mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-22 09:55:10 +00:00
b8919eaa68
nand_dt_init() is still using fdtdec_xx() interface. If OF_LIVE flag is enabled, dt property can't be get anymore. Updating all fdtdec_xx() interface to ofnode_xx() to solve this issue. For doing this, node parameter type must be ofnode. First idea was to convert "node" parameter to ofnode type inside nand_dt_init() using offset_to_ofnode(node). But offset_to_ofnode() is not bijective, in case OF_LIVE flag is enabled, it performs an assert(). So, this leads to update nand_chip struct flash_node field from int to ofnode and to update all nand_dt_init() callers. Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
1376 lines
36 KiB
C
1376 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2014 Panasonic Corporation
|
|
* Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
|
|
* Copyright (C) 2009-2010, Intel Corporation and its suppliers.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <malloc.h>
|
|
#include <nand.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/dma-mapping.h>
|
|
#include <dm/device_compat.h>
|
|
#include <dm/devres.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
|
|
#include "denali.h"
|
|
|
|
#define DENALI_NAND_NAME "denali-nand"
|
|
|
|
/* for Indexed Addressing */
|
|
#define DENALI_INDEXED_CTRL 0x00
|
|
#define DENALI_INDEXED_DATA 0x10
|
|
|
|
#define DENALI_MAP00 (0 << 26) /* direct access to buffer */
|
|
#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
|
|
#define DENALI_MAP10 (2 << 26) /* high-level control plane */
|
|
#define DENALI_MAP11 (3 << 26) /* direct controller access */
|
|
|
|
/* MAP11 access cycle type */
|
|
#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */
|
|
#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */
|
|
#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */
|
|
|
|
/* MAP10 commands */
|
|
#define DENALI_ERASE 0x01
|
|
|
|
#define DENALI_BANK(denali) ((denali)->active_bank << 24)
|
|
|
|
#define DENALI_INVALID_BANK -1
|
|
#define DENALI_NR_BANKS 4
|
|
|
|
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
|
|
}
|
|
|
|
/*
|
|
* Direct Addressing - the slave address forms the control information (command
|
|
* type, bank, block, and page address). The slave data is the actual data to
|
|
* be transferred. This mode requires 28 bits of address region allocated.
|
|
*/
|
|
static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
|
|
{
|
|
return ioread32(denali->host + addr);
|
|
}
|
|
|
|
static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
|
|
u32 data)
|
|
{
|
|
iowrite32(data, denali->host + addr);
|
|
}
|
|
|
|
/*
|
|
* Indexed Addressing - address translation module intervenes in passing the
|
|
* control information. This mode reduces the required address range. The
|
|
* control information and transferred data are latched by the registers in
|
|
* the translation module.
|
|
*/
|
|
static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
|
|
{
|
|
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
|
|
return ioread32(denali->host + DENALI_INDEXED_DATA);
|
|
}
|
|
|
|
static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
|
|
u32 data)
|
|
{
|
|
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
|
|
iowrite32(data, denali->host + DENALI_INDEXED_DATA);
|
|
}
|
|
|
|
/*
|
|
* Use the configuration feature register to determine the maximum number of
|
|
* banks that the hardware supports.
