u-boot/drivers/spi/cadence_qspi_apb.c
Vikas Manocha 70bb2b1415 spi: cadence_qspi: support FIFO width other than 4 bytes
This patch makes the code compatible with FIFO depths other than 4
bytes. It also simplify read/write FIFO loops.

Signed-off-by: Vikas Manocha <vikas.manocha@st.com>
Tested-by: Stefan Roese <sr@denx.de>
Reviewed-by: Jagannadh Teki <jteki@openedev.com>
2015-07-03 13:50:53 +05:30

888 lines
25 KiB
C

/*
* Copyright (C) 2012 Altera Corporation <www.altera.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of the Altera Corporation nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include "cadence_qspi.h"
#define CQSPI_REG_POLL_US (1) /* 1us */
#define CQSPI_REG_RETRY (10000)
#define CQSPI_POLL_IDLE_RETRY (3)
#define CQSPI_FIFO_WIDTH (4)
#define CQSPI_REG_SRAM_THRESHOLD_WORDS (50)
/* Transfer mode */
#define CQSPI_INST_TYPE_SINGLE (0)
#define CQSPI_INST_TYPE_DUAL (1)
#define CQSPI_INST_TYPE_QUAD (2)
#define CQSPI_STIG_DATA_LEN_MAX (8)
#define CQSPI_INDIRECTTRIGGER_ADDR_MASK (0xFFFFF)
#define CQSPI_DUMMY_CLKS_PER_BYTE (8)
#define CQSPI_DUMMY_BYTES_MAX (4)
#define CQSPI_REG_SRAM_FILL_THRESHOLD \
((CQSPI_REG_SRAM_SIZE_WORD / 2) * CQSPI_FIFO_WIDTH)
/****************************************************************************
* Controller's configuration and status register (offset from QSPI_BASE)
****************************************************************************/
#define CQSPI_REG_CONFIG 0x00
#define CQSPI_REG_CONFIG_CLK_POL_LSB 1
#define CQSPI_REG_CONFIG_CLK_PHA_LSB 2
#define CQSPI_REG_CONFIG_ENABLE_MASK (1 << 0)
#define CQSPI_REG_CONFIG_DIRECT_MASK (1 << 7)
#define CQSPI_REG_CONFIG_DECODE_MASK (1 << 9)
#define CQSPI_REG_CONFIG_XIP_IMM_MASK (1 << 18)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
#define CQSPI_REG_CONFIG_BAUD_LSB 19
#define CQSPI_REG_CONFIG_IDLE_LSB 31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
#define CQSPI_REG_RD_INSTR 0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
#define CQSPI_REG_WR_INSTR 0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
#define CQSPI_REG_DELAY 0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB 0
#define CQSPI_REG_DELAY_TCHSH_LSB 8
#define CQSPI_REG_DELAY_TSD2D_LSB 16
#define CQSPI_REG_DELAY_TSHSL_LSB 24
#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
#define CQSPI_READLCAPTURE 0x10
#define CQSPI_READLCAPTURE_BYPASS_LSB 0
#define CQSPI_READLCAPTURE_DELAY_LSB 1
#define CQSPI_READLCAPTURE_DELAY_MASK 0xF
#define CQSPI_REG_SIZE 0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB 0
#define CQSPI_REG_SIZE_PAGE_LSB 4
#define CQSPI_REG_SIZE_BLOCK_LSB 16
#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
#define CQSPI_REG_SRAMPARTITION 0x18
#define CQSPI_REG_INDIRECTTRIGGER 0x1C
#define CQSPI_REG_REMAP 0x24
#define CQSPI_REG_MODE_BIT 0x28
#define CQSPI_REG_SDRAMLEVEL 0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
#define CQSPI_REG_IRQSTATUS 0x40
#define CQSPI_REG_IRQMASK 0x44
#define CQSPI_REG_INDIRECTRD 0x60
#define CQSPI_REG_INDIRECTRD_START_MASK (1 << 0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK (1 << 1)
#define CQSPI_REG_INDIRECTRD_INPROGRESS_MASK (1 << 2)
#define CQSPI_REG_INDIRECTRD_DONE_MASK (1 << 5)
#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
#define CQSPI_REG_INDIRECTRDBYTES 0x6C
#define CQSPI_REG_CMDCTRL 0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK (1 << 0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK (1 << 1)
#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_OPCODE_MASK 0xFF
#define CQSPI_REG_INDIRECTWR 0x70
#define CQSPI_REG_INDIRECTWR_START_MASK (1 << 0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK (1 << 1)
#define CQSPI_REG_INDIRECTWR_INPROGRESS_MASK (1 << 2)
#define CQSPI_REG_INDIRECTWR_DONE_MASK (1 << 5)
#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
#define CQSPI_REG_INDIRECTWRBYTES 0x7C
