mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-11 22:03:15 +00:00
ef509b9063
k2hk EVM is based on Texas Instruments Keystone2 Hawking/Kepler SoC. Keystone2 SoC has ARM v7 Cortex-A15 MPCore processor. Please refer the ti/k2hk_evm/README for details on the board, build and other information. This patch add support for keystone architecture and k2hk evm. Signed-off-by: Vitaly Andrianov <vitalya@ti.com> Signed-off-by: Murali Karicheri <m-karicheri2@ti.com> Signed-off-by: WingMan Kwok <w-kwok2@ti.com> Signed-off-by: Sandeep Nair <sandeep_n@ti.com>
318 lines
9.1 KiB
C
318 lines
9.1 KiB
C
/*
|
||
* Keystone2: pll initialization
|
||
*
|
||
* (C) Copyright 2012-2014
|
||
* Texas Instruments Incorporated, <www.ti.com>
|
||
*
|
||
* SPDX-License-Identifier: GPL-2.0+
|
||
*/
|
||
|
||
#include <common.h>
|
||
#include <asm-generic/errno.h>
|
||
#include <asm/io.h>
|
||
#include <asm/processor.h>
|
||
#include <asm/arch/clock.h>
|
||
#include <asm/arch/clock_defs.h>
|
||
|
||
static void wait_for_completion(const struct pll_init_data *data)
|
||
{
|
||
int i;
|
||
for (i = 0; i < 100; i++) {
|
||
sdelay(450);
|
||
if ((pllctl_reg_read(data->pll, stat) & PLLSTAT_GO) == 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
struct pll_regs {
|
||
u32 reg0, reg1;
|
||
};
|
||
|
||
static const struct pll_regs pll_regs[] = {
|
||
[CORE_PLL] = { K2HK_MAINPLLCTL0, K2HK_MAINPLLCTL1},
|
||
[PASS_PLL] = { K2HK_PASSPLLCTL0, K2HK_PASSPLLCTL1},
|
||
[TETRIS_PLL] = { K2HK_ARMPLLCTL0, K2HK_ARMPLLCTL1},
|
||
[DDR3A_PLL] = { K2HK_DDR3APLLCTL0, K2HK_DDR3APLLCTL1},
|
||
[DDR3B_PLL] = { K2HK_DDR3BPLLCTL0, K2HK_DDR3BPLLCTL1},
|
||
};
|
||
|
||
/* Fout = Fref * NF(mult) / NR(prediv) / OD */
|
||
static unsigned long pll_freq_get(int pll)
|
||
{
|
||
unsigned long mult = 1, prediv = 1, output_div = 2;
|
||
unsigned long ret;
|
||
u32 tmp, reg;
|
||
|
||
if (pll == CORE_PLL) {
|
||
ret = external_clk[sys_clk];
|
||
if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN) {
|
||
/* PLL mode */
|
||
tmp = __raw_readl(K2HK_MAINPLLCTL0);
|
||
prediv = (tmp & PLL_DIV_MASK) + 1;
|
||
mult = (((tmp & PLLM_MULT_HI_SMASK) >> 6) |
|
||
(pllctl_reg_read(pll, mult) &
|
||
PLLM_MULT_LO_MASK)) + 1;
|
||
output_div = ((pllctl_reg_read(pll, secctl) >>
|
||
PLL_CLKOD_SHIFT) & PLL_CLKOD_MASK) + 1;
|
||
|
||
ret = ret / prediv / output_div * mult;
|
||
}
|
||
} else {
|
||
switch (pll) {
|
||
case PASS_PLL:
|
||
ret = external_clk[pa_clk];
|
||
reg = K2HK_PASSPLLCTL0;
|
||
break;
|
||
case TETRIS_PLL:
|
||
ret = external_clk[tetris_clk];
|
||
reg = K2HK_ARMPLLCTL0;
|
||
break;
|
||
case DDR3A_PLL:
|
||
ret = external_clk[ddr3a_clk];
|
||
reg = K2HK_DDR3APLLCTL0;
|
||
break;
|
||
case DDR3B_PLL:
|
||
ret = external_clk[ddr3b_clk];
|
||
