u-boot/arch/arm/mach-imx/imx8ulp/clock.c
Peng Fan c628016c12 imx: imx8ulp: enable MU0_B clk by default
Enable MU0_B clk by default. When M33 image is loaded by Jlink,
the previous method not enable MU0_B clk and not able to communicate
with M33, so let's enable it by default.

And we not put it under kernel dts, because it conflicts with i.MX8QM
suspend/resume logic which requires large change.

Reviewed-by: Ye Li <ye.li@nxp.com>
Reviewed-by: Jacky Bai <ping.bai@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
2022-04-12 17:33:56 +02:00

588 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020 NXP
*/
#include <common.h>
#include <command.h>
#include <div64.h>
#include <asm/arch/imx-regs.h>
#include <asm/io.h>
#include <errno.h>
#include <asm/arch/clock.h>
#include <asm/arch/pcc.h>
#include <asm/arch/cgc.h>
#include <asm/arch/sys_proto.h>
#include <asm/global_data.h>
#include <linux/delay.h>
DECLARE_GLOBAL_DATA_PTR;
#define PLL_USB_EN_USB_CLKS_MASK (0x01 << 6)
#define PLL_USB_PWR_MASK (0x01 << 12)
#define PLL_USB_ENABLE_MASK (0x01 << 13)
#define PLL_USB_BYPASS_MASK (0x01 << 16)
#define PLL_USB_REG_ENABLE_MASK (0x01 << 21)
#define PLL_USB_DIV_SEL_MASK (0x07 << 22)
#define PLL_USB_LOCK_MASK (0x01 << 31)
#define PCC5_LPDDR4_ADDR 0x2da70108
static void lpuart_set_clk(u32 index, enum cgc_clk clk)
{
const u32 lpuart_pcc_slots[] = {
LPUART4_PCC3_SLOT,
LPUART5_PCC3_SLOT,
LPUART6_PCC4_SLOT,
LPUART7_PCC4_SLOT,
};
const u32 lpuart_pcc[] = {
3, 3, 4, 4,
};
if (index > 3)
return;
pcc_clock_enable(lpuart_pcc[index], lpuart_pcc_slots[index], false);
pcc_clock_sel(lpuart_pcc[index], lpuart_pcc_slots[index], clk);
pcc_clock_enable(lpuart_pcc[index], lpuart_pcc_slots[index], true);
pcc_reset_peripheral(lpuart_pcc[index], lpuart_pcc_slots[index], false);
}
static void init_clk_lpuart(void)
{
u32 index = 0, i;
const u32 lpuart_array[] = {
LPUART4_RBASE,
LPUART5_RBASE,
LPUART6_RBASE,
LPUART7_RBASE,
};
for (i = 0; i < 4; i++) {
if (lpuart_array[i] == LPUART_BASE) {
index = i;
break;
}
}
lpuart_set_clk(index, SOSC_DIV2);
}
void init_clk_fspi(int index)
{
pcc_clock_enable(4, FLEXSPI2_PCC4_SLOT, false);
pcc_clock_sel(4, FLEXSPI2_PCC4_SLOT, PLL3_PFD2_DIV1);
pcc_clock_div_config(4, FLEXSPI2_PCC4_SLOT, false, 8);
pcc_clock_enable(4, FLEXSPI2_PCC4_SLOT, true);
pcc_reset_peripheral(4, FLEXSPI2_PCC4_SLOT, false);
}
void setclkout_ddr(void)
{
writel(0x12800000, 0x2DA60020);
writel(0xa00, 0x298C0000); /* PTD0 */
}
void ddrphy_pll_lock(void)
{
writel(0x00011542, 0x2E065964);
writel(0x00011542, 0x2E06586C);
writel(0x00000B01, 0x2E062000);
writel(0x00000B01, 0x2E060000);
}
void init_clk_ddr(void)
{
/* disable the ddr pcc */
writel(0xc0000000, PCC5_LPDDR4_ADDR);
/* enable pll4 and ddrclk*/
cgc2_pll4_init(true);
cgc2_ddrclk_config(4, 1);
/* enable ddr pcc */
writel(0xd0000000, PCC5_LPDDR4_ADDR);
/* Wait until ddrclk reg lock bit is cleared, so that the div update is finished */
cgc2_ddrclk_wait_unlock();
/* for debug */
/* setclkout_ddr(); */
}
int set_ddr_clk(u32 phy_freq_mhz)
{
debug("%s %u\n", __func__, phy_freq_mhz);
