mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-12 05:08:57 +00:00
0197909dd1
First check the presence of the ipu firmware in the boot partition. If present enable the ipu and the related clocks & then move on to load the firmware and eventually start remoteproc IPU1/IPU2. do_enable_clocks by default puts the clock domains into auto which does not work well with reset. Hence adding do_enable_ipu_clocks function. Signed-off-by: Keerthy <j-keerthy@ti.com> [Amjad: fix IPU1_LOAD_ADDR and compile warnings] Signed-off-by: Amjad Ouled-Ameur <aouledameur@baylibre.com>
959 lines
26 KiB
C
959 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
*
|
|
* Clock initialization for OMAP4
|
|
*
|
|
* (C) Copyright 2010
|
|
* Texas Instruments, <www.ti.com>
|
|
*
|
|
* Aneesh V <aneesh@ti.com>
|
|
*
|
|
* Based on previous work by:
|
|
* Santosh Shilimkar <santosh.shilimkar@ti.com>
|
|
* Rajendra Nayak <rnayak@ti.com>
|
|
*/
|
|
#include <common.h>
|
|
#include <hang.h>
|
|
#include <i2c.h>
|
|
#include <init.h>
|
|
#include <log.h>
|
|
#include <asm/omap_common.h>
|
|
#include <asm/gpio.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
#include <asm/utils.h>
|
|
#include <asm/omap_gpio.h>
|
|
#include <asm/emif.h>
|
|
|
|
#ifndef CONFIG_SPL_BUILD
|
|
/*
|
|
* printing to console doesn't work unless
|
|
* this code is executed from SPL
|
|
*/
|
|
#define printf(fmt, args...)
|
|
#define puts(s)
|
|
#endif
|
|
|
|
const u32 sys_clk_array[8] = {
|
|
12000000, /* 12 MHz */
|
|
20000000, /* 20 MHz */
|
|
16800000, /* 16.8 MHz */
|
|
19200000, /* 19.2 MHz */
|
|
26000000, /* 26 MHz */
|
|
27000000, /* 27 MHz */
|
|
38400000, /* 38.4 MHz */
|
|
};
|
|
|
|
static inline u32 __get_sys_clk_index(void)
|
|
{
|
|
s8 ind;
|
|
/*
|
|
* For ES1 the ROM code calibration of sys clock is not reliable
|
|
* due to hw issue. So, use hard-coded value. If this value is not
|
|
* correct for any board over-ride this function in board file
|
|
* From ES2.0 onwards you will get this information from
|
|
* CM_SYS_CLKSEL
|
|
*/
|
|
if (omap_revision() == OMAP4430_ES1_0)
|
|
ind = OMAP_SYS_CLK_IND_38_4_MHZ;
|
|
else {
|
|
/* SYS_CLKSEL - 1 to match the dpll param array indices */
|
|
ind = (readl((*prcm)->cm_sys_clksel) &
|
|
CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1;
|
|
}
|
|
return ind;
|
|
}
|
|
|
|
u32 get_sys_clk_index(void)
|
|
__attribute__ ((weak, alias("__get_sys_clk_index")));
|
|
|
|
u32 get_sys_clk_freq(void)
|
|
{
|
|
u8 index = get_sys_clk_index();
|
|
return sys_clk_array[index];
|
|
}
|
|
|
|
void setup_post_dividers(u32 const base, const struct dpll_params *params)
|
|
{
|
|
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
|
|
|
|
/* Setup post-dividers */
|
|
if (params->m2 >= 0)
|
|
writel(params->m2, &dpll_regs->cm_div_m2_dpll);
|
|
if (params->m3 >= 0)
|
|
writel(params->m3, &dpll_regs->cm_div_m3_dpll);
|
|
if (params->m4_h11 >= 0)
|
|
writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll);
|
|
if (params->m5_h12 >= 0)
|
|
writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll);
|
|
if (params->m6_h13 >= 0)
|
|
writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll);
|
|
if (params->m7_h14 >= 0)
|
|
writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll);
|
|
if (params->h21 >= 0)
|
|
writel(params->h21, &dpll_regs->cm_div_h21_dpll);
|
|
if (params->h22 >= 0)
|
|
writel(params->h22, &dpll_regs->cm_div_h22_dpll);
|
|
if (params->h23 >= 0)
|
|
writel(params->h23, &dpll_regs->cm_div_h23_dpll);
|
|
if (params->h24 >= 0)
