,
|
|
loaded_image_info->image_code_type,
|
|
opt->SectionAlignment);
|
|
if (!efi_reloc) {
|
|
log_err("Out of memory\n");
|
|
ret = EFI_OUT_OF_RESOURCES;
|
|
goto err;
|
|
}
|
|
handle->entry = efi_reloc + opt->AddressOfEntryPoint;
|
|
rel_size = opt->DataDirectory[rel_idx].Size;
|
|
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
|
|
} else if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
IMAGE_OPTIONAL_HEADER32 *opt = &nt->OptionalHeader;
|
|
image_base = opt->ImageBase;
|
|
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
|
|
handle->image_type = opt->Subsystem;
|
|
efi_reloc = efi_alloc_aligned_pages(virt_size,
|
|
loaded_image_info->image_code_type,
|
|
opt->SectionAlignment);
|
|
if (!efi_reloc) {
|
|
log_err("Out of memory\n");
|
|
ret = EFI_OUT_OF_RESOURCES;
|
|
goto err;
|
|
}
|
|
handle->entry = efi_reloc + opt->AddressOfEntryPoint;
|
|
rel_size = opt->DataDirectory[rel_idx].Size;
|
|
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
|
|
} else {
|
|
log_err("Invalid optional header magic %x\n",
|
|
nt->OptionalHeader.Magic);
|
|
ret = EFI_LOAD_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
#if CONFIG_IS_ENABLED(EFI_TCG2_PROTOCOL)
|
|
/* Measure an PE/COFF image */
|
|
if (tcg2_measure_pe_image(efi, efi_size, handle,
|
|
loaded_image_info))
|
|
log_err("PE image measurement failed\n");
|
|
#endif
|
|
|
|
/* Copy PE headers */
|
|
memcpy(efi_reloc, efi,
|
|
sizeof(*dos)
|
|
+ sizeof(*nt)
|
|
+ nt->FileHeader.SizeOfOptionalHeader
|
|
+ num_sections * sizeof(IMAGE_SECTION_HEADER));
|
|
|
|
/* Load sections into RAM */
|
|
for (i = num_sections - 1; i >= 0; i--) {
|
|
IMAGE_SECTION_HEADER *sec = §ions[i];
|
|
u32 copy_size = section_size(sec);
|
|
|
|
if (copy_size > sec->SizeOfRawData) {
|
|
copy_size = sec->SizeOfRawData;
|
|
memset(efi_reloc + sec->VirtualAddress, 0,
|
|
sec->Misc.VirtualSize);
|
|
}
|
|
memcpy(efi_reloc + sec->VirtualAddress,
|
|
efi + sec->PointerToRawData,
|
|
copy_size);
|
|
}
|
|
|
|
/* Run through relocations */
|
|
if (efi_loader_relocate(rel, rel_size, efi_reloc,
|
|
(unsigned long)image_base) != EFI_SUCCESS) {
|
|
efi_free_pages((uintptr_t) efi_reloc,
|
|
(virt_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT);
|
|
ret = EFI_LOAD_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
/* Flush cache */
|
|
flush_cache((ulong)efi_reloc,
|
|
ALIGN(virt_size, EFI_CACHELINE_SIZE));
|
|
invalidate_icache_all();
|
|
|
|
/* Populate the loaded image interface bits */
|
|
loaded_image_info->image_base = efi_reloc;
|
|
loaded_image_info->image_size = virt_size;
|
|
|
|
if (handle->auth_status == EFI_IMAGE_AUTH_PASSED)
|
|
return EFI_SUCCESS;
|
|
else
|
|
return EFI_SECURITY_VIOLATION;
|
|
|
|
err:
|
|
return ret;
|
|
}
|