if (phy_freq_mhz == 48) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(2, 0); /* 24Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 384) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(0, 0); /* 192Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 528) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(4, 1); /* 264Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 264) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(4, 3); /* 132Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 192) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(0, 1); /* 96Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else if (phy_freq_mhz == 96) {
writel(0x90000000, PCC5_LPDDR4_ADDR); /* disable ddr pcc */
cgc2_ddrclk_config(0, 3); /* 48Mhz DDR clock */
writel(0xd0000000, PCC5_LPDDR4_ADDR); /* enable ddr pcc */
} else {
printf("ddr phy clk %uMhz is not supported\n", phy_freq_mhz);
return -EINVAL;
}
/* Wait until ddrclk reg lock bit is cleared, so that the div update is finished */
cgc2_ddrclk_wait_unlock();
return 0;
}
void clock_init_early(void)
{
cgc1_soscdiv_init();
init_clk_lpuart();
/* Enable upower mu1 clk */
pcc_clock_enable(3, UPOWER_PCC3_SLOT, true);
}
/* This will be invoked after pmic voltage setting */
void clock_init_late(void)
{
if (IS_ENABLED(CONFIG_IMX8ULP_LD_MODE))
cgc1_init_core_clk(MHZ(500));
else if (IS_ENABLED(CONFIG_IMX8ULP_ND_MODE))
cgc1_init_core_clk(MHZ(750));
else
cgc1_init_core_clk(MHZ(960));
/*
* Audio use this frequency in kernel dts,
* however nic use pll3 pfd0, we have to
* make the freqency same as kernel to make nic
* not being disabled
*/
cgc1_pll3_init(540672000);
if (IS_ENABLED(CONFIG_IMX8ULP_LD_MODE) || IS_ENABLED(CONFIG_IMX8ULP_ND_MODE)) {
pcc_clock_enable(4, SDHC0_PCC4_SLOT, false);
pcc_clock_sel(4, SDHC0_PCC4_SLOT, PLL3_PFD2_DIV2);
pcc_clock_enable(4, SDHC0_PCC4_SLOT, true);
pcc_reset_peripheral(4, SDHC0_PCC4_SLOT, false);
pcc_clock_enable(4, SDHC1_PCC4_SLOT, false);
pcc_clock_sel(4, SDHC1_PCC4_SLOT, PLL3_PFD2_DIV2);
pcc_clock_enable(4, SDHC1_PCC4_SLOT, true);
pcc_reset_peripheral(4, SDHC1_PCC4_SLOT, false);
pcc_clock_enable(4, SDHC2_PCC4_SLOT, false);
pcc_clock_sel(4, SDHC2_PCC4_SLOT, PLL3_PFD2_DIV2);
pcc_clock_enable(4, SDHC2_PCC4_SLOT, true);
pcc_reset_peripheral(4, SDHC2_PCC4_SLOT, false);
} else {
pcc_clock_enable(4, SDHC0_PCC4_SLOT, false);
pcc_clock_sel(4, SDHC0_PCC4_SLOT, PLL3_PFD1_DIV2);
pcc_clock_enable(4, SDHC0_PCC4_SLOT, true);
pcc_reset_peripheral(4, SDHC0_PCC4_SLOT, false);
pcc_clock_enable(4, SDHC1_PCC4_SLOT, false);
pcc_clock_sel(4, SDHC1_PCC4_SLOT, PLL3_PFD2_DIV1);
pcc_clock_enable(4, SDHC1_PCC4_SLOT, true);
pcc_reset_peripheral(4, SDHC1_PCC4_SLOT, false);
pcc_clock_enable(4, SDHC2_PCC4_SLOT, false);
pcc_clock_sel(4, SDHC2_PCC4_SLOT, PLL3_PFD2_DIV1);
pcc_clock_enable(4, SDHC2_PCC4_SLOT, true);
pcc_reset_peripheral(4, SDHC2_PCC4_SLOT, false);
}
/* enable MU0_MUB clock before access the register of MU0_MUB */
pcc_clock_enable(3, MU0_B_PCC3_SLOT, true);
/*
* Enable clock division
* TODO: may not needed after ROM ready.