|
|
writel(params->h24, &dpll_regs->cm_div_h24_dpll);
|
|
}
|
|
|
|
static inline void do_bypass_dpll(u32 const base)
|
|
{
|
|
struct dpll_regs *dpll_regs = (struct dpll_regs *)base;
|
|
|
|
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
|
|
CM_CLKMODE_DPLL_DPLL_EN_MASK,
|
|
DPLL_EN_FAST_RELOCK_BYPASS <<
|
|
CM_CLKMODE_DPLL_EN_SHIFT);
|
|
}
|
|
|
|
static inline void wait_for_bypass(u32 const base)
|
|
{
|
|
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
|
|
|
|
if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll,
|
|
LDELAY)) {
|
|
printf("Bypassing DPLL failed %x\n", base);
|
|
}
|
|
}
|
|
|
|
static inline void do_lock_dpll(u32 const base)
|
|
{
|
|
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
|
|
|
|
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
|
|
CM_CLKMODE_DPLL_DPLL_EN_MASK,
|
|
DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
|
|
}
|
|
|
|
static inline void wait_for_lock(u32 const base)
|
|
{
|
|
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
|
|
|
|
if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
|
|
&dpll_regs->cm_idlest_dpll, LDELAY)) {
|
|
printf("DPLL locking failed for %x\n", base);
|
|
hang();
|
|
}
|
|
}
|
|
|
|
inline u32 check_for_lock(u32 const base)
|
|
{
|
|
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
|
|
u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK;
|
|
|
|
return lock;
|
|
}
|
|
|
|
const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data)
|
|
{
|
|
u32 sysclk_ind = get_sys_clk_index();
|
|
return &dpll_data->mpu[sysclk_ind];
|
|
}
|
|
|
|
const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data)
|
|
{
|
|
u32 sysclk_ind = get_sys_clk_index();
|
|
return &dpll_data->core[sysclk_ind];
|
|
}
|
|
|
|
const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data)
|
|
{
|
|
u32 sysclk_ind = get_sys_clk_index();
|
|
return &dpll_data->per[sysclk_ind];
|
|
}
|
|
|
|
const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data)
|
|
{
|
|
u32 sysclk_ind = get_sys_clk_index();
|
|
return &dpll_data->iva[sysclk_ind];
|
|
}
|
|
|
|
const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data)
|
|
{
|
|
u32 sysclk_ind = get_sys_clk_index();
|
|
return &dpll_data->usb[sysclk_ind];
|
|
}
|
|
|
|
const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data)
|
|
{
|
|
#ifdef CONFIG_SYS_OMAP_ABE_SYSCK
|
|
u32 sysclk_ind = get_sys_clk_index();
|
|
return &dpll_data->abe[sysclk_ind];
|
|
#else
|
|
return dpll_data->abe;
|
|
#endif
|
|
}
|
|
|
|
static const struct dpll_params *get_ddr_dpll_params
|
|
(struct dplls const *dpll_data)
|
|
{
|
|
u32 sysclk_ind = get_sys_clk_index();
|
|
|
|
if (!dpll_data->ddr)
|
|
return NULL;
|
|
return &dpll_data->ddr[sysclk_ind];
|
|
}
|
|
|
|
#ifdef CONFIG_DRIVER_TI_CPSW
|
|
static const struct dpll_params *get_gmac_dpll_params
|
|
(struct dplls const *dpll_data)
|
|
{
|
|
u32 sysclk_ind = get_sys_clk_index();
|
|
|
|
if (!dpll_data->gmac)
|
|
return NULL;
|
|
return &dpll_data->gmac[sysclk_ind];
|
|
}
|
|
#endif
|
|
|
|
static void do_setup_dpll(u32 const base, const struct dpll_params *params,
|
|
u8 lock, char *dpll)
|
|
{
|
|
u32 temp, M, N;
|
|
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
|
|
|
|
if (!params)
|
|
return;
|
|
|
|
temp = readl(&dpll_regs->cm_clksel_dpll);
|
|
|
|
if (check_for_lock(base)) {
|
|
/*
|
|
* The Dpll has already been locked by rom code using CH.
|
|
* Check if M,N are matching with Ideal nominal opp values.
|
|
* If matches, skip the rest otherwise relock.
