u-boot/drivers/net/octeontx/nicvf_queues.c
Suneel Garapati 0008e9a69d net: Add NIC controller driver for OcteonTX
Adds support for Network Interface controllers found on
OcteonTX SoC platforms.

Signed-off-by: Suneel Garapati <sgarapati@marvell.com>
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: Joe Hershberger <joe.hershberger@ni.com>
2020-10-14 07:55:56 +02:00

1140 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Marvell International Ltd.
*/
#include <cpu_func.h>
#include <dm/device.h>
#include <malloc.h>
#include <net.h>
#include <phy.h>
#include <linux/delay.h>
#include "nic_reg.h"
#include "nic.h"
#include "q_struct.h"
#include "nicvf_queues.h"
static int nicvf_poll_reg(struct nicvf *nic, int qidx,
u64 reg, int bit_pos, int bits, int val)
{
u64 bit_mask;
u64 reg_val;
int timeout = 10;
bit_mask = (1ULL << bits) - 1;
bit_mask = (bit_mask << bit_pos);
while (timeout) {
reg_val = nicvf_queue_reg_read(nic, reg, qidx);
if (((reg_val & bit_mask) >> bit_pos) == val)
return 0;
udelay(2000);
timeout--;
}
printf("Poll on reg 0x%llx failed\n", reg);
return 1;
}
static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
int q_len, int desc_size, int align_bytes)
{
dmem->q_len = q_len;
dmem->size = (desc_size * q_len) + align_bytes;
/* Save address, need it while freeing */
dmem->unalign_base = calloc(1, dmem->size);
dmem->dma = (uintptr_t)dmem->unalign_base;
if (!dmem->unalign_base)
return -1;
/* Align memory address for 'align_bytes' */
dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
return 0;
}
static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
{
if (!dmem)
return;
free(dmem->unalign_base);
dmem->unalign_base = NULL;
dmem->base = NULL;
}
static void *nicvf_rb_ptr_to_pkt(struct nicvf *nic, uintptr_t rb_ptr)
{
return (void *)rb_ptr;
}
static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
int ring_len, int buf_size)
{
int idx;
uintptr_t rbuf;
struct rbdr_entry_t *desc;
if (nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
sizeof(struct rbdr_entry_t),
NICVF_RCV_BUF_ALIGN_BYTES)) {
printf("Unable to allocate memory for rcv buffer ring\n");
return -1;
}
rbdr->desc = rbdr->dmem.base;
/* Buffer size has to be in multiples of 128 bytes */
rbdr->dma_size = buf_size;
rbdr->enable = true;
rbdr->thresh = RBDR_THRESH;
debug("%s: %d: allocating %lld bytes for rcv buffers\n",
__func__, __LINE__,
ring_len * buf_size + NICVF_RCV_BUF_ALIGN_BYTES);
rbdr->buf_mem = (uintptr_t)calloc(1, ring_len * buf_size
+ NICVF_RCV_BUF_ALIGN_BYTES);
if (!rbdr->buf_mem) {
printf("Unable to allocate memory for rcv buffers\n");
return -1;
}
rbdr->buffers = NICVF_ALIGNED_ADDR(rbdr->buf_mem,
NICVF_RCV_BUF_ALIGN_BYTES);
debug("%s: %d: rbdr->buf_mem: %lx, rbdr->buffers: %lx\n",
__func__, __LINE__, rbdr->buf_mem, rbdr->buffers);
for (idx = 0; idx < ring_len; idx++) {
rbuf = rbdr->buffers + DMA_BUFFER_LEN * idx;
desc = GET_RBDR_DESC(rbdr, idx);
desc->buf_addr = rbuf >> NICVF_RCV_BUF_ALIGN;
flush_dcache_range((uintptr_t)desc,
(uintptr_t)desc + sizeof(desc));
}
return 0;
}
static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
{
if (!rbdr)
return;
rbdr->enable = false;
if (!rbdr->dmem.base)
return;
debug("%s: %d: rbdr->buf_mem: %p\n", __func__,
__LINE__, (void *)rbdr->buf_mem);
free((void *)rbdr->buf_mem);
/* Free RBDR ring */
nicvf_free_q_desc_mem(nic, &rbdr->dmem);
}
/* Refill receive buffer descriptors with new buffers.
* This runs in softirq context .
