u-boot/test/dm/core.c
Michal Suchanek f21954750a dm: core: Do not stop uclass iteration on error
When probing a device fails NULL pointer is returned, and following
devices in uclass list cannot be iterated. Skip to next device on error
instead.

With that the only condition under which these simple iteration
functions return error is when the dm is not initialized at uclass_get
time. This is not all that interesting, change return type to void.

Fixes: 6494d708bf ("dm: Add base driver model support")
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
2022-10-29 07:36:33 -06:00

1355 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Tests for the core driver model code
*
* Copyright (c) 2013 Google, Inc
*/
#include <common.h>
#include <errno.h>
#include <dm.h>
#include <fdtdec.h>
#include <log.h>
#include <malloc.h>
#include <asm/global_data.h>
#include <dm/device-internal.h>
#include <dm/root.h>
#include <dm/util.h>
#include <dm/test.h>
#include <dm/uclass-internal.h>
#include <test/test.h>
#include <test/ut.h>
DECLARE_GLOBAL_DATA_PTR;
enum {
TEST_INTVAL1 = 0,
TEST_INTVAL2 = 3,
TEST_INTVAL3 = 6,
TEST_INTVAL_MANUAL = 101112,
TEST_INTVAL_PRE_RELOC = 7,
};
static const struct dm_test_pdata test_pdata[] = {
{ .ping_add = TEST_INTVAL1, },
{ .ping_add = TEST_INTVAL2, },
{ .ping_add = TEST_INTVAL3, },
};
static const struct dm_test_pdata test_pdata_manual = {
.ping_add = TEST_INTVAL_MANUAL,
};
static const struct dm_test_pdata test_pdata_pre_reloc = {
.ping_add = TEST_INTVAL_PRE_RELOC,
};
U_BOOT_DRVINFO(dm_test_info1) = {
.name = "test_drv",
.plat = &test_pdata[0],
};
U_BOOT_DRVINFO(dm_test_info2) = {
.name = "test_drv",
.plat = &test_pdata[1],
};
U_BOOT_DRVINFO(dm_test_info3) = {
.name = "test_drv",
.plat = &test_pdata[2],
};
static struct driver_info driver_info_manual = {
.name = "test_manual_drv",
.plat = &test_pdata_manual,
};
static struct driver_info driver_info_pre_reloc = {
.name = "test_pre_reloc_drv",
.plat = &test_pdata_pre_reloc,
};
static struct driver_info driver_info_act_dma = {
.name = "test_act_dma_drv",
};
static struct driver_info driver_info_vital_clk = {
.name = "test_vital_clk_drv",
};
static struct driver_info driver_info_act_dma_vital_clk = {
.name = "test_act_dma_vital_clk_drv",
};
void dm_leak_check_start(struct unit_test_state *uts)
{
uts->start = mallinfo();
if (!uts->start.uordblks)
puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
}
int dm_leak_check_end(struct unit_test_state *uts)
{
struct mallinfo end;
int id, diff;
/* Don't delete the root class, since we started with that */
for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
struct uclass *uc;
uc = uclass_find(id);
if (!uc)
continue;
ut_assertok(uclass_destroy(uc));
}
end = mallinfo();
diff = end.uordblks - uts->start.uordblks;
if (diff > 0)
printf("Leak: lost %#xd bytes\n", diff);
else if (diff < 0)
printf("Leak: gained %#xd bytes\n", -diff);
ut_asserteq(uts->start.uordblks, end.uordblks);
return 0;
}
/* Test that binding with plat occurs correctly */
static int dm_test_autobind(struct unit_test_state *uts)
{
struct udevice *dev;
/*
* We should have a single class (UCLASS_ROOT) and a single root
* device with no children.
*/
ut_assert(uts->root);
ut_asserteq(1, list_count_items(gd->uclass_root));
ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
ut_assertok(dm_scan_plat(false));
/* We should have our test class now at least, plus more children */
ut_assert(1 < list_count_items(gd->uclass_root));
ut_assert(0 < list_count_items(&gd->dm_root->child_head));
/* Our 3 dm_test_infox children should be bound to the test uclass */
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
/* No devices should be probed */
list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
/* Our test driver should have been bound 3 times */
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
return 0;
}
DM_TEST(dm_test_autobind, 0);
/* Test that binding with uclass plat allocation occurs correctly */
static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
{
struct dm_test_perdev_uc_pdata *uc_pdata;
struct udevice *dev;
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_assert(uc);
/**
* Test if test uclass driver requires allocation for the uclass
* platform data and then check the dev->uclass_plat pointer.