|
|
*/
|
|
M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT;
|
|
N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT;
|
|
if ((M != (params->m)) || (N != (params->n))) {
|
|
debug("\n %s Dpll locked, but not for ideal M = %d,"
|
|
"N = %d values, current values are M = %d,"
|
|
"N= %d" , dpll, params->m, params->n,
|
|
M, N);
|
|
} else {
|
|
/* Dpll locked with ideal values for nominal opps. */
|
|
debug("\n %s Dpll already locked with ideal"
|
|
"nominal opp values", dpll);
|
|
|
|
bypass_dpll(base);
|
|
goto setup_post_dividers;
|
|
}
|
|
}
|
|
|
|
bypass_dpll(base);
|
|
|
|
/* Set M & N */
|
|
temp &= ~CM_CLKSEL_DPLL_M_MASK;
|
|
temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;
|
|
|
|
temp &= ~CM_CLKSEL_DPLL_N_MASK;
|
|
temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;
|
|
|
|
writel(temp, &dpll_regs->cm_clksel_dpll);
|
|
|
|
setup_post_dividers:
|
|
setup_post_dividers(base, params);
|
|
|
|
/* Lock */
|
|
if (lock)
|
|
do_lock_dpll(base);
|
|
|
|
/* Wait till the DPLL locks */
|
|
if (lock)
|
|
wait_for_lock(base);
|
|
}
|
|
|
|
u32 omap_ddr_clk(void)
|
|
{
|
|
u32 ddr_clk, sys_clk_khz, omap_rev, divider;
|
|
const struct dpll_params *core_dpll_params;
|
|
|
|
omap_rev = omap_revision();
|
|
sys_clk_khz = get_sys_clk_freq() / 1000;
|
|
|
|
core_dpll_params = get_core_dpll_params(*dplls_data);
|
|
|
|
debug("sys_clk %d\n ", sys_clk_khz * 1000);
|
|
|
|
/* Find Core DPLL locked frequency first */
|
|
ddr_clk = sys_clk_khz * 2 * core_dpll_params->m /
|
|
(core_dpll_params->n + 1);
|
|
|
|
if (omap_rev < OMAP5430_ES1_0) {
|
|
/*
|
|
* DDR frequency is PHY_ROOT_CLK/2
|
|
* PHY_ROOT_CLK = Fdpll/2/M2
|
|
*/
|
|
divider = 4;
|
|
} else {
|
|
/*
|
|
* DDR frequency is PHY_ROOT_CLK
|
|
* PHY_ROOT_CLK = Fdpll/2/M2
|
|
*/
|
|
divider = 2;
|
|
}
|
|
|
|
ddr_clk = ddr_clk / divider / core_dpll_params->m2;
|
|
ddr_clk *= 1000; /* convert to Hz */
|
|
debug("ddr_clk %d\n ", ddr_clk);
|
|
|
|
return ddr_clk;
|
|
}
|
|
|
|
/*
|
|
* Lock MPU dpll
|
|
*
|
|
* Resulting MPU frequencies:
|
|
* 4430 ES1.0 : 600 MHz
|
|
* 4430 ES2.x : 792 MHz (OPP Turbo)
|
|
* 4460 : 920 MHz (OPP Turbo) - DCC disabled
|
|
*/
|
|
void configure_mpu_dpll(void)
|
|
{
|
|
const struct dpll_params *params;
|
|
struct dpll_regs *mpu_dpll_regs;
|
|
u32 omap_rev;
|
|
omap_rev = omap_revision();
|
|
|
|
/*
|
|
* DCC and clock divider settings for 4460.
|
|
* DCC is required, if more than a certain frequency is required.
|
|
* For, 4460 > 1GHZ.
|
|
* 5430 > 1.4GHZ.
|
|
*/
|
|
if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) {
|
|
mpu_dpll_regs =
|
|
(struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu);
|
|
bypass_dpll((*prcm)->cm_clkmode_dpll_mpu);
|
|
clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
|
|
MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
|
|
setbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
|
|
MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
|
|
clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll,
|
|
CM_CLKSEL_DCC_EN_MASK);
|
|
}
|
|
|
|
params = get_mpu_dpll_params(*dplls_data);
|
|
|
|
do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu");
|
|
debug("MPU DPLL locked\n");
|
|
}
|
|
|
|
#if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
|
|
defined(CONFIG_USB_MUSB_OMAP2PLUS)
|
|
static void setup_usb_dpll(void)
|
|
{
|
|
const struct dpll_params *params;
|
|
u32 sys_clk_khz, sd_div, num, den;
|
|
|
|
sys_clk_khz = get_sys_clk_freq() / 1000;
|
|
/*
|
|
* USB:
|
|
* USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction
|
|
* DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250)
|
|
* - where CLKINP is sys_clk in MHz
|
|
* Use CLKINP in KHz and adjust the denominator accordingly so
|
|
* that we have enough accuracy and at the same time no overflow
|
|
*/
|
|
params = get_usb_dpll_params(*dplls_data);
|
|
num = params->m * sys_clk_khz;
|
|
den = (params->n + 1) * 250 * 1000;
|
|
num += den - 1;
|
|
sd_div = num / den;
|
|
clrsetbits_le32((*prcm)->cm_clksel_dpll_usb,
|
|
CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK,
|
|
sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT);
|
|
|
|
/* Now setup the dpll with the regular function */
|
|
do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb");
|
|
}
|
|
#endif
|
|
|
|
static void setup_dplls(void)
|
|
{
|
|
u32 temp;
|
|
const struct dpll_params *params;
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
|
|
|
|
debug("setup_dplls\n");
|
|
|
|
/* CORE dpll */
|
|
params = get_core_dpll_params(*dplls_data); /* default - safest */
|
|
/*
|
|
* Do not lock the core DPLL now. Just set it up.