#define CQSPI_REG_CMDADDRESS 0x94
#define CQSPI_REG_CMDREADDATALOWER 0xA0
#define CQSPI_REG_CMDREADDATAUPPER 0xA4
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
#define CQSPI_REG_IS_IDLE(base) \
((readl(base + CQSPI_REG_CONFIG) >> \
CQSPI_REG_CONFIG_IDLE_LSB) & 0x1)
#define CQSPI_CAL_DELAY(tdelay_ns, tref_ns, tsclk_ns) \
((((tdelay_ns) - (tsclk_ns)) / (tref_ns)))
#define CQSPI_GET_RD_SRAM_LEVEL(reg_base) \
(((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \
CQSPI_REG_SDRAMLEVEL_RD_LSB) & CQSPI_REG_SDRAMLEVEL_RD_MASK)
#define CQSPI_GET_WR_SRAM_LEVEL(reg_base) \
(((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \
CQSPI_REG_SDRAMLEVEL_WR_LSB) & CQSPI_REG_SDRAMLEVEL_WR_MASK)
static unsigned int cadence_qspi_apb_cmd2addr(const unsigned char *addr_buf,
unsigned int addr_width)
{
unsigned int addr;
addr = (addr_buf[0] << 16) | (addr_buf[1] << 8) | addr_buf[2];
if (addr_width == 4)
addr = (addr << 8) | addr_buf[3];
return addr;
}
static void cadence_qspi_apb_read_fifo_data(void *dest,
const void *src_ahb_addr, unsigned int bytes)
{
unsigned int temp;
int remaining = bytes;
unsigned int *dest_ptr = (unsigned int *)dest;
unsigned int *src_ptr = (unsigned int *)src_ahb_addr;
while (remaining >= sizeof(dest_ptr)) {
*dest_ptr = readl(src_ptr);
remaining -= sizeof(src_ptr);
dest_ptr++;
}
if (remaining) {
/* dangling bytes */
temp = readl(src_ptr);
memcpy(dest_ptr, &temp, remaining);
}
return;
}
static void cadence_qspi_apb_write_fifo_data(const void *dest_ahb_addr,
const void *src, unsigned int bytes)
{
unsigned int temp = 0;
int i;
int remaining = bytes;
unsigned int *dest_ptr = (unsigned int *)dest_ahb_addr;
unsigned int *src_ptr = (unsigned int *)src;
while (remaining >= CQSPI_FIFO_WIDTH) {
for (i = CQSPI_FIFO_WIDTH/sizeof(src_ptr) - 1; i >= 0; i--)
writel(*(src_ptr+i), dest_ptr+i);
src_ptr += CQSPI_FIFO_WIDTH/sizeof(src_ptr);
remaining -= CQSPI_FIFO_WIDTH;
}
if (remaining) {
/* dangling bytes */
i = remaining/sizeof(dest_ptr);
memcpy(&temp, src_ptr+i, remaining % sizeof(dest_ptr));
writel(temp, dest_ptr+i);
for (--i; i >= 0; i--)
writel(*(src_ptr+i), dest_ptr+i);
}
return;
}
/* Read from SRAM FIFO with polling SRAM fill level. */
static int qspi_read_sram_fifo_poll(const void *reg_base, void *dest_addr,
const void *src_addr, unsigned int num_bytes)
{
unsigned int remaining = num_bytes;
unsigned int retry;
unsigned int sram_level = 0;
unsigned char *dest = (unsigned char *)dest_addr;
while (remaining > 0) {
retry = CQSPI_REG_RETRY;
while (retry--) {
sram_level = CQSPI_GET_RD_SRAM_LEVEL(reg_base);
if (sram_level)
break;
udelay(1);
}
if (!retry) {
printf("QSPI: No receive data after polling for %d times\n",
CQSPI_REG_RETRY);
return -1;
}
sram_level *= CQSPI_FIFO_WIDTH;
sram_level = sram_level > remaining ? remaining : sram_level;
/* Read data from FIFO. */
cadence_qspi_apb_read_fifo_data(dest, src_addr, sram_level);
dest += sram_level;
remaining -= sram_level;
udelay(1);
}
return 0;
}
/* Write to SRAM FIFO with polling SRAM fill level. */
static int qpsi_write_sram_fifo_push(struct cadence_spi_platdata *plat,
const void *src_addr, unsigned int num_bytes)
{
const void *reg_base = plat->regbase;
void *dest_addr = plat->ahbbase;
unsigned int retry = CQSPI_REG_RETRY;
unsigned int sram_level;
unsigned int wr_bytes;
unsigned char *src = (unsigned char *)src_addr;
int remaining = num_bytes;
unsigned int page_size = plat->page_size;
unsigned int sram_threshold_words = CQSPI_REG_SRAM_THRESHOLD_WORDS;
while (remaining > 0) {
retry = CQSPI_REG_RETRY;
while (retry--) {
sram_level = CQSPI_GET_WR_SRAM_LEVEL(reg_base);
if (sram_level <= sram_threshold_words)
break;
}
if (!retry) {
printf("QSPI: SRAM fill level (0x%08x) not hit lower expected level (0x%08x)",
sram_level, sram_threshold_words);
return -1;
}
/* Write a page or remaining bytes. */
wr_bytes = (remaining > page_size) ?