*/
void nicvf_refill_rbdr(struct nicvf *nic)
{
struct queue_set *qs = nic->qs;
int rbdr_idx = qs->rbdr_cnt;
unsigned long qcount, head, tail, rb_cnt;
struct rbdr *rbdr;
if (!rbdr_idx)
return;
rbdr_idx--;
rbdr = &qs->rbdr[rbdr_idx];
/* Check if it's enabled */
if (!rbdr->enable) {
printf("Receive queue %d is disabled\n", rbdr_idx);
return;
}
/* check if valid descs reached or crossed threshold level */
qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
head = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, rbdr_idx);
tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx);
qcount &= 0x7FFFF;
rb_cnt = qs->rbdr_len - qcount - 1;
debug("%s: %d: qcount: %lu, head: %lx, tail: %lx, rb_cnt: %lu\n",
__func__, __LINE__, qcount, head, tail, rb_cnt);
/* Notify HW */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, rbdr_idx, rb_cnt);
asm volatile ("dsb sy");
}
/* TBD: how to handle full packets received in CQ
* i.e conversion of buffers into SKBs
*/
static int nicvf_init_cmp_queue(struct nicvf *nic,
struct cmp_queue *cq, int q_len)
{
if (nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len,
CMP_QUEUE_DESC_SIZE,
NICVF_CQ_BASE_ALIGN_BYTES)) {
printf("Unable to allocate memory for completion queue\n");
return -1;
}
cq->desc = cq->dmem.base;
if (!pass1_silicon(nic->rev_id, nic->nicpf->hw->model_id))
cq->thresh = CMP_QUEUE_CQE_THRESH;
else
cq->thresh = 0;
cq->intr_timer_thresh = CMP_QUEUE_TIMER_THRESH;
return 0;
}
static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
{
if (!cq)
return;
if (!cq->dmem.base)
return;
nicvf_free_q_desc_mem(nic, &cq->dmem);
}
static int nicvf_init_snd_queue(struct nicvf *nic,
struct snd_queue *sq, int q_len)
{
if (nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len,
SND_QUEUE_DESC_SIZE,
NICVF_SQ_BASE_ALIGN_BYTES)) {
printf("Unable to allocate memory for send queue\n");
return -1;
}
sq->desc = sq->dmem.base;
sq->skbuff = calloc(q_len, sizeof(u64));
sq->head = 0;
sq->tail = 0;
sq->free_cnt = q_len - 1;
sq->thresh = SND_QUEUE_THRESH;
return 0;
}
static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
{
if (!sq)
return;
if (!sq->dmem.base)
return;
debug("%s: %d\n", __func__, __LINE__);
free(sq->skbuff);
nicvf_free_q_desc_mem(nic, &sq->dmem);
}
static void nicvf_reclaim_snd_queue(struct nicvf *nic,
struct queue_set *qs, int qidx)
{
/* Disable send queue */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
/* Check if SQ is stopped */
if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
return;
/* Reset send queue */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
}
static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
struct queue_set *qs, int qidx)
{
union nic_mbx mbx = {};
/* Make sure all packets in the pipeline are written back into mem */
mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
struct queue_set *qs, int qidx)
{
/* Disable timer threshold (doesn't get reset upon CQ reset */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
/* Disable completion queue */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
/* Reset completion queue */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
}
static void nicvf_reclaim_rbdr(struct nicvf *nic,
struct rbdr *rbdr, int qidx)
{
u64 tmp, fifo_state;
int timeout = 10;
/* Save head and tail pointers for feeing up buffers */
rbdr->head = nicvf_queue_reg_read(nic,
NIC_QSET_RBDR_0_1_HEAD,
qidx) >> 3;
rbdr->tail = nicvf_queue_reg_read(nic,
NIC_QSET_RBDR_0_1_TAIL,
qidx) >> 3;
/* If RBDR FIFO is in 'FAIL' state then do a reset first
* before relaiming.