reg = K2HK_DDR3BPLLCTL0;
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
tmp = __raw_readl(reg);
|
||
|
||
if (!(tmp & PLLCTL_BYPASS)) {
|
||
/* Bypass disabled */
|
||
prediv = (tmp & PLL_DIV_MASK) + 1;
|
||
mult = ((tmp >> PLL_MULT_SHIFT) & PLL_MULT_MASK) + 1;
|
||
output_div = ((tmp >> PLL_CLKOD_SHIFT) &
|
||
PLL_CLKOD_MASK) + 1;
|
||
ret = ((ret / prediv) * mult) / output_div;
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
unsigned long clk_get_rate(unsigned int clk)
|
||
{
|
||
switch (clk) {
|
||
case core_pll_clk: return pll_freq_get(CORE_PLL);
|
||
case pass_pll_clk: return pll_freq_get(PASS_PLL);
|
||
case tetris_pll_clk: return pll_freq_get(TETRIS_PLL);
|
||
case ddr3a_pll_clk: return pll_freq_get(DDR3A_PLL);
|
||
case ddr3b_pll_clk: return pll_freq_get(DDR3B_PLL);
|
||
case sys_clk0_1_clk:
|
||
case sys_clk0_clk: return pll_freq_get(CORE_PLL) / pll0div_read(1);
|
||
case sys_clk1_clk: return pll_freq_get(CORE_PLL) / pll0div_read(2);
|
||
case sys_clk2_clk: return pll_freq_get(CORE_PLL) / pll0div_read(3);
|
||
case sys_clk3_clk: return pll_freq_get(CORE_PLL) / pll0div_read(4);
|
||
case sys_clk0_2_clk: return clk_get_rate(sys_clk0_clk) / 2;
|
||
case sys_clk0_3_clk: return clk_get_rate(sys_clk0_clk) / 3;
|
||
case sys_clk0_4_clk: return clk_get_rate(sys_clk0_clk) / 4;
|
||
case sys_clk0_6_clk: return clk_get_rate(sys_clk0_clk) / 6;
|
||
case sys_clk0_8_clk: return clk_get_rate(sys_clk0_clk) / 8;
|
||
case sys_clk0_12_clk: return clk_get_rate(sys_clk0_clk) / 12;
|
||
case sys_clk0_24_clk: return clk_get_rate(sys_clk0_clk) / 24;
|
||
case sys_clk1_3_clk: return clk_get_rate(sys_clk1_clk) / 3;
|
||
case sys_clk1_4_clk: return clk_get_rate(sys_clk1_clk) / 4;
|
||
case sys_clk1_6_clk: return clk_get_rate(sys_clk1_clk) / 6;
|
||
case sys_clk1_12_clk: return clk_get_rate(sys_clk1_clk) / 12;
|
||
default:
|
||
break;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
void init_pll(const struct pll_init_data *data)
|
||
{
|
||
u32 tmp, tmp_ctl, pllm, plld, pllod, bwadj;
|
||
|
||
pllm = data->pll_m - 1;
|
||
plld = (data->pll_d - 1) & PLL_DIV_MASK;
|
||
pllod = (data->pll_od - 1) & PLL_CLKOD_MASK;
|
||
|
||
if (data->pll == MAIN_PLL) {
|
||
/* The requered delay before main PLL configuration */
|
||
sdelay(210000);
|
||
|
||
tmp = pllctl_reg_read(data->pll, secctl);
|
||
|
||
if (tmp & (PLLCTL_BYPASS)) {
|
||
setbits_le32(pll_regs[data->pll].reg1,
|
||
BIT(MAIN_ENSAT_OFFSET));
|
||
|
||
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN |
|
||
PLLCTL_PLLENSRC);
|
||
sdelay(340);
|
||
|
||
pllctl_reg_setbits(data->pll, secctl, PLLCTL_BYPASS);
|
||
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN);
|
||
sdelay(21000);
|
||
|
||
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN);