page_size : remaining;
cadence_qspi_apb_write_fifo_data(dest_addr, src, wr_bytes);
src += wr_bytes;
remaining -= wr_bytes;
}
return 0;
}
void cadence_qspi_apb_controller_enable(void *reg_base)
{
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
writel(reg, reg_base + CQSPI_REG_CONFIG);
return;
}
void cadence_qspi_apb_controller_disable(void *reg_base)
{
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
writel(reg, reg_base + CQSPI_REG_CONFIG);
return;
}
/* Return 1 if idle, otherwise return 0 (busy). */
static unsigned int cadence_qspi_wait_idle(void *reg_base)
{
unsigned int start, count = 0;
/* timeout in unit of ms */
unsigned int timeout = 5000;
start = get_timer(0);
for ( ; get_timer(start) < timeout ; ) {
if (CQSPI_REG_IS_IDLE(reg_base))
count++;
else
count = 0;
/*
* Ensure the QSPI controller is in true idle state after
* reading back the same idle status consecutively
*/
if (count >= CQSPI_POLL_IDLE_RETRY)
return 1;
}
/* Timeout, still in busy mode. */
printf("QSPI: QSPI is still busy after poll for %d times.\n",
CQSPI_REG_RETRY);
return 0;
}
void cadence_qspi_apb_readdata_capture(void *reg_base,
unsigned int bypass, unsigned int delay)
{
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
reg = readl(reg_base + CQSPI_READLCAPTURE);
if (bypass)
reg |= (1 << CQSPI_READLCAPTURE_BYPASS_LSB);
else
reg &= ~(1 << CQSPI_READLCAPTURE_BYPASS_LSB);
reg &= ~(CQSPI_READLCAPTURE_DELAY_MASK
<< CQSPI_READLCAPTURE_DELAY_LSB);
reg |= ((delay & CQSPI_READLCAPTURE_DELAY_MASK)
<< CQSPI_READLCAPTURE_DELAY_LSB);
writel(reg, reg_base + CQSPI_READLCAPTURE);
cadence_qspi_apb_controller_enable(reg_base);
return;
}
void cadence_qspi_apb_config_baudrate_div(void *reg_base,
unsigned int ref_clk_hz, unsigned int sclk_hz)
{
unsigned int reg;
unsigned int div;
cadence_qspi_apb_controller_disable(reg_base);
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
div = ref_clk_hz / sclk_hz;
if (div > 32)
div = 32;
/* Check if even number. */
if ((div & 1)) {
div = (div / 2);
} else {
if (ref_clk_hz % sclk_hz)
/* ensure generated SCLK doesn't exceed user
specified sclk_hz */
div = (div / 2);
else
div = (div / 2) - 1;
}
debug("%s: ref_clk %dHz sclk %dHz Div 0x%x\n", __func__,
ref_clk_hz, sclk_hz, div);
div = (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
reg |= div;
writel(reg, reg_base + CQSPI_REG_CONFIG);
cadence_qspi_apb_controller_enable(reg_base);
return;
}
void cadence_qspi_apb_set_clk_mode(void *reg_base,
unsigned int clk_pol, unsigned int clk_pha)
{
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(1 <<
(CQSPI_REG_CONFIG_CLK_POL_LSB | CQSPI_REG_CONFIG_CLK_PHA_LSB));
reg |= ((clk_pol & 0x1) << CQSPI_REG_CONFIG_CLK_POL_LSB);
reg |= ((clk_pha & 0x1) << CQSPI_REG_CONFIG_CLK_PHA_LSB);
writel(reg, reg_base + CQSPI_REG_CONFIG);
cadence_qspi_apb_controller_enable(reg_base);
return;
}
void cadence_qspi_apb_chipselect(void *reg_base,
unsigned int chip_select, unsigned int decoder_enable)
{
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
debug("%s : chipselect %d decode %d\n", __func__, chip_select,
decoder_enable);
reg = readl(reg_base + CQSPI_REG_CONFIG);
/* docoder */
if (decoder_enable) {
reg |= CQSPI_REG_CONFIG_DECODE_MASK;
} else {
reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
/* Convert CS if without decoder.