*/
fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
if (((fifo_state >> 62) & 0x03) == 0x3)
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
qidx, NICVF_RBDR_RESET);
/* Disable RBDR */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
return;
while (1) {
tmp = nicvf_queue_reg_read(nic,
NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
qidx);
if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
break;
mdelay(2000);
timeout--;
if (!timeout) {
printf("Failed polling on prefetch status\n");
return;
}
}
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
qidx, NICVF_RBDR_RESET);
if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
return;
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
return;
}
/* Configures receive queue */
static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
int qidx, bool enable)
{
union nic_mbx mbx = {};
struct rcv_queue *rq;
union {
struct rq_cfg s;
u64 u;
} rq_cfg;
rq = &qs->rq[qidx];
rq->enable = enable;
/* Disable receive queue */
nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
if (!rq->enable) {
nicvf_reclaim_rcv_queue(nic, qs, qidx);
return;
}
rq->cq_qs = qs->vnic_id;
rq->cq_idx = qidx;
rq->start_rbdr_qs = qs->vnic_id;
rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
rq->cont_rbdr_qs = qs->vnic_id;
rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
/* all writes of RBDR data to be loaded into L2 Cache as well*/
rq->caching = 1;
/* Send a mailbox msg to PF to config RQ */
mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
mbx.rq.qs_num = qs->vnic_id;
mbx.rq.rq_num = qidx;
mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
(rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
(rq->cont_qs_rbdr_idx << 8) |
(rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
nicvf_send_msg_to_pf(nic, &mbx);
mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
nicvf_send_msg_to_pf(nic, &mbx);
/* RQ drop config
* Enable CQ drop to reserve sufficient CQEs for all tx packets
*/
mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
nicvf_send_msg_to_pf(nic, &mbx);
nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
/* Enable Receive queue */
rq_cfg.s.ena = 1;
rq_cfg.s.tcp_ena = 0;
nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, rq_cfg.u);
}
void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
int qidx, bool enable)
{
struct cmp_queue *cq;
union {
u64 u;
struct cq_cfg s;
} cq_cfg;
cq = &qs->cq[qidx];
cq->enable = enable;
if (!cq->enable) {
nicvf_reclaim_cmp_queue(nic, qs, qidx);
return;
}
/* Reset completion queue */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
if (!cq->enable)
return;
/* Set completion queue base address */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
qidx, (u64)(cq->dmem.phys_base));
/* Enable Completion queue */
cq_cfg.s.ena = 1;
cq_cfg.s.reset = 0;
cq_cfg.s.caching = 0;
cq_cfg.s.qsize = CMP_QSIZE;
cq_cfg.s.avg_con = 0;
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, cq_cfg.u);
/* Set threshold value for interrupt generation */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
cq->intr_timer_thresh);
}
/* Configures transmit queue */
static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
int qidx, bool enable)
{
union nic_mbx mbx = {};
struct snd_queue *sq;
union {
struct sq_cfg s;
u64 u;
} sq_cfg;
sq = &qs->sq[qidx];
sq->enable = enable;
if (!sq->enable) {
nicvf_reclaim_snd_queue(nic, qs, qidx);
return;
}
/* Reset send queue */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
sq->cq_qs = qs->vnic_id;
sq->cq_idx = qidx;
/* Send a mailbox msg to PF to config SQ */
mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
mbx.sq.qs_num = qs->vnic_id;
mbx.sq.sq_num = qidx;
mbx.sq.sqs_mode = nic->sqs_mode;
mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
nicvf_send_msg_to_pf(nic, &mbx);
/* Set queue base address */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
qidx, (u64)(sq->dmem.phys_base));
/* Enable send queue & set queue size */
sq_cfg.s.ena = 1;
sq_cfg.s.reset = 0;
sq_cfg.s.ldwb = 0;
sq_cfg.s.qsize = SND_QSIZE;
sq_cfg.s.tstmp_bgx_intf = 0;
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg.u);
/* Set threshold value for interrupt generation */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
}
/* Configures receive buffer descriptor ring */
static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
int qidx, bool enable)
{
struct rbdr *rbdr;
union {
struct rbdr_cfg s;
u64 u;
} rbdr_cfg;
rbdr = &qs->rbdr[qidx];
nicvf_reclaim_rbdr(nic, rbdr, qidx);
if (!enable)
return;
/* Set descriptor base address */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
qidx, (u64)(rbdr->dmem.phys_base));
/* Enable RBDR & set queue size */
/* Buffer size should be in multiples of 128 bytes */
rbdr_cfg.s.ena = 1;
rbdr_cfg.s.reset = 0;
rbdr_cfg.s.ldwb = 0;
rbdr_cfg.s.qsize = RBDR_SIZE;
rbdr_cfg.s.avg_con = 0;
rbdr_cfg.s.lines = rbdr->dma_size / 128;
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
qidx, rbdr_cfg.u);