*/
ut_assert(uc->uc_drv->per_device_plat_auto);
for (uclass_find_first_device(UCLASS_TEST, &dev);
dev;
uclass_find_next_device(&dev)) {
ut_assertnonnull(dev);
uc_pdata = dev_get_uclass_plat(dev);
ut_assert(uc_pdata);
}
return 0;
}
DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA);
/* compare node names ignoring the unit address */
static int dm_test_compare_node_name(struct unit_test_state *uts)
{
ofnode node;
node = ofnode_path("/mmio-bus@0");
ut_assert(ofnode_valid(node));
ut_assert(ofnode_name_eq(node, "mmio-bus"));
return 0;
}
DM_TEST(dm_test_compare_node_name, UT_TESTF_SCAN_PDATA);
/* Test that binding with uclass plat setting occurs correctly */
static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
{
struct dm_test_perdev_uc_pdata *uc_pdata;
struct udevice *dev;
/**
* In the test_postbind() method of test uclass driver, the uclass
* platform data should be set to three test int values - test it.
*/
for (uclass_find_first_device(UCLASS_TEST, &dev);
dev;
uclass_find_next_device(&dev)) {
ut_assertnonnull(dev);
uc_pdata = dev_get_uclass_plat(dev);
ut_assert(uc_pdata);
ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
}
return 0;
}
DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA);
/* Test that autoprobe finds all the expected devices */
static int dm_test_autoprobe(struct unit_test_state *uts)
{
int expected_base_add;
struct udevice *dev;
struct uclass *uc;
int i;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_assert(uc);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
/* The root device should not be activated until needed */
ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
/*
* We should be able to find the three test devices, and they should
* all be activated as they are used (lazy activation, required by
* U-Boot)
*/
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
"Driver %d/%s already activated", i, dev->name);
/* This should activate it */
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
/* Activating a device should activate the root device */
if (!i)
ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
}
/*
* Our 3 dm_test_info children should be passed to pre_probe and
* post_probe
*/
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
/* Also we can check the per-device data */
expected_base_add = 0;
for (i = 0; i < 3; i++) {
struct dm_test_uclass_perdev_priv *priv;
struct dm_test_pdata *pdata;
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
priv = dev_get_uclass_priv(dev);
ut_assert(priv);
ut_asserteq(expected_base_add, priv->base_add);
pdata = dev_get_plat(dev);
expected_base_add += pdata->ping_add;
}
return 0;
}
DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA);
/* Check that we see the correct plat in each device */
static int dm_test_plat(struct unit_test_state *uts)
{
const struct dm_test_pdata *pdata;
struct udevice *dev;
int i;
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
pdata = dev_get_plat(dev);
ut_assert(pdata->ping_add == test_pdata[i].ping_add);
}
return 0;
}
DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA);
/* Test that we can bind, probe, remove, unbind a driver */
static int dm_test_lifecycle(struct unit_test_state *uts)
{
int op_count[DM_TEST_OP_COUNT];
struct udevice *dev, *test_dev;
int start_dev_count, start_uc_count;
int dev_count, uc_count;
int pingret;
int ret;
memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
dm_get_stats(&start_dev_count, &start_uc_count);
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
== op_count[DM_TEST_OP_BIND] + 1);
ut_assert(!dev_get_priv(dev));
/* We should have one more device */
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(start_dev_count + 1, dev_count);
ut_asserteq(start_uc_count, uc_count);
/* Probe the device - it should fail allocating private data */
uts->force_fail_alloc = 1;
ret = device_probe(dev);
ut_assert(ret == -ENOMEM);
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
== op_count[DM_TEST_OP_PROBE] + 1);
ut_assert(!dev_get_priv(dev));
/* Try again without the alloc failure */
uts->force_fail_alloc = 0;
ut_assertok(device_probe(dev));
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
== op_count[DM_TEST_OP_PROBE] + 2);
ut_assert(dev_get_priv(dev));
/* This should be device 3 in the uclass */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev == test_dev);
/* Try ping */
ut_assertok(test_ping(dev, 100, &pingret));
ut_assert(pingret == 102);
/* Now remove device 3 */
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
ut_assertok(device_unbind(dev));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
/* We should have one less device */
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(start_dev_count, dev_count);
ut_asserteq(start_uc_count, uc_count);