|
||
} else {
|
||
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN |
|
||
PLLCTL_PLLENSRC);
|
||
sdelay(340);
|
||
}
|
||
|
||
pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
|
||
|
||
clrsetbits_le32(pll_regs[data->pll].reg0, PLLM_MULT_HI_SMASK,
|
||
(pllm << 6));
|
||
|
||
/* Set the BWADJ (12 bit field) */
|
||
tmp_ctl = pllm >> 1; /* Divide the pllm by 2 */
|
||
clrsetbits_le32(pll_regs[data->pll].reg0, PLL_BWADJ_LO_SMASK,
|
||
(tmp_ctl << PLL_BWADJ_LO_SHIFT));
|
||
clrsetbits_le32(pll_regs[data->pll].reg1, PLL_BWADJ_HI_MASK,
|
||
(tmp_ctl >> 8));
|
||
|
||
/*
|
||
* Set the pll divider (6 bit field) *
|
||
* PLLD[5:0] is located in MAINPLLCTL0
|
||
*/
|
||
clrsetbits_le32(pll_regs[data->pll].reg0, PLL_DIV_MASK, plld);
|
||
|
||
/* Set the OUTPUT DIVIDE (4 bit field) in SECCTL */
|
||
pllctl_reg_rmw(data->pll, secctl, PLL_CLKOD_SMASK,
|
||
(pllod << PLL_CLKOD_SHIFT));
|
||
wait_for_completion(data);
|
||
|
||
pllctl_reg_write(data->pll, div1, PLLM_RATIO_DIV1);
|
||
pllctl_reg_write(data->pll, div2, PLLM_RATIO_DIV2);
|
||
pllctl_reg_write(data->pll, div3, PLLM_RATIO_DIV3);
|
||
pllctl_reg_write(data->pll, div4, PLLM_RATIO_DIV4);
|
||
pllctl_reg_write(data->pll, div5, PLLM_RATIO_DIV5);
|
||
|
||
pllctl_reg_setbits(data->pll, alnctl, 0x1f);
|
||
|
||
/*
|
||
* Set GOSET bit in PLLCMD to initiate the GO operation
|
||
* to change the divide
|
||
*/
|
||
pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GO);
|
||
sdelay(1500); /* wait for the phase adj */
|
||
wait_for_completion(data);
|
||
|
||
/* Reset PLL */
|
||
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST);
|
||
sdelay(21000); /* Wait for a minimum of 7 us*/
|
||
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST);
|
||
sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
|
||
|
||
pllctl_reg_clrbits(data->pll, secctl, PLLCTL_BYPASS);
|
||
|
||
tmp = pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN);
|
||
|
||
} else if (data->pll == TETRIS_PLL) {
|
||
bwadj = pllm >> 1;
|
||
/* 1.5 Set PLLCTL0[BYPASS] =1 (enable bypass), */
|
||
setbits_le32(pll_regs[data->pll].reg0, PLLCTL_BYPASS);
|
||
/*
|
||
* Set CHIPMISCCTL1[13] = 0 (enable glitchfree bypass)
|
||
* only applicable for Kepler
|
||
*/
|
||
clrbits_le32(K2HK_MISC_CTRL, ARM_PLL_EN);
|
||
/* 2 In PLLCTL1, write PLLRST = 1 (PLL is reset) */
|
||
setbits_le32(pll_regs[data->pll].reg1 ,
|
||
PLL_PLLRST | PLLCTL_ENSAT);
|
||
|
||
/*
|
||
* 3 Program PLLM and PLLD in PLLCTL0 register
|
||
* 4 Program BWADJ[7:0] in PLLCTL0 and BWADJ[11:8] in
|
||
* PLLCTL1 register. BWADJ value must be set
|
||
* to ((PLLM + 1) >> 1) – 1)
|
||
*/
|
||
tmp = ((bwadj & PLL_BWADJ_LO_MASK) << PLL_BWADJ_LO_SHIFT) |
|
||
(pllm << 6) |
|
||
(plld & PLL_DIV_MASK) |