/* Notify HW */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
qidx, qs->rbdr_len - 1);
/* Set threshold value for interrupt generation */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
qidx, rbdr->thresh - 1);
}
/* Requests PF to assign and enable Qset */
void nicvf_qset_config(struct nicvf *nic, bool enable)
{
union nic_mbx mbx = {};
struct queue_set *qs = nic->qs;
struct qs_cfg *qs_cfg;
if (!qs) {
printf("Qset is still not allocated, don't init queues\n");
return;
}
qs->enable = enable;
qs->vnic_id = nic->vf_id;
/* Send a mailbox msg to PF to config Qset */
mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
mbx.qs.num = qs->vnic_id;
#ifdef VNIC_MULTI_QSET_SUPPORT
mbx.qs.sqs_count = nic->sqs_count;
#endif
mbx.qs.cfg = 0;
qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
if (qs->enable) {
qs_cfg->ena = 1;
#ifdef __BIG_ENDIAN
qs_cfg->be = 1;
#endif
qs_cfg->vnic = qs->vnic_id;
}
nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_free_resources(struct nicvf *nic)
{
int qidx;
struct queue_set *qs = nic->qs;
/* Free receive buffer descriptor ring */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
/* Free completion queue */
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
/* Free send queue */
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_free_snd_queue(nic, &qs->sq[qidx]);
}
static int nicvf_alloc_resources(struct nicvf *nic)
{
int qidx;
struct queue_set *qs = nic->qs;
/* Alloc receive buffer descriptor ring */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
DMA_BUFFER_LEN))
goto alloc_fail;
}
/* Alloc send queue */
for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
goto alloc_fail;
}
/* Alloc completion queue */
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
goto alloc_fail;
}
return 0;
alloc_fail:
nicvf_free_resources(nic);
return -1;
}
int nicvf_set_qset_resources(struct nicvf *nic)
{
struct queue_set *qs;
qs = calloc(1, sizeof(struct queue_set));
if (!qs)
return -1;
nic->qs = qs;
/* Set count of each queue */
qs->rbdr_cnt = RBDR_CNT;
qs->rq_cnt = 1;
qs->sq_cnt = SND_QUEUE_CNT;
qs->cq_cnt = CMP_QUEUE_CNT;
/* Set queue lengths */
qs->rbdr_len = RCV_BUF_COUNT;
qs->sq_len = SND_QUEUE_LEN;
qs->cq_len = CMP_QUEUE_LEN;
nic->rx_queues = qs->rq_cnt;
nic->tx_queues = qs->sq_cnt;
return 0;
}
int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
{
bool disable = false;
struct queue_set *qs = nic->qs;
int qidx;
if (!qs)
return 0;
if (enable) {
if (nicvf_alloc_resources(nic))
return -1;
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_snd_queue_config(nic, qs, qidx, enable);
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_cmp_queue_config(nic, qs, qidx, enable);
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_rbdr_config(nic, qs, qidx, enable);
for (qidx = 0; qidx < qs->rq_cnt; qidx++)
nicvf_rcv_queue_config(nic, qs, qidx, enable);
} else {
for (qidx = 0; qidx < qs->rq_cnt; qidx++)
nicvf_rcv_queue_config(nic, qs, qidx, disable);
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_rbdr_config(nic, qs, qidx, disable);
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_snd_queue_config(nic, qs, qidx, disable);
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_cmp_queue_config(nic, qs, qidx, disable);
nicvf_free_resources(nic);
}
return 0;
}
/* Get a free desc from SQ
* returns descriptor ponter & descriptor number
*/
static int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
{
int qentry;
qentry = sq->tail;
sq->free_cnt -= desc_cnt;
sq->tail += desc_cnt;
sq->tail &= (sq->dmem.q_len - 1);
return qentry;
}
/* Free descriptor back to SQ for future use */
void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
{
sq->free_cnt += desc_cnt;
sq->head += desc_cnt;
sq->head &= (sq->dmem.q_len - 1);
}
static int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
{
qentry++;
qentry &= (sq->dmem.q_len - 1);
return qentry;
}
void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
{
u64 sq_cfg;
sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
sq_cfg |= NICVF_SQ_EN;
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
/* Ring doorbell so that H/W restarts processing SQEs */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
}
void nicvf_sq_disable(struct nicvf *nic, int qidx)
{
u64 sq_cfg;
sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
sq_cfg &= ~NICVF_SQ_EN;
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
}
void nicvf_sq_free_used_descs(struct udevice *dev, struct snd_queue *sq,
int qidx)
{
u64 head;
struct nicvf *nic = dev_get_priv(dev);
struct sq_hdr_subdesc *hdr;
head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
while (sq->head != head) {
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
nicvf_put_sq_desc(sq, 1);
continue;
}
nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
}
}
/* Get the number of SQ descriptors needed to xmit this skb */
static int nicvf_sq_subdesc_required(struct nicvf *nic)
{
int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
return subdesc_cnt;
}
/* Add SQ HEADER subdescriptor.