*/
}
#if IS_ENABLED(CONFIG_SYS_I2C_IMX_LPI2C)
int enable_i2c_clk(unsigned char enable, u32 i2c_num)
{
/* Set parent to FIRC DIV2 clock */
const u32 lpi2c_pcc_clks[] = {
LPI2C4_PCC3_SLOT << 8 | 3,
LPI2C5_PCC3_SLOT << 8 | 3,
LPI2C6_PCC4_SLOT << 8 | 4,
LPI2C7_PCC4_SLOT << 8 | 4,
};
if (i2c_num == 0)
return 0;
if (i2c_num < 4 || i2c_num > 7)
return -EINVAL;
if (enable) {
pcc_clock_enable(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, false);
pcc_clock_sel(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, SOSC_DIV2);
pcc_clock_enable(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, true);
pcc_reset_peripheral(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, false);
} else {
pcc_clock_enable(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8, false);
}
return 0;
}
u32 imx_get_i2cclk(u32 i2c_num)
{
const u32 lpi2c_pcc_clks[] = {
LPI2C4_PCC3_SLOT << 8 | 3,
LPI2C5_PCC3_SLOT << 8 | 3,
LPI2C6_PCC4_SLOT << 8 | 4,
LPI2C7_PCC4_SLOT << 8 | 4,
};
if (i2c_num == 0)
return 24000000;
if (i2c_num < 4 || i2c_num > 7)
return 0;
return pcc_clock_get_rate(lpi2c_pcc_clks[i2c_num - 4] & 0xff,
lpi2c_pcc_clks[i2c_num - 4] >> 8);
}
#endif
#if IS_ENABLED(CONFIG_SYS_I2C_IMX_I3C)
int enable_i3c_clk(unsigned char enable, u32 i3c_num)
{
if (enable) {
pcc_clock_enable(3, I3C2_PCC3_SLOT, false);
pcc_clock_sel(3, I3C2_PCC3_SLOT, SOSC_DIV2);
pcc_clock_enable(3, I3C2_PCC3_SLOT, true);
pcc_reset_peripheral(3, I3C2_PCC3_SLOT, false);
} else {
pcc_clock_enable(3, I3C2_PCC3_SLOT, false);
}
return 0;
}
u32 imx_get_i3cclk(u32 i3c_num)
{
return pcc_clock_get_rate(3, I3C2_PCC3_SLOT);
}
#endif
void enable_usboh3_clk(unsigned char enable)
{
if (enable) {
pcc_clock_enable(4, USB0_PCC4_SLOT, true);
pcc_clock_enable(4, USBPHY_PCC4_SLOT, true);
pcc_reset_peripheral(4, USB0_PCC4_SLOT, false);
pcc_reset_peripheral(4, USBPHY_PCC4_SLOT, false);
#ifdef CONFIG_USB_MAX_CONTROLLER_COUNT
if (CONFIG_USB_MAX_CONTROLLER_COUNT > 1) {
pcc_clock_enable(4, USB1_PCC4_SLOT, true);
pcc_clock_enable(4, USB1PHY_PCC4_SLOT, true);
pcc_reset_peripheral(4, USB1_PCC4_SLOT, false);
pcc_reset_peripheral(4, USB1PHY_PCC4_SLOT, false);
}
#endif
pcc_clock_enable(4, USB_XBAR_PCC4_SLOT, true);
} else {
pcc_clock_enable(4, USB0_PCC4_SLOT, false);
pcc_clock_enable(4, USB1_PCC4_SLOT, false);
pcc_clock_enable(4, USBPHY_PCC4_SLOT, false);
pcc_clock_enable(4, USB1PHY_PCC4_SLOT, false);
pcc_clock_enable(4, USB_XBAR_PCC4_SLOT, false);
}
}
int enable_usb_pll(ulong usb_phy_base)
{
u32 sosc_rate;
s32 timeout = 1000000;
struct usbphy_regs *usbphy =
(struct usbphy_regs *)usb_phy_base;
sosc_rate = cgc1_sosc_div(SOSC);
if (!sosc_rate)
return -EPERM;
if (!(readl(&usbphy->usb1_pll_480_ctrl) & PLL_USB_LOCK_MASK)) {
writel(0x1c00000, &usbphy->usb1_pll_480_ctrl_clr);
switch (sosc_rate) {
case 24000000:
writel(0xc00000, &usbphy->usb1_pll_480_ctrl_set);
break;
case 30000000:
writel(0x800000, &usbphy->usb1_pll_480_ctrl_set);
break;
case 19200000:
writel(0x1400000, &usbphy->usb1_pll_480_ctrl_set);
break;
default:
writel(0xc00000, &usbphy->usb1_pll_480_ctrl_set);
break;
}
/* Enable the regulator first */
writel(PLL_USB_REG_ENABLE_MASK,
&usbphy->usb1_pll_480_ctrl_set);
/* Wait at least 15us */
udelay(15);
/* Enable the power */
writel(PLL_USB_PWR_MASK, &usbphy->usb1_pll_480_ctrl_set);
/* Wait lock */
while (timeout--) {
if (readl(&usbphy->usb1_pll_480_ctrl) &
PLL_USB_LOCK_MASK)
break;
}
if (timeout <= 0) {
/* If timeout, we power down the pll */