|
|
* Core DPLL will be locked after setting up EMIF
|
|
* using the FREQ_UPDATE method(freq_update_core())
|
|
*/
|
|
if (emif_sdram_type(readl(&emif->emif_sdram_config)) ==
|
|
EMIF_SDRAM_TYPE_LPDDR2)
|
|
do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
|
|
DPLL_NO_LOCK, "core");
|
|
else
|
|
do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
|
|
DPLL_LOCK, "core");
|
|
/* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */
|
|
temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) |
|
|
(CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) |
|
|
(CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT);
|
|
writel(temp, (*prcm)->cm_clksel_core);
|
|
debug("Core DPLL configured\n");
|
|
|
|
/* lock PER dpll */
|
|
params = get_per_dpll_params(*dplls_data);
|
|
do_setup_dpll((*prcm)->cm_clkmode_dpll_per,
|
|
params, DPLL_LOCK, "per");
|
|
debug("PER DPLL locked\n");
|
|
|
|
/* MPU dpll */
|
|
configure_mpu_dpll();
|
|
|
|
#if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
|
|
defined(CONFIG_USB_MUSB_OMAP2PLUS)
|
|
setup_usb_dpll();
|
|
#endif
|
|
params = get_ddr_dpll_params(*dplls_data);
|
|
do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy,
|
|
params, DPLL_LOCK, "ddr");
|
|
|
|
#ifdef CONFIG_DRIVER_TI_CPSW
|
|
params = get_gmac_dpll_params(*dplls_data);
|
|
do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params,
|
|
DPLL_LOCK, "gmac");
|
|
#endif
|
|
}
|
|
|
|
u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic)
|
|
{
|
|
u32 offset_code;
|
|
|
|
volt_offset -= pmic->base_offset;
|
|
|
|
offset_code = (volt_offset + pmic->step - 1) / pmic->step;
|
|
|
|
/*
|
|
* Offset codes 1-6 all give the base voltage in Palmas
|
|
* Offset code 0 switches OFF the SMPS
|
|
*/
|
|
return offset_code + pmic->start_code;
|
|
}
|
|
|
|
void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic)
|
|
{
|
|
u32 offset_code;
|
|
u32 offset = volt_mv;
|
|
int ret = 0;
|
|
|
|
if (!volt_mv)
|
|
return;
|
|
|
|
pmic->pmic_bus_init();
|
|
/* See if we can first get the GPIO if needed */
|
|
if (pmic->gpio_en)
|
|
ret = gpio_request(pmic->gpio, "PMIC_GPIO");
|
|
|
|
if (ret < 0) {
|
|
printf("%s: gpio %d request failed %d\n", __func__,
|
|
pmic->gpio, ret);
|
|
return;
|
|
}
|
|
|
|
/* Pull the GPIO low to select SET0 register, while we program SET1 */
|
|
if (pmic->gpio_en)
|
|
gpio_direction_output(pmic->gpio, 0);
|
|
|
|
/* convert to uV for better accuracy in the calculations */
|
|
offset *= 1000;
|
|
|
|
offset_code = get_offset_code(offset, pmic);
|
|
|
|
debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv,
|
|
offset_code);
|
|
|
|
if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code))
|
|
printf("Scaling voltage failed for 0x%x\n", vcore_reg);
|
|
if (pmic->gpio_en)
|
|
gpio_direction_output(pmic->gpio, 1);
|
|
}
|
|
|
|
int __weak get_voltrail_opp(int rail_offset)
|
|
{
|
|
/*
|
|
* By default return OPP_NOM for all voltage rails.