* First subdescriptor for every send descriptor.
*/
static inline void
nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
int subdesc_cnt, void *pkt, size_t pkt_len)
{
struct sq_hdr_subdesc *hdr;
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
sq->skbuff[qentry] = (uintptr_t)pkt;
memset(hdr, 0, SND_QUEUE_DESC_SIZE);
hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
/* Enable notification via CQE after processing SQE */
hdr->post_cqe = 1;
/* No of subdescriptors following this */
hdr->subdesc_cnt = subdesc_cnt;
hdr->tot_len = pkt_len;
flush_dcache_range((uintptr_t)hdr,
(uintptr_t)hdr + sizeof(struct sq_hdr_subdesc));
}
/* SQ GATHER subdescriptor
* Must follow HDR descriptor
*/
static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
size_t size, uintptr_t data)
{
struct sq_gather_subdesc *gather;
qentry &= (sq->dmem.q_len - 1);
gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
memset(gather, 0, SND_QUEUE_DESC_SIZE);
gather->subdesc_type = SQ_DESC_TYPE_GATHER;
gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
gather->size = size;
gather->addr = data;
flush_dcache_range((uintptr_t)gather,
(uintptr_t)gather + sizeof(struct sq_hdr_subdesc));
}
/* Append an skb to a SQ for packet transfer. */
int nicvf_sq_append_pkt(struct nicvf *nic, void *pkt, size_t pkt_size)
{
int subdesc_cnt;
int sq_num = 0, qentry;
struct queue_set *qs;
struct snd_queue *sq;
qs = nic->qs;
sq = &qs->sq[sq_num];
subdesc_cnt = nicvf_sq_subdesc_required(nic);
if (subdesc_cnt > sq->free_cnt)
goto append_fail;
qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
/* Add SQ header subdesc */
nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
pkt, pkt_size);
/* Add SQ gather subdescs */
qentry = nicvf_get_nxt_sqentry(sq, qentry);
nicvf_sq_add_gather_subdesc(sq, qentry, pkt_size, (uintptr_t)(pkt));
flush_dcache_range((uintptr_t)pkt,
(uintptr_t)pkt + pkt_size);
/* make sure all memory stores are done before ringing doorbell */
asm volatile ("dsb sy");
/* Inform HW to xmit new packet */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
sq_num, subdesc_cnt);
return 1;
append_fail:
printf("Not enough SQ descriptors to xmit pkt\n");
return 0;
}
static unsigned int frag_num(unsigned int i)
{
#ifdef __BIG_ENDIAN
return (i & ~3) + 3 - (i & 3);
#else
return i;
#endif
}
void *nicvf_get_rcv_pkt(struct nicvf *nic, void *cq_desc, size_t *pkt_len)
{
int frag;
int payload_len = 0, tot_len;
void *pkt = NULL, *pkt_buf = NULL, *buffer;
struct cqe_rx_t *cqe_rx;
struct rbdr *rbdr;
struct rcv_queue *rq;
struct queue_set *qs = nic->qs;
u16 *rb_lens = NULL;
u64 *rb_ptrs = NULL;
cqe_rx = (struct cqe_rx_t *)cq_desc;
rq = &qs->rq[cqe_rx->rq_idx];
rbdr = &qs->rbdr[rq->start_qs_rbdr_idx];
rb_lens = cq_desc + (3 * sizeof(u64)); /* Use offsetof */
/* Except 88xx pass1 on all other chips CQE_RX2_S is added to
* CQE_RX at word6, hence buffer pointers move by word
*
* Use existing 'hw_tso' flag which will be set for all chips
* except 88xx pass1 instead of a additional cache line
* access (or miss) by using pci dev's revision.