|
|
*/
|
|
static void denali_detect_max_banks(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t features = ioread32(denali->reg + FEATURES);
|
|
|
|
denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
|
|
|
|
/* the encoding changed from rev 5.0 to 5.1 */
|
|
if (denali->revision < 0x0501)
|
|
denali->max_banks <<= 1;
|
|
}
|
|
|
|
static void __maybe_unused denali_enable_irq(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DENALI_NR_BANKS; i++)
|
|
iowrite32(U32_MAX, denali->reg + INTR_EN(i));
|
|
iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
|
|
}
|
|
|
|
static void __maybe_unused denali_disable_irq(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DENALI_NR_BANKS; i++)
|
|
iowrite32(0, denali->reg + INTR_EN(i));
|
|
iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
|
|
}
|
|
|
|
static void denali_clear_irq(struct denali_nand_info *denali,
|
|
int bank, uint32_t irq_status)
|
|
{
|
|
/* write one to clear bits */
|
|
iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
|
|
}
|
|
|
|
static void denali_clear_irq_all(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DENALI_NR_BANKS; i++)
|
|
denali_clear_irq(denali, i, U32_MAX);
|
|
}
|
|
|
|
static void __denali_check_irq(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t irq_status;
|
|
int i;
|
|
|
|
for (i = 0; i < DENALI_NR_BANKS; i++) {
|
|
irq_status = ioread32(denali->reg + INTR_STATUS(i));
|
|
denali_clear_irq(denali, i, irq_status);
|
|
|
|
if (i != denali->active_bank)
|
|
continue;
|
|
|
|
denali->irq_status |= irq_status;
|
|
}
|
|
}
|
|
|
|
static void denali_reset_irq(struct denali_nand_info *denali)
|
|
{
|
|
denali->irq_status = 0;
|
|
denali->irq_mask = 0;
|
|
}
|
|
|
|
static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
|
|
uint32_t irq_mask)
|
|
{
|
|
unsigned long time_left = 1000000;
|
|
|
|
while (time_left) {
|
|
__denali_check_irq(denali);
|
|
|
|
if (irq_mask & denali->irq_status)
|
|
return denali->irq_status;
|
|
udelay(1);
|
|
time_left--;
|
|
}
|
|
|
|
if (!time_left) {
|
|
dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
|
|
irq_mask);
|
|
return 0;
|
|
}
|
|
|
|
return denali->irq_status;
|
|
}
|
|
|
|
static uint32_t denali_check_irq(struct denali_nand_info *denali)
|
|
{
|
|
__denali_check_irq(denali);
|
|
|
|
return denali->irq_status;
|
|
}
|
|
|
|
static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = denali->host_read(denali, addr);
|
|
}
|
|
|
|
static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
denali->host_write(denali, addr, buf[i]);
|
|
}
|
|
|
|
static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
|
|
uint16_t *buf16 = (uint16_t *)buf;
|
|
int i;
|
|
|
|
for (i = 0; i < len / 2; i++)
|
|
buf16[i] = denali->host_read(denali, addr);
|
|
}
|
|
|
|
static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
|
|
int len)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
|
|
const uint16_t *buf16 = (const uint16_t *)buf;
|
|
int i;
|
|
|
|
for (i = 0; i < len / 2; i++)
|
|
denali->host_write(denali, addr, buf16[i]);
|
|
}
|
|
|
|
static uint8_t denali_read_byte(struct mtd_info *mtd)
|
|
{
|
|
uint8_t byte;
|
|
|
|
denali_read_buf(mtd, &byte, 1);
|
|
|
|
return byte;
|
|
}
|
|
|
|
static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
|
|
{
|
|
denali_write_buf(mtd, &byte, 1);
|
|
}
|
|
|
|
static uint16_t denali_read_word(struct mtd_info *mtd)
|
|
{
|
|
uint16_t word;
|
|
|
|
denali_read_buf16(mtd, (uint8_t *)&word, 2);
|
|
|
|
return word;
|
|
}
|
|
|
|
static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t type;
|
|
|
|
if (ctrl & NAND_CLE)
|
|
type = DENALI_MAP11_CMD;
|
|
else if (ctrl & NAND_ALE)
|
|
type = DENALI_MAP11_ADDR;
|
|
else
|
|
return;
|
|
|
|
/*
|
|
* Some commands are followed by chip->dev_ready or chip->waitfunc.
|
|
* irq_status must be cleared here to catch the R/B# interrupt later.
|
|
*/
|
|
if (ctrl & NAND_CTRL_CHANGE)
|
|
denali_reset_irq(denali);
|
|
|
|
denali->host_write(denali, DENALI_BANK(denali) | type, dat);
|
|
}
|
|
|
|
static int denali_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
return !!(denali_check_irq(denali) & INTR__INT_ACT);
|
|
}
|
|
|
|
static int denali_check_erased_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip, uint8_t *buf,
|
|
unsigned long uncor_ecc_flags,
|
|
unsigned int max_bitflips)
|
|
{
|
|
uint8_t *ecc_code = chip->buffers->ecccode;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
int i, ret, stat;
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
if (!(uncor_ecc_flags & BIT(i)))
|
|
continue;
|
|
|
|
stat = nand_check_erased_ecc_chunk(buf, ecc_size,
|
|
ecc_code, ecc_bytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
|
|
buf += ecc_size;
|
|
ecc_code += ecc_bytes;
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int denali_hw_ecc_fixup(struct mtd_info *mtd,
|
|
struct denali_nand_info *denali,
|
|
unsigned long *uncor_ecc_flags)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int bank = denali->active_bank;
|
|
uint32_t ecc_cor;
|
|
unsigned int max_bitflips;
|
|
|
|
ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
|
|
ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
|
|
|
|
if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
|
|
/*
|
|
* This flag is set when uncorrectable error occurs at least in
|
|
* one ECC sector. We can not know "how many sectors", or
|
|
* "which sector(s)". We need erase-page check for all sectors.