|
|
*/
|
|
return OPP_NOM;
|
|
}
|
|
|
|
static u32 optimize_vcore_voltage(struct volts const *v, int opp)
|
|
{
|
|
u32 val;
|
|
|
|
if (!v->value[opp])
|
|
return 0;
|
|
if (!v->efuse.reg[opp])
|
|
return v->value[opp];
|
|
|
|
switch (v->efuse.reg_bits) {
|
|
case 16:
|
|
val = readw(v->efuse.reg[opp]);
|
|
break;
|
|
case 32:
|
|
val = readl(v->efuse.reg[opp]);
|
|
break;
|
|
default:
|
|
printf("Error: efuse 0x%08x bits=%d unknown\n",
|
|
v->efuse.reg[opp], v->efuse.reg_bits);
|
|
return v->value[opp];
|
|
}
|
|
|
|
if (!val) {
|
|
printf("Error: efuse 0x%08x bits=%d val=0, using %d\n",
|
|
v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp]);
|
|
return v->value[opp];
|
|
}
|
|
|
|
debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n",
|
|
__func__, v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp],
|
|
val);
|
|
return val;
|
|
}
|
|
|
|
#ifdef CONFIG_IODELAY_RECALIBRATION
|
|
void __weak recalibrate_iodelay(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Setup the voltages for the main SoC core power domains.
|
|
* We start with the maximum voltages allowed here, as set in the corresponding
|
|
* vcores_data struct, and then scale (usually down) to the fused values that
|
|
* are retrieved from the SoC. The scaling happens only if the efuse.reg fields
|
|
* are initialised.
|
|
* Rail grouping is supported for the DRA7xx SoCs only, therefore the code is
|
|
* compiled conditionally. Note that the new code writes the scaled (or zeroed)
|
|
* values back to the vcores_data struct for eventual reuse. Zero values mean
|
|
* that the corresponding rails are not controlled separately, and are not sent
|
|
* to the PMIC.
|
|
*/
|
|
void scale_vcores(struct vcores_data const *vcores)
|
|
{
|
|
int i, opp, j, ol;
|
|
struct volts *pv = (struct volts *)vcores;
|
|
struct volts *px;
|
|
|
|
for (i=0; i<(sizeof(struct vcores_data)/sizeof(struct volts)); i++) {
|
|
opp = get_voltrail_opp(i);
|
|
debug("%d -> ", pv->value[opp]);
|
|
|
|
if (pv->value[opp]) {
|
|
/* Handle non-empty members only */
|
|
pv->value[opp] = optimize_vcore_voltage(pv, opp);
|
|
px = (struct volts *)vcores;
|
|
j = 0;
|
|
while (px < pv) {
|
|
/*
|
|
* Scan already handled non-empty members to see
|
|
* if we have a group and find the max voltage,
|
|
* which is set to the first occurance of the
|
|
* particular SMPS; the other group voltages are
|
|
* zeroed.
|
|
*/
|
|
ol = get_voltrail_opp(j);
|
|
if (px->value[ol] &&
|
|
(pv->pmic->i2c_slave_addr ==
|
|
px->pmic->i2c_slave_addr) &&
|
|
(pv->addr == px->addr)) {
|
|
/* Same PMIC, same SMPS */
|
|
if (pv->value[opp] > px->value[ol])
|
|
px->value[ol] = pv->value[opp];
|
|
|
|
pv->value[opp] = 0;
|
|
}
|
|
px++;
|
|
j++;
|
|
}
|
|
}
|
|
debug("%d\n", pv->value[opp]);
|
|
pv++;
|
|
}
|
|
|
|
opp = get_voltrail_opp(VOLT_CORE);
|
|
debug("cor: %d\n", vcores->core.value[opp]);
|
|
do_scale_vcore(vcores->core.addr, vcores->core.value[opp],
|
|
vcores->core.pmic);
|
|
/*
|
|
* IO delay recalibration should be done immediately after
|
|
* adjusting AVS voltages for VDD_CORE_L.
|
|
* Respective boards should call __recalibrate_iodelay()
|
|
* with proper mux, virtual and manual mode configurations.