return 0;
}
DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
/* Test that we can bind/unbind and the lists update correctly */
static int dm_test_ordering(struct unit_test_state *uts)
{
struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
int pingret;
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Bind two new devices (numbers 4 and 5) */
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev_penultimate));
ut_assert(dev_penultimate);
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev_last));
ut_assert(dev_last);
/* Now remove device 3 */
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev));
/* The device numbering should have shifted down one */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev_penultimate == test_dev);
ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
ut_assert(dev_last == test_dev);
/* Add back the original device 3, now in position 5 */
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Try ping */
ut_assertok(test_ping(dev, 100, &pingret));
ut_assert(pingret == 102);
/* Remove 3 and 4 */
ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev_penultimate));
ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev_last));
/* Our device should now be in position 3 */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev == test_dev);
/* Now remove device 3 */
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev));
return 0;
}
DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA);
/* Check that we can perform operations on a device (do a ping) */
int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
uint32_t base, struct dm_test_priv *priv)
{
int expected;
int pingret;
/* Getting the child device should allocate plat / priv */
ut_assertok(testfdt_ping(dev, 10, &pingret));
ut_assert(dev_get_priv(dev));
ut_assert(dev_get_plat(dev));
expected = 10 + base;
ut_asserteq(expected, pingret);
/* Do another ping */
ut_assertok(testfdt_ping(dev, 20, &pingret));
expected = 20 + base;
ut_asserteq(expected, pingret);
/* Now check the ping_total */
priv = dev_get_priv(dev);
ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
priv->ping_total);
return 0;
}
/* Check that we can perform operations on devices */
static int dm_test_operations(struct unit_test_state *uts)
{
struct udevice *dev;
int i;
/*
* Now check that the ping adds are what we expect. This is using the
* ping-add property in each node.
*/
for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
uint32_t base;
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
/*
* Get the 'reg' property, which tells us what the ping add
* should be. We don't use the plat because we want
* to test the code that sets that up (testfdt_drv_probe()).
*/
base = test_pdata[i].ping_add;
debug("dev=%d, base=%d\n", i, base);
ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
}
return 0;
}
DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA);
/* Remove all drivers and check that things work */
static int dm_test_remove(struct unit_test_state *uts)
{
struct udevice *dev;
int i;
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
"Driver %d/%s not activated", i, dev->name);
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
"Driver %d/%s should have deactivated", i,
dev->name);
ut_assert(!dev_get_priv(dev));
}
return 0;
}
DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
/* Remove and recreate everything, check for memory leaks */
static int dm_test_leak(struct unit_test_state *uts)
{
int i;
for (i = 0; i < 2; i++) {
int ret;
dm_leak_check_start(uts);
ut_assertok(dm_scan_plat(false));
ut_assertok(dm_scan_fdt(false));
ret = uclass_probe_all(UCLASS_TEST);
ut_assertok(ret);
ut_assertok(dm_leak_check_end(uts));
}
return 0;
}
DM_TEST(dm_test_leak, 0);
/* Test uclass init/destroy methods */
static int dm_test_uclass(struct unit_test_state *uts)
{
int dev_count, uc_count;
struct uclass *uc;
/* We should have just the root device and uclass */
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(1, dev_count);
ut_asserteq(1, uc_count);
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
ut_assert(uclass_get_priv(uc));
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(1, dev_count);
ut_asserteq(2, uc_count);
ut_assertok(uclass_destroy(uc));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
dm_get_stats(&dev_count, &uc_count);
ut_asserteq(1, dev_count);
ut_asserteq(1, uc_count);
return 0;
}
DM_TEST(dm_test_uclass, 0);
/**
* create_children() - Create children of a parent node
*
* @dms: Test system state
* @parent: Parent device
* @count: Number of children to create
* @key: Key value to put in first child. Subsequence children
* receive an incrementing value
* @child: If not NULL, then the child device pointers are written into
* this array.