*/
if (!nic->hw_tso)
rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
else
rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
/*
* Figure out packet length to create packet buffer
*/
for (frag = 0; frag < cqe_rx->rb_cnt; frag++)
payload_len += rb_lens[frag_num(frag)];
*pkt_len = payload_len;
/* round up size to 8 byte multiple */
tot_len = (payload_len & (~0x7)) + 8;
buffer = calloc(1, tot_len);
if (!buffer) {
printf("%s - Failed to allocate packet buffer\n", __func__);
return NULL;
}
pkt_buf = buffer;
debug("total pkt buf %p len %ld tot_len %d\n", pkt_buf, *pkt_len,
tot_len);
for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
payload_len = rb_lens[frag_num(frag)];
invalidate_dcache_range((uintptr_t)(*rb_ptrs),
(uintptr_t)(*rb_ptrs) + rbdr->dma_size);
/* First fragment */
*rb_ptrs = *rb_ptrs - cqe_rx->align_pad;
pkt = nicvf_rb_ptr_to_pkt(nic, *rb_ptrs);
invalidate_dcache_range((uintptr_t)pkt,
(uintptr_t)pkt + payload_len);
if (cqe_rx->align_pad)
pkt += cqe_rx->align_pad;
debug("pkt_buf %p, pkt %p payload_len %d\n", pkt_buf, pkt,
payload_len);
memcpy(buffer, pkt, payload_len);
buffer += payload_len;
/* Next buffer pointer */
rb_ptrs++;
}
return pkt_buf;
}
/* Clear interrupt */
void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
{
u64 reg_val = 0;
switch (int_type) {
case NICVF_INTR_CQ:
reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
break;
case NICVF_INTR_SQ:
reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
break;
case NICVF_INTR_RBDR:
reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
break;
case NICVF_INTR_PKT_DROP:
reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
break;
case NICVF_INTR_TCP_TIMER:
reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
break;
case NICVF_INTR_MBOX:
reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
break;
case NICVF_INTR_QS_ERR:
reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
break;
default:
printf("Failed to clear interrupt: unknown type\n");
break;
}
nicvf_reg_write(nic, NIC_VF_INT, reg_val);
}
void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
{
struct rcv_queue *rq;
#define GET_RQ_STATS(reg) \
nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
(rq_idx << NIC_Q_NUM_SHIFT) | ((reg) << 3))
rq = &nic->qs->rq[rq_idx];
rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
}
void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
{
struct snd_queue *sq;
#define GET_SQ_STATS(reg) \
nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
(sq_idx << NIC_Q_NUM_SHIFT) | ((reg) << 3))
sq = &nic->qs->sq[sq_idx];
sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
}
/* Check for errors in the receive cmp.queue entry */
int nicvf_check_cqe_rx_errs(struct nicvf *nic,
struct cmp_queue *cq, void *cq_desc)
{
struct cqe_rx_t *cqe_rx;
struct cmp_queue_stats *stats = &cq->stats;
cqe_rx = (struct cqe_rx_t *)cq_desc;
if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
stats->rx.errop.good++;
return 0;
}
switch (cqe_rx->err_level) {
case CQ_ERRLVL_MAC:
stats->rx.errlvl.mac_errs++;
break;
case CQ_ERRLVL_L2:
stats->rx.errlvl.l2_errs++;
break;
case CQ_ERRLVL_L3:
stats->rx.errlvl.l3_errs++;
break;
case CQ_ERRLVL_L4:
stats->rx.errlvl.l4_errs++;
break;
}