|
|
*/
|
|
#ifdef CONFIG_IODELAY_RECALIBRATION
|
|
recalibrate_iodelay();
|
|
#endif
|
|
|
|
opp = get_voltrail_opp(VOLT_MPU);
|
|
debug("mpu: %d\n", vcores->mpu.value[opp]);
|
|
do_scale_vcore(vcores->mpu.addr, vcores->mpu.value[opp],
|
|
vcores->mpu.pmic);
|
|
/* Configure MPU ABB LDO after scale */
|
|
abb_setup(vcores->mpu.efuse.reg[opp],
|
|
(*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl,
|
|
(*prcm)->prm_abbldo_mpu_setup,
|
|
(*prcm)->prm_abbldo_mpu_ctrl,
|
|
(*prcm)->prm_irqstatus_mpu_2,
|
|
vcores->mpu.abb_tx_done_mask,
|
|
OMAP_ABB_FAST_OPP);
|
|
|
|
opp = get_voltrail_opp(VOLT_MM);
|
|
debug("mm: %d\n", vcores->mm.value[opp]);
|
|
do_scale_vcore(vcores->mm.addr, vcores->mm.value[opp],
|
|
vcores->mm.pmic);
|
|
/* Configure MM ABB LDO after scale */
|
|
abb_setup(vcores->mm.efuse.reg[opp],
|
|
(*ctrl)->control_wkup_ldovbb_mm_voltage_ctrl,
|
|
(*prcm)->prm_abbldo_mm_setup,
|
|
(*prcm)->prm_abbldo_mm_ctrl,
|
|
(*prcm)->prm_irqstatus_mpu,
|
|
vcores->mm.abb_tx_done_mask,
|
|
OMAP_ABB_FAST_OPP);
|
|
|
|
opp = get_voltrail_opp(VOLT_GPU);
|
|
debug("gpu: %d\n", vcores->gpu.value[opp]);
|
|
do_scale_vcore(vcores->gpu.addr, vcores->gpu.value[opp],
|
|
vcores->gpu.pmic);
|
|
/* Configure GPU ABB LDO after scale */
|
|
abb_setup(vcores->gpu.efuse.reg[opp],
|
|
(*ctrl)->control_wkup_ldovbb_gpu_voltage_ctrl,
|
|
(*prcm)->prm_abbldo_gpu_setup,
|
|
(*prcm)->prm_abbldo_gpu_ctrl,
|
|
(*prcm)->prm_irqstatus_mpu,
|
|
vcores->gpu.abb_tx_done_mask,
|
|
OMAP_ABB_FAST_OPP);
|
|
|
|
opp = get_voltrail_opp(VOLT_EVE);
|
|
debug("eve: %d\n", vcores->eve.value[opp]);
|
|
do_scale_vcore(vcores->eve.addr, vcores->eve.value[opp],
|
|
vcores->eve.pmic);
|
|
/* Configure EVE ABB LDO after scale */
|
|
abb_setup(vcores->eve.efuse.reg[opp],
|
|
(*ctrl)->control_wkup_ldovbb_eve_voltage_ctrl,
|
|
(*prcm)->prm_abbldo_eve_setup,
|
|
(*prcm)->prm_abbldo_eve_ctrl,
|
|
(*prcm)->prm_irqstatus_mpu,
|
|
vcores->eve.abb_tx_done_mask,
|
|
OMAP_ABB_FAST_OPP);
|
|
|
|
opp = get_voltrail_opp(VOLT_IVA);
|
|
debug("iva: %d\n", vcores->iva.value[opp]);
|
|
do_scale_vcore(vcores->iva.addr, vcores->iva.value[opp],
|
|
vcores->iva.pmic);
|
|
/* Configure IVA ABB LDO after scale */
|
|
abb_setup(vcores->iva.efuse.reg[opp],
|
|
(*ctrl)->control_wkup_ldovbb_iva_voltage_ctrl,
|
|
(*prcm)->prm_abbldo_iva_setup,
|
|
(*prcm)->prm_abbldo_iva_ctrl,
|
|
(*prcm)->prm_irqstatus_mpu,
|
|
vcores->iva.abb_tx_done_mask,
|
|
OMAP_ABB_FAST_OPP);
|
|
}
|
|
|
|
static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode)
|
|
{
|
|
clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
|
|
enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
|
|
debug("Enable clock domain - %x\n", clkctrl_reg);
|
|
}
|
|
|
|
static inline void disable_clock_domain(u32 const clkctrl_reg)
|
|
{
|
|
clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
|
|
CD_CLKCTRL_CLKTRCTRL_SW_SLEEP <<
|
|
CD_CLKCTRL_CLKTRCTRL_SHIFT);
|
|
debug("Disable clock domain - %x\n", clkctrl_reg);
|
|
}
|
|
|
|
static inline void wait_for_clk_enable(u32 clkctrl_addr)
|
|
{
|
|
u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
|
|
u32 bound = LDELAY;
|
|
|
|
while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
|
|
(idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {
|
|
|
|
clkctrl = readl(clkctrl_addr);
|
|
idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
|
|
MODULE_CLKCTRL_IDLEST_SHIFT;
|
|
if (--bound == 0) {
|
|
printf("Clock enable failed for 0x%x idlest 0x%x\n",
|
|
clkctrl_addr, clkctrl);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode,
|
|
u32 wait_for_enable)
|
|
{
|
|
clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
|
|
enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
|
|
debug("Enable clock module - %x\n", clkctrl_addr);
|
|
if (wait_for_enable)
|
|
wait_for_clk_enable(clkctrl_addr);
|
|
}
|
|
|
|
static inline void wait_for_clk_disable(u32 clkctrl_addr)
|
|
{
|
|