writel(PLL_USB_PWR_MASK,
&usbphy->usb1_pll_480_ctrl_clr);
return -ETIME;
}
}
/* Clear the bypass */
writel(PLL_USB_BYPASS_MASK, &usbphy->usb1_pll_480_ctrl_clr);
/* Enable the PLL clock out to USB */
writel((PLL_USB_EN_USB_CLKS_MASK | PLL_USB_ENABLE_MASK),
&usbphy->usb1_pll_480_ctrl_set);
return 0;
}
void enable_mipi_dsi_clk(unsigned char enable)
{
if (enable) {
pcc_clock_enable(5, DSI_PCC5_SLOT, false);
pcc_reset_peripheral(5, DSI_PCC5_SLOT, true);
pcc_clock_sel(5, DSI_PCC5_SLOT, PLL4_PFD3_DIV2);
pcc_clock_div_config(5, DSI_PCC5_SLOT, 0, 6);
pcc_clock_enable(5, DSI_PCC5_SLOT, true);
pcc_reset_peripheral(5, DSI_PCC5_SLOT, false);
} else {
pcc_clock_enable(5, DSI_PCC5_SLOT, false);
pcc_reset_peripheral(5, DSI_PCC5_SLOT, true);
}
}
void enable_adc1_clk(bool enable)
{
if (enable) {
pcc_clock_enable(1, ADC1_PCC1_SLOT, false);
pcc_clock_sel(1, ADC1_PCC1_SLOT, CM33_BUSCLK);
pcc_clock_enable(1, ADC1_PCC1_SLOT, true);
pcc_reset_peripheral(1, ADC1_PCC1_SLOT, false);
} else {
pcc_clock_enable(1, ADC1_PCC1_SLOT, false);
}
}
void reset_lcdclk(void)
{
/* Disable clock and reset dcnano*/
pcc_clock_enable(5, DCNANO_PCC5_SLOT, false);
pcc_reset_peripheral(5, DCNANO_PCC5_SLOT, true);
}
void mxs_set_lcdclk(u32 base_addr, u32 freq_in_khz)
{
u8 pcd, best_pcd = 0;
u32 frac, rate, parent_rate, pfd, div;
u32 best_pfd = 0, best_frac = 0, best = 0, best_div = 0;
u32 pll4_rate;
pcc_clock_enable(5, DCNANO_PCC5_SLOT, false);
pll4_rate = cgc_clk_get_rate(PLL4);
pll4_rate = pll4_rate / 1000; /* Change to khz*/
debug("PLL4 rate %ukhz\n", pll4_rate);
for (pfd = 12; pfd <= 35; pfd++) {
parent_rate = pll4_rate;
parent_rate = parent_rate * 18 / pfd;
for (div = 1; div <= 64; div++) {
parent_rate = parent_rate / div;
for (pcd = 0; pcd < 8; pcd++) {
for (frac = 0; frac < 2; frac++) {
if (pcd == 0 && frac == 1)
continue;
rate = parent_rate * (frac + 1) / (pcd + 1);
if (rate > freq_in_khz)
continue;
if (best == 0 || rate > best) {
best = rate;
best_pfd = pfd;
best_frac = frac;
best_pcd = pcd;
best_div = div;
}
}
}
}
}
if (best == 0) {
printf("Can't find parent clock for LCDIF, target freq: %u\n", freq_in_khz);
return;
}
debug("LCD target rate %ukhz, best rate %ukhz, frac %u, pcd %u, best_pfd %u, best_div %u\n",
freq_in_khz, best, best_frac, best_pcd, best_pfd, best_div);
cgc2_pll4_pfd_config(PLL4_PFD0, best_pfd);
cgc2_pll4_pfddiv_config(PLL4_PFD0_DIV1, best_div - 1);
pcc_clock_sel(5, DCNANO_PCC5_SLOT, PLL4_PFD0_DIV1);
pcc_clock_div_config(5, DCNANO_PCC5_SLOT, best_frac, best_pcd + 1);
pcc_clock_enable(5, DCNANO_PCC5_SLOT, true);
pcc_reset_peripheral(5, DCNANO_PCC5_SLOT, false);
}
u32 mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ESDHC_CLK:
return pcc_clock_get_rate(4, SDHC0_PCC4_SLOT);
case MXC_ESDHC2_CLK:
return pcc_clock_get_rate(4, SDHC1_PCC4_SLOT);
case MXC_ESDHC3_CLK:
return pcc_clock_get_rate(4, SDHC2_PCC4_SLOT);
case MXC_ARM_CLK:
return cgc_clk_get_rate(PLL2);
default:
return 0;
}
}
u32 get_lpuart_clk(void)
{
int index = 0;
const u32 lpuart_array[] = {
LPUART4_RBASE,
LPUART5_RBASE,
LPUART6_RBASE,
LPUART7_RBASE,
};
const u32 lpuart_pcc_slots[] = {
LPUART4_PCC3_SLOT,
LPUART5_PCC3_SLOT,
LPUART6_PCC4_SLOT,
LPUART7_PCC4_SLOT,
};
const u32 lpuart_pcc[] = {
3, 3, 4, 4,
};
for (index = 0; index < 4; index++) {
if (lpuart_array[index] == LPUART_BASE)
break;
}
if (index > 3)
return 0;
return pcc_clock_get_rate(lpuart_pcc[index], lpuart_pcc_slots[index]);
}
#ifndef CONFIG_SPL_BUILD
/*
* Dump some core clockes.