* Return: 0 if OK, -ve on error
*/
static int create_children(struct unit_test_state *uts, struct udevice *parent,
int count, int key, struct udevice *child[])
{
struct udevice *dev;
int i;
for (i = 0; i < count; i++) {
struct dm_test_pdata *pdata;
ut_assertok(device_bind_by_name(parent, false,
&driver_info_manual, &dev));
pdata = calloc(1, sizeof(*pdata));
pdata->ping_add = key + i;
dev_set_plat(dev, pdata);
if (child)
child[i] = dev;
}
return 0;
}
#define NODE_COUNT 10
static int dm_test_children(struct unit_test_state *uts)
{
struct udevice *top[NODE_COUNT];
struct udevice *child[NODE_COUNT];
struct udevice *grandchild[NODE_COUNT];
struct udevice *dev;
int total;
int ret;
int i;
/* We don't care about the numbering for this test */
uts->skip_post_probe = 1;
ut_assert(NODE_COUNT > 5);
/* First create 10 top-level children */
ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
/* Now a few have their own children */
ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
/* And grandchildren */
for (i = 0; i < NODE_COUNT; i++)
ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
i == 2 ? grandchild : NULL));
/* Check total number of devices */
total = NODE_COUNT * (3 + NODE_COUNT);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
/* Try probing one of the grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST,
NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
ut_asserteq_ptr(grandchild[0], dev);
/*
* This should have probed the child and top node also, for a total
* of 3 nodes.
*/
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Probe the other grandchildren */
for (i = 1; i < NODE_COUNT; i++)
ut_assertok(device_probe(grandchild[i]));
ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Probe everything */
ret = uclass_probe_all(UCLASS_TEST);
ut_assertok(ret);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Remove a top-level child and check that the children are removed */
ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
/* Try one with grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
ut_asserteq_ptr(dev, top[5]);
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
/* Try the same with unbind */
ut_assertok(device_unbind(top[2]));
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
/* Try one with grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
ut_asserteq_ptr(dev, top[6]);
ut_assertok(device_unbind(top[5]));
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
return 0;
}
DM_TEST(dm_test_children, 0);
static int dm_test_device_reparent(struct unit_test_state *uts)
{
struct udevice *top[NODE_COUNT];
struct udevice *child[NODE_COUNT];
struct udevice *grandchild[NODE_COUNT];
struct udevice *dev;
int total;
int ret;
int i;
/* We don't care about the numbering for this test */
uts->skip_post_probe = 1;
ut_assert(NODE_COUNT > 5);
/* First create 10 top-level children */
ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
/* Now a few have their own children */
ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
/* And grandchildren */
for (i = 0; i < NODE_COUNT; i++)
ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
i == 2 ? grandchild : NULL));
/* Check total number of devices */
total = NODE_COUNT * (3 + NODE_COUNT);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
/* Probe everything */
for (i = 0; i < total; i++)
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
/* Re-parent top-level children with no grandchildren. */
ut_assertok(device_reparent(top[3], top[0]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_reparent(top[4], top[0]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
/* Re-parent top-level children with grandchildren. */
ut_assertok(device_reparent(top[2], top[0]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_reparent(top[5], top[2]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
/* Re-parent grandchildren. */
ut_assertok(device_reparent(grandchild[0], top[1]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_reparent(grandchild[1], top[1]));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
/* Remove re-pareneted devices. */
ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
/* try to get devices */
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
/* Try the same with unbind */
ut_assertok(device_unbind(top[3]));
ut_assertok(device_unbind(top[4]));
ut_assertok(device_unbind(top[5]));
ut_assertok(device_unbind(top[2]));
ut_assertok(device_unbind(grandchild[0]));
ut_assertok(device_unbind(grandchild[1]));
return 0;
}
DM_TEST(dm_test_device_reparent, 0);
/* Test that pre-relocation devices work as expected */
static int dm_test_pre_reloc(struct unit_test_state *uts)
{
struct udevice *dev;
/* The normal driver should refuse to bind before relocation */
ut_asserteq(-EPERM, device_bind_by_name(uts->root, true,
&driver_info_manual, &dev));
/* But this one is marked pre-reloc */
ut_assertok(device_bind_by_name(uts->root, true,
&driver_info_pre_reloc, &dev));
return 0;
}
DM_TEST(dm_test_pre_reloc, 0);