u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_FULLY_FUNCTIONAL;
|
|
u32 bound = LDELAY;
|
|
|
|
while ((idlest != MODULE_CLKCTRL_IDLEST_DISABLED)) {
|
|
clkctrl = readl(clkctrl_addr);
|
|
idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
|
|
MODULE_CLKCTRL_IDLEST_SHIFT;
|
|
if (--bound == 0) {
|
|
printf("Clock disable failed for 0x%x idlest 0x%x\n",
|
|
clkctrl_addr, clkctrl);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void disable_clock_module(u32 const clkctrl_addr,
|
|
u32 wait_for_disable)
|
|
{
|
|
clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
|
|
MODULE_CLKCTRL_MODULEMODE_SW_DISABLE <<
|
|
MODULE_CLKCTRL_MODULEMODE_SHIFT);
|
|
debug("Disable clock module - %x\n", clkctrl_addr);
|
|
if (wait_for_disable)
|
|
wait_for_clk_disable(clkctrl_addr);
|
|
}
|
|
|
|
void freq_update_core(void)
|
|
{
|
|
u32 freq_config1 = 0;
|
|
const struct dpll_params *core_dpll_params;
|
|
u32 omap_rev = omap_revision();
|
|
|
|
core_dpll_params = get_core_dpll_params(*dplls_data);
|
|
/* Put EMIF clock domain in sw wakeup mode */
|
|
enable_clock_domain((*prcm)->cm_memif_clkstctrl,
|
|
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
|
|
wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
|
|
wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
|
|
|
|
freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK |
|
|
SHADOW_FREQ_CONFIG1_DLL_RESET_MASK;
|
|
|
|
freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) &
|
|
SHADOW_FREQ_CONFIG1_DPLL_EN_MASK;
|
|
|
|
freq_config1 |= (core_dpll_params->m2 <<
|
|
SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) &
|
|
SHADOW_FREQ_CONFIG1_M2_DIV_MASK;
|
|
|
|
writel(freq_config1, (*prcm)->cm_shadow_freq_config1);
|
|
if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0,
|
|
(u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) {
|
|
puts("FREQ UPDATE procedure failed!!");
|
|
hang();
|
|
}
|
|
|
|
/*
|
|
* Putting EMIF in HW_AUTO is seen to be causing issues with
|
|
* EMIF clocks and the master DLL. Keep EMIF in SW_WKUP
|
|
* in OMAP5430 ES1.0 silicon
|
|
*/
|
|
if (omap_rev != OMAP5430_ES1_0) {
|
|
/* Put EMIF clock domain back in hw auto mode */
|
|
enable_clock_domain((*prcm)->cm_memif_clkstctrl,
|
|
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
|
|
wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
|
|
wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
|
|
}
|
|
}
|
|
|
|
void bypass_dpll(u32 const base)
|
|
{
|
|
do_bypass_dpll(base);
|
|
wait_for_bypass(base);
|
|
}
|
|
|
|
void lock_dpll(u32 const base)
|
|
{
|
|
do_lock_dpll(base);
|
|
wait_for_lock(base);
|
|
}
|
|
|
|
static void setup_clocks_for_console(void)
|
|
{
|
|
/* Do not add any spl_debug prints in this function */
|
|
clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
|
|
CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
|
|
CD_CLKCTRL_CLKTRCTRL_SHIFT);
|
|
|
|
/* Enable all UARTs - console will be on one of them */
|
|
clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl,
|
|
MODULE_CLKCTRL_MODULEMODE_MASK,
|
|
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
|
|
MODULE_CLKCTRL_MODULEMODE_SHIFT);
|
|
|
|
clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl,
|
|
MODULE_CLKCTRL_MODULEMODE_MASK,
|
|
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
|
|
MODULE_CLKCTRL_MODULEMODE_SHIFT);
|
|
|
|
clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl,
|
|
MODULE_CLKCTRL_MODULEMODE_MASK,
|
|
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
|
|
MODULE_CLKCTRL_MODULEMODE_SHIFT);
|
|
|
|
clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl,
|
|
MODULE_CLKCTRL_MODULEMODE_MASK,
|
|
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
|
|
MODULE_CLKCTRL_MODULEMODE_SHIFT);
|
|
|
|
clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
|
|
CD_CLKCTRL_CLKTRCTRL_HW_AUTO <<
|
|
CD_CLKCTRL_CLKTRCTRL_SHIFT);
|
|
}
|
|
|
|
void do_enable_clocks(u32 const *clk_domains,