* CS0 to 4b'1110
* CS1 to 4b'1101
* CS2 to 4b'1011
* CS3 to 4b'0111
*/
chip_select = 0xF & ~(1 << chip_select);
}
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
cadence_qspi_apb_controller_enable(reg_base);
return;
}
void cadence_qspi_apb_delay(void *reg_base,
unsigned int ref_clk, unsigned int sclk_hz,
unsigned int tshsl_ns, unsigned int tsd2d_ns,
unsigned int tchsh_ns, unsigned int tslch_ns)
{
unsigned int ref_clk_ns;
unsigned int sclk_ns;
unsigned int tshsl, tchsh, tslch, tsd2d;
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
/* Convert to ns. */
ref_clk_ns = (1000000000) / ref_clk;
/* Convert to ns. */
sclk_ns = (1000000000) / sclk_hz;
/* Plus 1 to round up 1 clock cycle. */
tshsl = CQSPI_CAL_DELAY(tshsl_ns, ref_clk_ns, sclk_ns) + 1;
tchsh = CQSPI_CAL_DELAY(tchsh_ns, ref_clk_ns, sclk_ns) + 1;
tslch = CQSPI_CAL_DELAY(tslch_ns, ref_clk_ns, sclk_ns) + 1;
tsd2d = CQSPI_CAL_DELAY(tsd2d_ns, ref_clk_ns, sclk_ns) + 1;
reg = ((tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
<< CQSPI_REG_DELAY_TSHSL_LSB);
reg |= ((tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
<< CQSPI_REG_DELAY_TCHSH_LSB);
reg |= ((tslch & CQSPI_REG_DELAY_TSLCH_MASK)
<< CQSPI_REG_DELAY_TSLCH_LSB);
reg |= ((tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
<< CQSPI_REG_DELAY_TSD2D_LSB);
writel(reg, reg_base + CQSPI_REG_DELAY);
cadence_qspi_apb_controller_enable(reg_base);
return;
}
void cadence_qspi_apb_controller_init(struct cadence_spi_platdata *plat)
{
unsigned reg;
cadence_qspi_apb_controller_disable(plat->regbase);
/* Configure the device size and address bytes */
reg = readl(plat->regbase + CQSPI_REG_SIZE);
/* Clear the previous value */
reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
reg |= (plat->page_size << CQSPI_REG_SIZE_PAGE_LSB);
reg |= (plat->block_size << CQSPI_REG_SIZE_BLOCK_LSB);
writel(reg, plat->regbase + CQSPI_REG_SIZE);
/* Configure the remap address register, no remap */
writel(0, plat->regbase + CQSPI_REG_REMAP);
/* Indirect mode configurations */
writel((plat->sram_size/2), plat->regbase + CQSPI_REG_SRAMPARTITION);
/* Disable all interrupts */
writel(0, plat->regbase + CQSPI_REG_IRQMASK);
cadence_qspi_apb_controller_enable(plat->regbase);
return;
}
static int cadence_qspi_apb_exec_flash_cmd(void *reg_base,
unsigned int reg)
{
unsigned int retry = CQSPI_REG_RETRY;
/* Write the CMDCTRL without start execution. */
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Start execute */
reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
while (retry--) {
reg = readl(reg_base + CQSPI_REG_CMDCTRL);
if ((reg & CQSPI_REG_CMDCTRL_INPROGRESS_MASK) == 0)
break;
udelay(1);
}
if (!retry) {
printf("QSPI: flash command execution timeout\n");
return -EIO;
}
/* Polling QSPI idle status. */
if (!cadence_qspi_wait_idle(reg_base))
return -EIO;
return 0;
}
/* For command RDID, RDSR. */
int cadence_qspi_apb_command_read(void *reg_base,
unsigned int cmdlen, const u8 *cmdbuf, unsigned int rxlen,
u8 *rxbuf)
{
unsigned int reg;
unsigned int read_len;
int status;
if (!cmdlen || rxlen > CQSPI_STIG_DATA_LEN_MAX || rxbuf == NULL) {
printf("QSPI: Invalid input arguments cmdlen %d rxlen %d\n",
cmdlen, rxlen);
return -EINVAL;
}
reg = cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */
reg |= (((rxlen - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
status = cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
if (status != 0)
return status;
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
/* Put the read value into rx_buf */
read_len = (rxlen > 4) ? 4 : rxlen;
memcpy(rxbuf, &reg, read_len);
rxbuf += read_len;
if (rxlen > 4) {
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