/*
* Test that removal of devices, either via the "normal" device_remove()
* API or via the device driver selective flag works as expected
*/
static int dm_test_remove_active_dma(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
&dev));
ut_assert(dev);
/* Probe the device */
ut_assertok(device_probe(dev));
/* Test if device is active right now */
ut_asserteq(true, device_active(dev));
/* Remove the device via selective remove flag */
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
/* Test if device is inactive right now */
ut_asserteq(false, device_active(dev));
/* Probe the device again */
ut_assertok(device_probe(dev));
/* Test if device is active right now */
ut_asserteq(true, device_active(dev));
/* Remove the device via "normal" remove API */
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
/* Test if device is inactive right now */
ut_asserteq(false, device_active(dev));
/*
* Test if a device without the active DMA flags is not removed upon
* the active DMA remove call
*/
ut_assertok(device_unbind(dev));
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Probe the device */
ut_assertok(device_probe(dev));
/* Test if device is active right now */
ut_asserteq(true, device_active(dev));
/* Remove the device via selective remove flag */
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
/* Test if device is still active right now */
ut_asserteq(true, device_active(dev));
return 0;
}
DM_TEST(dm_test_remove_active_dma, 0);
/* Test removal of 'vital' devices */
static int dm_test_remove_vital(struct unit_test_state *uts)
{
struct udevice *normal, *dma, *vital, *dma_vital;
/* Skip the behaviour in test_post_probe() */
uts->skip_post_probe = 1;
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
&normal));
ut_assertnonnull(normal);
ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
&dma));
ut_assertnonnull(dma);
ut_assertok(device_bind_by_name(uts->root, false,
&driver_info_vital_clk, &vital));
ut_assertnonnull(vital);
ut_assertok(device_bind_by_name(uts->root, false,
&driver_info_act_dma_vital_clk,
&dma_vital));
ut_assertnonnull(dma_vital);
/* Probe the devices */
ut_assertok(device_probe(normal));
ut_assertok(device_probe(dma));
ut_assertok(device_probe(vital));
ut_assertok(device_probe(dma_vital));
/* Check that devices are active right now */
ut_asserteq(true, device_active(normal));
ut_asserteq(true, device_active(dma));
ut_asserteq(true, device_active(vital));
ut_asserteq(true, device_active(dma_vital));
/* Remove active devices via selective remove flag */
dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
/*
* Check that this only has an effect on the dma device, since two
* devices are vital and the third does not have active DMA
*/
ut_asserteq(true, device_active(normal));
ut_asserteq(false, device_active(dma));
ut_asserteq(true, device_active(vital));
ut_asserteq(true, device_active(dma_vital));
/* Remove active devices via selective remove flag */
ut_assertok(device_probe(dma));
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
/* This should have affected both active-dma devices */
ut_asserteq(true, device_active(normal));
ut_asserteq(false, device_active(dma));
ut_asserteq(true, device_active(vital));
ut_asserteq(false, device_active(dma_vital));
/* Remove non-vital devices */
ut_assertok(device_probe(dma));
ut_assertok(device_probe(dma_vital));
dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
/* This should have affected only non-vital devices */
ut_asserteq(false, device_active(normal));
ut_asserteq(false, device_active(dma));
ut_asserteq(true, device_active(vital));
ut_asserteq(true, device_active(dma_vital));
/* Remove vital devices via normal remove flag */
ut_assertok(device_probe(normal));
ut_assertok(device_probe(dma));
dm_remove_devices_flags(DM_REMOVE_NORMAL);
/* Check that all devices are inactive right now */
ut_asserteq(false, device_active(normal));
ut_asserteq(false, device_active(dma));
ut_asserteq(false, device_active(vital));
ut_asserteq(false, device_active(dma_vital));
return 0;
}
DM_TEST(dm_test_remove_vital, 0);
static int dm_test_uclass_before_ready(struct unit_test_state *uts)
{
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
gd->dm_root = NULL;
gd->dm_root_f = NULL;
memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
ut_asserteq(-EDEADLK, uclass_get(UCLASS_TEST, &uc));
return 0;
}
DM_TEST(dm_test_uclass_before_ready, 0);
static int dm_test_uclass_devices_find(struct unit_test_state *uts)
{
struct udevice *dev;
int ret;
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assertnonnull(dev);
}
ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
ut_assertnull(dev);
return 0;
}
DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA);
static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
{
struct udevice *finddev;
struct udevice *testdev;
int findret, ret;
/*
* For each test device found in fdt like: "a-test", "b-test", etc.,
* use its name and try to find it by uclass_find_device_by_name().