|
|
u32 const *clk_modules_hw_auto,
|
|
u32 const *clk_modules_explicit_en,
|
|
u8 wait_for_enable)
|
|
{
|
|
u32 i, max = 100;
|
|
|
|
/* Put the clock domains in SW_WKUP mode */
|
|
for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
|
|
enable_clock_domain(clk_domains[i],
|
|
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
|
|
}
|
|
|
|
/* Clock modules that need to be put in HW_AUTO */
|
|
for (i = 0; (i < max) && clk_modules_hw_auto &&
|
|
clk_modules_hw_auto[i]; i++) {
|
|
enable_clock_module(clk_modules_hw_auto[i],
|
|
MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
|
|
wait_for_enable);
|
|
};
|
|
|
|
/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
|
|
for (i = 0; (i < max) && clk_modules_explicit_en &&
|
|
clk_modules_explicit_en[i]; i++) {
|
|
enable_clock_module(clk_modules_explicit_en[i],
|
|
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
|
|
wait_for_enable);
|
|
};
|
|
|
|
/* Put the clock domains in HW_AUTO mode now */
|
|
for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
|
|
enable_clock_domain(clk_domains[i],
|
|
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
|
|
}
|
|
}
|
|
|
|
void do_enable_ipu_clocks(u32 const *clk_domains,
|
|
u32 const *clk_modules_hw_auto,
|
|
u32 const *clk_modules_explicit_en,
|
|
u8 wait_for_enable)
|
|
{
|
|
u32 i, max = 10;
|
|
|
|
if (!IS_ENABLED(CONFIG_REMOTEPROC_TI_IPU))
|
|
return;
|
|
|
|
/* Put the clock domains in SW_WKUP mode */
|
|
for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
|
|
enable_clock_domain(clk_domains[i],
|
|
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
|
|
}
|
|
|
|
/* Clock modules that need to be put in HW_AUTO */
|
|
for (i = 0; (i < max) && clk_modules_hw_auto &&
|
|
clk_modules_hw_auto[i]; i++) {
|
|
enable_clock_module(clk_modules_hw_auto[i],
|
|
MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
|
|
wait_for_enable);
|
|
};
|
|
|
|
/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
|
|
for (i = 0; (i < max) && clk_modules_explicit_en &&
|
|
clk_modules_explicit_en[i]; i++) {
|
|
enable_clock_module(clk_modules_explicit_en[i],
|
|
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
|
|
wait_for_enable);
|
|
};
|
|
}
|
|
|
|
void do_disable_clocks(u32 const *clk_domains,
|
|
u32 const *clk_modules_disable,
|
|
u8 wait_for_disable)
|
|
{
|
|
u32 i, max = 100;
|
|
|
|
|
|
/* Clock modules that need to be put in SW_DISABLE */
|
|
for (i = 0; (i < max) && clk_modules_disable[i]; i++)
|
|
disable_clock_module(clk_modules_disable[i],
|
|
wait_for_disable);
|
|
|
|
/* Put the clock domains in SW_SLEEP mode */
|
|
for (i = 0; (i < max) && clk_domains[i]; i++)
|
|
disable_clock_domain(clk_domains[i]);
|
|
}
|
|
|
|
/**
|
|
* setup_early_clocks() - Setup early clocks needed for SoC
|
|
*
|
|
* Setup clocks for console, SPL basic initialization clocks and initialize
|
|
* the timer. This is invoked prior prcm_init.
|
|
*/
|
|
void setup_early_clocks(void)
|
|
{
|
|
switch (omap_hw_init_context()) {
|
|
case OMAP_INIT_CONTEXT_SPL:
|
|
case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
|
|
case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
|
|
setup_clocks_for_console();
|
|
enable_basic_clocks();
|
|
timer_init();
|
|
/* Fall through */
|
|
}
|
|
}
|
|
|
|
void prcm_init(void)
|
|
{
|
|
switch (omap_hw_init_context()) {
|
|
case OMAP_INIT_CONTEXT_SPL:
|
|
case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
|
|
case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
|
|
scale_vcores(*omap_vcores);
|
|
setup_dplls();
|
|
setup_warmreset_time();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context())
|
|
enable_basic_uboot_clocks();
|
|
}
|
|
|
|
#if !CONFIG_IS_ENABLED(DM_I2C)
|
|
void gpi2c_init(void)
|
|
{
|
|
static int gpi2c = 1;
|
|
|
|
if (gpi2c) {
|
|
i2c_init(CONFIG_SYS_I2C_SPEED,
|
|
CONFIG_SYS_I2C_SLAVE);
|
|
gpi2c = 0;
|
|
}
|
|
}
|
|
#endif
|