read_len = rxlen - read_len;
memcpy(rxbuf, &reg, read_len);
}
return 0;
}
/* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */
int cadence_qspi_apb_command_write(void *reg_base, unsigned int cmdlen,
const u8 *cmdbuf, unsigned int txlen, const u8 *txbuf)
{
unsigned int reg = 0;
unsigned int addr_value;
unsigned int wr_data;
unsigned int wr_len;
if (!cmdlen || cmdlen > 5 || txlen > 8 || cmdbuf == NULL) {
printf("QSPI: Invalid input arguments cmdlen %d txlen %d\n",
cmdlen, txlen);
return -EINVAL;
}
reg |= cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (cmdlen == 4 || cmdlen == 5) {
/* Command with address */
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
/* Number of bytes to write. */
reg |= ((cmdlen - 2) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
/* Get address */
addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1],
cmdlen >= 5 ? 4 : 3);
writel(addr_value, reg_base + CQSPI_REG_CMDADDRESS);
}
if (txlen) {
/* writing data = yes */
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
reg |= ((txlen - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
wr_len = txlen > 4 ? 4 : txlen;
memcpy(&wr_data, txbuf, wr_len);
writel(wr_data, reg_base +
CQSPI_REG_CMDWRITEDATALOWER);
if (txlen > 4) {
txbuf += wr_len;
wr_len = txlen - wr_len;
memcpy(&wr_data, txbuf, wr_len);
writel(wr_data, reg_base +
CQSPI_REG_CMDWRITEDATAUPPER);
}
}
/* Execute the command */
return cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
}
/* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */
int cadence_qspi_apb_indirect_read_setup(struct cadence_spi_platdata *plat,
unsigned int cmdlen, const u8 *cmdbuf)
{
unsigned int reg;
unsigned int rd_reg;
unsigned int addr_value;
unsigned int dummy_clk;
unsigned int dummy_bytes;
unsigned int addr_bytes;
/*
* Identify addr_byte. All NOR flash device drivers are using fast read
* which always expecting 1 dummy byte, 1 cmd byte and 3/4 addr byte.
* With that, the length is in value of 5 or 6. Only FRAM chip from
* ramtron using normal read (which won't need dummy byte).
* Unlikely NOR flash using normal read due to performance issue.
*/
if (cmdlen >= 5)
/* to cater fast read where cmd + addr + dummy */
addr_bytes = cmdlen - 2;
else
/* for normal read (only ramtron as of now) */
addr_bytes = cmdlen - 1;
/* Setup the indirect trigger address */
writel(((u32)plat->ahbbase & CQSPI_INDIRECTTRIGGER_ADDR_MASK),
plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */
rd_reg = cmdbuf[0] << CQSPI_REG_RD_INSTR_OPCODE_LSB;
#if (CONFIG_SPI_FLASH_QUAD == 1)
/* Instruction and address at DQ0, data at DQ0-3. */
rd_reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
#endif
/* Get address */
addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
writel(addr_value, plat->regbase + CQSPI_REG_INDIRECTRDSTARTADDR);
/* The remaining lenght is dummy bytes. */
dummy_bytes = cmdlen - addr_bytes - 1;
if (dummy_bytes) {
if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
dummy_bytes = CQSPI_DUMMY_BYTES_MAX;
rd_reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
#if defined(CONFIG_SPL_SPI_XIP) && defined(CONFIG_SPL_BUILD)
writel(0x0, plat->regbase + CQSPI_REG_MODE_BIT);
#else
writel(0xFF, plat->regbase + CQSPI_REG_MODE_BIT);
#endif
/* Convert to clock cycles. */
dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
/* Need to minus the mode byte (8 clocks). */
dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;
if (dummy_clk)
rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
}
writel(rd_reg, plat->regbase + CQSPI_REG_RD_INSTR);
/* set device size */
reg = readl(plat->regbase + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (addr_bytes - 1);
writel(reg, plat->regbase + CQSPI_REG_SIZE);