* Then, on success check if:
* - current 'testdev' name is equal to the returned 'finddev' name
* - current 'testdev' pointer is equal to the returned 'finddev'
*
* We assume that, each uclass's device name is unique, so if not, then
* this will fail on checking condition: testdev == finddev, since the
* uclass_find_device_by_name(), returns the first device by given name.
*/
for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
testdev;
ret = uclass_find_next_device(&testdev)) {
ut_assertok(ret);
ut_assertnonnull(testdev);
findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
testdev->name,
&finddev);
ut_assertok(findret);
ut_assert(testdev);
ut_asserteq_str(testdev->name, finddev->name);
ut_asserteq_ptr(testdev, finddev);
}
return 0;
}
DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT);
static int dm_test_uclass_devices_get(struct unit_test_state *uts)
{
struct udevice *dev;
int ret;
for (ret = uclass_first_device_check(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device_check(&dev)) {
ut_assert(!ret);
ut_assert(device_active(dev));
}
return 0;
}
DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA);
static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
{
struct udevice *finddev;
struct udevice *testdev;
int ret, findret;
/*
* For each test device found in fdt like: "a-test", "b-test", etc.,
* use its name and try to get it by uclass_get_device_by_name().
* On success check if:
* - returned finddev' is active
* - current 'testdev' name is equal to the returned 'finddev' name
* - current 'testdev' pointer is equal to the returned 'finddev'
*
* We asserts that the 'testdev' is active on each loop entry, so we
* could be sure that the 'finddev' is activated too, but for sure
* we check it again.
*
* We assume that, each uclass's device name is unique, so if not, then
* this will fail on checking condition: testdev == finddev, since the
* uclass_get_device_by_name(), returns the first device by given name.
*/
for (ret = uclass_first_device_check(UCLASS_TEST_FDT, &testdev);
testdev;
ret = uclass_next_device_check(&testdev)) {
ut_assertok(ret);
ut_assert(device_active(testdev));
findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
testdev->name,
&finddev);
ut_assertok(findret);
ut_assert(finddev);
ut_assert(device_active(finddev));
ut_asserteq_str(testdev->name, finddev->name);
ut_asserteq_ptr(testdev, finddev);
}
return 0;
}
DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT);
static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
return 0;
}
DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA);
static int dm_test_uclass_names(struct unit_test_state *uts)
{
ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
ut_asserteq(UCLASS_SPI, uclass_get_by_name("spi"));
return 0;
}
DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA);
static int dm_test_inactive_child(struct unit_test_state *uts)
{
struct udevice *parent, *dev1, *dev2;
/* Skip the behaviour in test_post_probe() */
uts->skip_post_probe = 1;
ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
/*
* Create a child but do not activate it. Calling the function again
* should return the same child.
*/
ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
UCLASS_TEST, &dev1));
ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
"test_child", 0, ofnode_null(), &dev1));
ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
&dev2));
ut_asserteq_ptr(dev1, dev2);
ut_assertok(device_probe(dev1));
ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
UCLASS_TEST, &dev2));
return 0;
}
DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA);
/* Make sure all bound devices have a sequence number */
static int dm_test_all_have_seq(struct unit_test_state *uts)
{
struct udevice *dev;
struct uclass *uc;
list_for_each_entry(uc, gd->uclass_root, sibling_node) {
list_for_each_entry(dev, &uc->dev_head, uclass_node) {
if (dev->seq_ == -1)
printf("Device '%s' has no seq (%d)\n",
dev->name, dev->seq_);
ut_assert(dev->seq_ != -1);
}
}
return 0;
}
DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA);
#if CONFIG_IS_ENABLED(DM_DMA)
static int dm_test_dma_offset(struct unit_test_state *uts)
{
struct udevice *dev;
ofnode node;
/* Make sure the bus's dma-ranges aren't taken into account here */
node = ofnode_path("/mmio-bus@0");
ut_assert(ofnode_valid(node));
ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
ut_asserteq_64(0, dev->dma_offset);
/* Device behind a bus with dma-ranges */
node = ofnode_path("/mmio-bus@0/subnode@0");
ut_assert(ofnode_valid(node));
ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
/* This one has no dma-ranges */
node = ofnode_path("/mmio-bus@1");
ut_assert(ofnode_valid(node));
ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
node = ofnode_path("/mmio-bus@1/subnode@0");
ut_assert(ofnode_valid(node));
ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
ut_asserteq_64(0, dev->dma_offset);
return 0;
}
DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
#endif
/* Test dm_get_stats() */
static int dm_test_get_stats(struct unit_test_state *uts)
{
int dev_count, uc_count;
dm_get_stats(&dev_count, &uc_count);
ut_assert(dev_count > 50);
ut_assert(uc_count > 30);
return 0;
}
DM_TEST(dm_test_get_stats, UT_TESTF_SCAN_FDT);
/* Test uclass_find_device_by_name() */
static int dm_test_uclass_find_device(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(uclass_find_device_by_name(UCLASS_I2C, "i2c@0", &dev));
ut_asserteq(-ENODEV,
uclass_find_device_by_name(UCLASS_I2C, "i2c@0x", &dev));
ut_assertok(uclass_find_device_by_namelen(UCLASS_I2C, "i2c@0x", 5,
&dev));
return 0;
}
DM_TEST(dm_test_uclass_find_device, UT_TESTF_SCAN_FDT);
/* Test getting information about tags attached to devices */
static int dm_test_dev_get_attach(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
ut_asserteq_str("a-test", dev->name);
ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PLAT));
ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PRIV));
ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_UC_PRIV));
ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_UC_PLAT));
ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PLAT));
ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PRIV));
ut_asserteq(sizeof(struct dm_test_pdata),
dev_get_attach_size(dev, DM_TAG_PLAT));
ut_asserteq(sizeof(struct dm_test_priv),
dev_get_attach_size(dev, DM_TAG_PRIV));
ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_UC_PRIV));
ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_UC_PLAT));
ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PLAT));
ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PRIV));
return 0;
}
DM_TEST(dm_test_dev_get_attach, UT_TESTF_SCAN_FDT);
/* Test getting information about tags attached to bus devices */
static int dm_test_dev_get_attach_bus(struct unit_test_state *uts)
{
struct udevice *dev, *child;
ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &dev));
ut_asserteq_str("some-bus", dev->name);
ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PLAT));
ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PRIV));
ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_UC_PRIV));
ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_UC_PLAT));
ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PLAT));
ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PRIV));
ut_asserteq(sizeof(struct dm_test_pdata),
dev_get_attach_size(dev, DM_TAG_PLAT));
ut_asserteq(sizeof(struct dm_test_priv),
dev_get_attach_size(dev, DM_TAG_PRIV));
ut_asserteq(sizeof(struct dm_test_uclass_priv),
dev_get_attach_size(dev, DM_TAG_UC_PRIV));
ut_asserteq(sizeof(struct dm_test_uclass_plat),
dev_get_attach_size(dev, DM_TAG_UC_PLAT));
ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PLAT));
ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PRIV));
/* Now try the child of the bus */
ut_assertok(device_first_child_err(dev, &child));
ut_asserteq_str("c-test@5", child->name);
ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PLAT));
ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PRIV));
ut_assertnull(dev_get_attach_ptr(child, DM_TAG_UC_PRIV));
ut_assertnull(dev_get_attach_ptr(child, DM_TAG_UC_PLAT));
ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PARENT_PLAT));
ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PARENT_PRIV));
ut_asserteq(sizeof(struct dm_test_pdata),
dev_get_attach_size(child, DM_TAG_PLAT));
ut_asserteq(sizeof(struct dm_test_priv),
dev_get_attach_size(child, DM_TAG_PRIV));
ut_asserteq(0, dev_get_attach_size(child, DM_TAG_UC_PRIV));
ut_asserteq(0, dev_get_attach_size(child, DM_TAG_UC_PLAT));
ut_asserteq(sizeof(struct dm_test_parent_plat),
dev_get_attach_size(child, DM_TAG_PARENT_PLAT));
ut_asserteq(sizeof(struct dm_test_parent_data),
dev_get_attach_size(child, DM_TAG_PARENT_PRIV));
return 0;
}
DM_TEST(dm_test_dev_get_attach_bus, UT_TESTF_SCAN_FDT);
/* Test getting information about tags attached to bus devices */
static int dm_test_dev_get_mem(struct unit_test_state *uts)
{
struct dm_stats stats;
dm_get_mem(&stats);
return 0;
}
DM_TEST(dm_test_dev_get_mem, UT_TESTF_SCAN_FDT);