*/
int do_mx8ulp_showclocks(struct cmd_tbl *cmdtp, int flag, int argc, char * const argv[])
{
printf("SDHC0 %8d MHz\n", pcc_clock_get_rate(4, SDHC0_PCC4_SLOT) / 1000000);
printf("SDHC1 %8d MHz\n", pcc_clock_get_rate(4, SDHC1_PCC4_SLOT) / 1000000);
printf("SDHC2 %8d MHz\n", pcc_clock_get_rate(4, SDHC2_PCC4_SLOT) / 1000000);
printf("SOSC %8d MHz\n", cgc_clk_get_rate(SOSC) / 1000000);
printf("FRO %8d MHz\n", cgc_clk_get_rate(FRO) / 1000000);
printf("PLL2 %8d MHz\n", cgc_clk_get_rate(PLL2) / 1000000);
printf("PLL3 %8d MHz\n", cgc_clk_get_rate(PLL3) / 1000000);
printf("PLL3_VCODIV %8d MHz\n", cgc_clk_get_rate(PLL3_VCODIV) / 1000000);
printf("PLL3_PFD0 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD0) / 1000000);
printf("PLL3_PFD1 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD1) / 1000000);
printf("PLL3_PFD2 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD2) / 1000000);
printf("PLL3_PFD3 %8d MHz\n", cgc_clk_get_rate(PLL3_PFD3) / 1000000);
printf("PLL4_PFD0 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD0) / 1000000);
printf("PLL4_PFD1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD1) / 1000000);
printf("PLL4_PFD2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD2) / 1000000);
printf("PLL4_PFD3 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD3) / 1000000);
printf("PLL4_PFD0_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD0_DIV1) / 1000000);
printf("PLL4_PFD0_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD0_DIV2) / 1000000);
printf("PLL4_PFD1_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD1_DIV1) / 1000000);
printf("PLL4_PFD1_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD1_DIV2) / 1000000);
printf("PLL4_PFD2_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD2_DIV1) / 1000000);
printf("PLL4_PFD2_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD2_DIV2) / 1000000);
printf("PLL4_PFD3_DIV1 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD3_DIV1) / 1000000);
printf("PLL4_PFD3_DIV2 %8d MHz\n", cgc_clk_get_rate(PLL4_PFD3_DIV2) / 1000000);
printf("LPAV_AXICLK %8d MHz\n", cgc_clk_get_rate(LPAV_AXICLK) / 1000000);
printf("LPAV_AHBCLK %8d MHz\n", cgc_clk_get_rate(LPAV_AHBCLK) / 1000000);
printf("LPAV_BUSCLK %8d MHz\n", cgc_clk_get_rate(LPAV_BUSCLK) / 1000000);
printf("NIC_APCLK %8d MHz\n", cgc_clk_get_rate(NIC_APCLK) / 1000000);
printf("NIC_PERCLK %8d MHz\n", cgc_clk_get_rate(NIC_PERCLK) / 1000000);
printf("XBAR_APCLK %8d MHz\n", cgc_clk_get_rate(XBAR_APCLK) / 1000000);
printf("XBAR_BUSCLK %8d MHz\n", cgc_clk_get_rate(XBAR_BUSCLK) / 1000000);
printf("AD_SLOWCLK %8d MHz\n", cgc_clk_get_rate(AD_SLOWCLK) / 1000000);
return 0;
}
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_mx8ulp_showclocks,
"display clocks",
""
);
#endif