return 0;
}
int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat,
unsigned int rxlen, u8 *rxbuf)
{
unsigned int reg;
writel(rxlen, plat->regbase + CQSPI_REG_INDIRECTRDBYTES);
/* Start the indirect read transfer */
writel(CQSPI_REG_INDIRECTRD_START_MASK,
plat->regbase + CQSPI_REG_INDIRECTRD);
if (qspi_read_sram_fifo_poll(plat->regbase, (void *)rxbuf,
(const void *)plat->ahbbase, rxlen))
goto failrd;
/* Check flash indirect controller */
reg = readl(plat->regbase + CQSPI_REG_INDIRECTRD);
if (!(reg & CQSPI_REG_INDIRECTRD_DONE_MASK)) {
reg = readl(plat->regbase + CQSPI_REG_INDIRECTRD);
printf("QSPI: indirect completion status error with reg 0x%08x\n",
reg);
goto failrd;
}
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
plat->regbase + CQSPI_REG_INDIRECTRD);
return 0;
failrd:
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
plat->regbase + CQSPI_REG_INDIRECTRD);
return -1;
}
/* Opcode + Address (3/4 bytes) */
int cadence_qspi_apb_indirect_write_setup(struct cadence_spi_platdata *plat,
unsigned int cmdlen, const u8 *cmdbuf)
{
unsigned int reg;
unsigned int addr_bytes = cmdlen > 4 ? 4 : 3;
if (cmdlen < 4 || cmdbuf == NULL) {
printf("QSPI: iInvalid input argument, len %d cmdbuf 0x%08x\n",
cmdlen, (unsigned int)cmdbuf);
return -EINVAL;
}
/* Setup the indirect trigger address */
writel(((u32)plat->ahbbase & CQSPI_INDIRECTTRIGGER_ADDR_MASK),
plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */
reg = cmdbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB;
writel(reg, plat->regbase + CQSPI_REG_WR_INSTR);
/* Setup write address. */
reg = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
writel(reg, plat->regbase + CQSPI_REG_INDIRECTWRSTARTADDR);
reg = readl(plat->regbase + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (addr_bytes - 1);
writel(reg, plat->regbase + CQSPI_REG_SIZE);
return 0;
}
int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat,
unsigned int txlen, const u8 *txbuf)
{
unsigned int reg = 0;
unsigned int retry;
/* Configure the indirect read transfer bytes */
writel(txlen, plat->regbase + CQSPI_REG_INDIRECTWRBYTES);
/* Start the indirect write transfer */
writel(CQSPI_REG_INDIRECTWR_START_MASK,
plat->regbase + CQSPI_REG_INDIRECTWR);
if (qpsi_write_sram_fifo_push(plat, (const void *)txbuf, txlen))
goto failwr;
/* Wait until last write is completed (FIFO empty) */
retry = CQSPI_REG_RETRY;
while (retry--) {
reg = CQSPI_GET_WR_SRAM_LEVEL(plat->regbase);
if (reg == 0)
break;
udelay(1);
}
if (reg != 0) {
printf("QSPI: timeout for indirect write\n");
goto failwr;
}
/* Check flash indirect controller status */
retry = CQSPI_REG_RETRY;
while (retry--) {
reg = readl(plat->regbase + CQSPI_REG_INDIRECTWR);
if (reg & CQSPI_REG_INDIRECTWR_DONE_MASK)
break;
udelay(1);
}
if (!(reg & CQSPI_REG_INDIRECTWR_DONE_MASK)) {
printf("QSPI: indirect completion status error with reg 0x%08x\n",
reg);
goto failwr;
}
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTWR_DONE_MASK,
plat->regbase + CQSPI_REG_INDIRECTWR);
return 0;
failwr:
/* Cancel the indirect write */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
plat->regbase + CQSPI_REG_INDIRECTWR);
return -1;
}
void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy)
{
unsigned int reg;
/* enter XiP mode immediately and enable direct mode */
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
reg |= CQSPI_REG_CONFIG_DIRECT_MASK;
reg |= CQSPI_REG_CONFIG_XIP_IMM_MASK;
writel(reg, reg_base + CQSPI_REG_CONFIG);
/* keep the XiP mode */
writel(xip_dummy, reg_base + CQSPI_REG_MODE_BIT);
/* Enable mode bit at devrd */
reg = readl(reg_base + CQSPI_REG_RD_INSTR);
reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
}