switch (cqe_rx->err_opcode) {
case CQ_RX_ERROP_RE_PARTIAL:
stats->rx.errop.partial_pkts++;
break;
case CQ_RX_ERROP_RE_JABBER:
stats->rx.errop.jabber_errs++;
break;
case CQ_RX_ERROP_RE_FCS:
stats->rx.errop.fcs_errs++;
break;
case CQ_RX_ERROP_RE_TERMINATE:
stats->rx.errop.terminate_errs++;
break;
case CQ_RX_ERROP_RE_RX_CTL:
stats->rx.errop.bgx_rx_errs++;
break;
case CQ_RX_ERROP_PREL2_ERR:
stats->rx.errop.prel2_errs++;
break;
case CQ_RX_ERROP_L2_FRAGMENT:
stats->rx.errop.l2_frags++;
break;
case CQ_RX_ERROP_L2_OVERRUN:
stats->rx.errop.l2_overruns++;
break;
case CQ_RX_ERROP_L2_PFCS:
stats->rx.errop.l2_pfcs++;
break;
case CQ_RX_ERROP_L2_PUNY:
stats->rx.errop.l2_puny++;
break;
case CQ_RX_ERROP_L2_MAL:
stats->rx.errop.l2_hdr_malformed++;
break;
case CQ_RX_ERROP_L2_OVERSIZE:
stats->rx.errop.l2_oversize++;
break;
case CQ_RX_ERROP_L2_UNDERSIZE:
stats->rx.errop.l2_undersize++;
break;
case CQ_RX_ERROP_L2_LENMISM:
stats->rx.errop.l2_len_mismatch++;
break;
case CQ_RX_ERROP_L2_PCLP:
stats->rx.errop.l2_pclp++;
break;
case CQ_RX_ERROP_IP_NOT:
stats->rx.errop.non_ip++;
break;
case CQ_RX_ERROP_IP_CSUM_ERR:
stats->rx.errop.ip_csum_err++;
break;
case CQ_RX_ERROP_IP_MAL:
stats->rx.errop.ip_hdr_malformed++;
break;
case CQ_RX_ERROP_IP_MALD:
stats->rx.errop.ip_payload_malformed++;
break;
case CQ_RX_ERROP_IP_HOP:
stats->rx.errop.ip_hop_errs++;
break;
case CQ_RX_ERROP_L3_ICRC:
stats->rx.errop.l3_icrc_errs++;
break;
case CQ_RX_ERROP_L3_PCLP:
stats->rx.errop.l3_pclp++;
break;
case CQ_RX_ERROP_L4_MAL:
stats->rx.errop.l4_malformed++;
break;
case CQ_RX_ERROP_L4_CHK:
stats->rx.errop.l4_csum_errs++;
break;
case CQ_RX_ERROP_UDP_LEN:
stats->rx.errop.udp_len_err++;
break;
case CQ_RX_ERROP_L4_PORT:
stats->rx.errop.bad_l4_port++;
break;
case CQ_RX_ERROP_TCP_FLAG:
stats->rx.errop.bad_tcp_flag++;
break;
case CQ_RX_ERROP_TCP_OFFSET:
stats->rx.errop.tcp_offset_errs++;
break;
case CQ_RX_ERROP_L4_PCLP:
stats->rx.errop.l4_pclp++;
break;
case CQ_RX_ERROP_RBDR_TRUNC:
stats->rx.errop.pkt_truncated++;
break;
}
return 1;
}
/* Check for errors in the send cmp.queue entry */
int nicvf_check_cqe_tx_errs(struct nicvf *nic,
struct cmp_queue *cq, void *cq_desc)
{
struct cqe_send_t *cqe_tx;
struct cmp_queue_stats *stats = &cq->stats;
cqe_tx = (struct cqe_send_t *)cq_desc;
switch (cqe_tx->send_status) {
case CQ_TX_ERROP_GOOD:
stats->tx.good++;
return 0;
break;
case CQ_TX_ERROP_DESC_FAULT:
stats->tx.desc_fault++;
break;
case CQ_TX_ERROP_HDR_CONS_ERR:
stats->tx.hdr_cons_err++;
break;
case CQ_TX_ERROP_SUBDC_ERR:
stats->tx.subdesc_err++;
break;
case CQ_TX_ERROP_IMM_SIZE_OFLOW:
stats->tx.imm_size_oflow++;
break;
case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
stats->tx.data_seq_err++;
break;
case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
stats->tx.mem_seq_err++;
break;
case CQ_TX_ERROP_LOCK_VIOL:
stats->tx.lock_viol++;
break;
case CQ_TX_ERROP_DATA_FAULT:
stats->tx.data_fault++;
break;
case CQ_TX_ERROP_TSTMP_CONFLICT:
stats->tx.tstmp_conflict++;
break;
case CQ_TX_ERROP_TSTMP_TIMEOUT:
stats->tx.tstmp_timeout++;
break;
case CQ_TX_ERROP_MEM_FAULT:
stats->tx.mem_fault++;
break;
case CQ_TX_ERROP_CK_OVERLAP:
stats->tx.csum_overlap++;
break;
case CQ_TX_ERROP_CK_OFLOW:
stats->tx.csum_overflow++;
break;
}
return 1;
}