|
||
(pllod << PLL_CLKOD_SHIFT) | PLLCTL_BYPASS;
|
||
__raw_writel(tmp, pll_regs[data->pll].reg0);
|
||
|
||
/* Set BWADJ[11:8] bits */
|
||
tmp = __raw_readl(pll_regs[data->pll].reg1);
|
||
tmp &= ~(PLL_BWADJ_HI_MASK);
|
||
tmp |= ((bwadj>>8) & PLL_BWADJ_HI_MASK);
|
||
__raw_writel(tmp, pll_regs[data->pll].reg1);
|
||
/*
|
||
* 5 Wait for at least 5 us based on the reference
|
||
* clock (PLL reset time)
|
||
*/
|
||
sdelay(21000); /* Wait for a minimum of 7 us*/
|
||
|
||
/* 6 In PLLCTL1, write PLLRST = 0 (PLL reset is released) */
|
||
clrbits_le32(pll_regs[data->pll].reg1, PLL_PLLRST);
|
||
/*
|
||
* 7 Wait for at least 500 * REFCLK cycles * (PLLD + 1)
|
||
* (PLL lock time)
|
||
*/
|
||
sdelay(105000);
|
||
/* 8 disable bypass */
|
||
clrbits_le32(pll_regs[data->pll].reg0, PLLCTL_BYPASS);
|
||
/*
|
||
* 9 Set CHIPMISCCTL1[13] = 1 (disable glitchfree bypass)
|
||
* only applicable for Kepler
|
||
*/
|
||
setbits_le32(K2HK_MISC_CTRL, ARM_PLL_EN);
|
||
} else {
|
||
setbits_le32(pll_regs[data->pll].reg1, PLLCTL_ENSAT);
|
||
/*
|
||
* process keeps state of Bypass bit while programming
|
||
* all other DDR PLL settings
|
||
*/
|
||
tmp = __raw_readl(pll_regs[data->pll].reg0);
|
||
tmp &= PLLCTL_BYPASS; /* clear everything except Bypass */
|
||
|
||
/*
|
||
* Set the BWADJ[7:0], PLLD[5:0] and PLLM to PLLCTL0,
|
||
* bypass disabled
|
||
*/
|
||
bwadj = pllm >> 1;
|
||
tmp |= ((bwadj & PLL_BWADJ_LO_SHIFT) << PLL_BWADJ_LO_SHIFT) |
|
||
(pllm << PLL_MULT_SHIFT) |
|
||
(plld & PLL_DIV_MASK) |
|
||
(pllod << PLL_CLKOD_SHIFT);
|
||
__raw_writel(tmp, pll_regs[data->pll].reg0);
|
||
|
||
/* Set BWADJ[11:8] bits */
|
||
tmp = __raw_readl(pll_regs[data->pll].reg1);
|
||
tmp &= ~(PLL_BWADJ_HI_MASK);
|
||
tmp |= ((bwadj >> 8) & PLL_BWADJ_HI_MASK);
|
||
|
||
/* set PLL Select (bit 13) for PASS PLL */
|
||
if (data->pll == PASS_PLL)
|
||
tmp |= PLLCTL_PAPLL;
|
||
|
||
__raw_writel(tmp, pll_regs[data->pll].reg1);
|
||
|
||
/* Reset bit: bit 14 for both DDR3 & PASS PLL */
|
||
tmp = PLL_PLLRST;
|
||
/* Set RESET bit = 1 */
|
||
setbits_le32(pll_regs[data->pll].reg1, tmp);
|
||
/* Wait for a minimum of 7 us*/
|
||
sdelay(21000);
|
||
/* Clear RESET bit */
|
||
clrbits_le32(pll_regs[data->pll].reg1, tmp);
|
||
sdelay(105000);
|
||
|
||
/* clear BYPASS (Enable PLL Mode) */
|
||
clrbits_le32(pll_regs[data->pll].reg0, PLLCTL_BYPASS);
|
||
sdelay(21000); /* Wait for a minimum of 7 us*/
|
||
}
|
||
|
||
/*
|
||
* This is required to provide a delay between multiple
|
||
* consequent PPL configurations
|
||
*/
|
||
sdelay(210000);
|
||
}
|
||
|
||
void init_plls(int num_pll, struct pll_init_data *config)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < num_pll; i++)
|
||
init_pll(&config[i]);
|
||
}
|