|
|
*/
|
|
*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
|
|
return 0;
|
|
}
|
|
|
|
max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
|
|
|
|
/*
|
|
* The register holds the maximum of per-sector corrected bitflips.
|
|
* This is suitable for the return value of the ->read_page() callback.
|
|
* Unfortunately, we can not know the total number of corrected bits in
|
|
* the page. Increase the stats by max_bitflips. (compromised solution)
|
|
*/
|
|
mtd->ecc_stats.corrected += max_bitflips;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int denali_sw_ecc_fixup(struct mtd_info *mtd,
|
|
struct denali_nand_info *denali,
|
|
unsigned long *uncor_ecc_flags, uint8_t *buf)
|
|
{
|
|
unsigned int ecc_size = denali->nand.ecc.size;
|
|
unsigned int bitflips = 0;
|
|
unsigned int max_bitflips = 0;
|
|
uint32_t err_addr, err_cor_info;
|
|
unsigned int err_byte, err_sector, err_device;
|
|
uint8_t err_cor_value;
|
|
unsigned int prev_sector = 0;
|
|
uint32_t irq_status;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
do {
|
|
err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
|
|
err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
|
|
err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
|
|
|
|
err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
|
|
err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
|
|
err_cor_info);
|
|
err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
|
|
err_cor_info);
|
|
|
|
/* reset the bitflip counter when crossing ECC sector */
|
|
if (err_sector != prev_sector)
|
|
bitflips = 0;
|
|
|
|
if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
|
|
/*
|
|
* Check later if this is a real ECC error, or
|
|
* an erased sector.
|
|
*/
|
|
*uncor_ecc_flags |= BIT(err_sector);
|
|
} else if (err_byte < ecc_size) {
|
|
/*
|
|
* If err_byte is larger than ecc_size, means error
|
|
* happened in OOB, so we ignore it. It's no need for
|
|
* us to correct it err_device is represented the NAND
|
|
* error bits are happened in if there are more than
|
|
* one NAND connected.
|
|
*/
|
|
int offset;
|
|
unsigned int flips_in_byte;
|
|
|
|
offset = (err_sector * ecc_size + err_byte) *
|
|
denali->devs_per_cs + err_device;
|
|
|
|
/* correct the ECC error */
|
|
flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
|
|
buf[offset] ^= err_cor_value;
|
|
mtd->ecc_stats.corrected += flips_in_byte;
|
|
bitflips += flips_in_byte;
|
|
|
|
max_bitflips = max(max_bitflips, bitflips);
|
|
}
|
|
|
|
prev_sector = err_sector;
|
|
} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
|
|
|
|
/*
|
|
* Once handle all ECC errors, controller will trigger an
|
|
* ECC_TRANSACTION_DONE interrupt.
|
|
*/
|
|
irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
|
|
if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
|
|
return -EIO;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static void denali_setup_dma64(struct denali_nand_info *denali,
|
|
dma_addr_t dma_addr, int page, int write)
|
|
{
|
|
uint32_t mode;
|
|
const int page_count = 1;
|
|
|
|
mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
|
|
|
|
/* DMA is a three step process */
|
|
|
|
/*
|
|
* 1. setup transfer type, interrupt when complete,
|
|
* burst len = 64 bytes, the number of pages
|
|
*/
|
|
denali->host_write(denali, mode,
|
|
0x01002000 | (64 << 16) | (write << 8) | page_count);
|
|
|
|
/* 2. set memory low address */
|
|
denali->host_write(denali, mode, lower_32_bits(dma_addr));
|
|
|
|
/* 3. set memory high address */
|
|
denali->host_write(denali, mode, upper_32_bits(dma_addr));
|
|
}
|
|
|
|
static void denali_setup_dma32(struct denali_nand_info *denali,
|
|
dma_addr_t dma_addr, int page, int write)
|
|
{
|
|
uint32_t mode;
|
|
const int page_count = 1;
|
|
|
|
mode = DENALI_MAP10 | DENALI_BANK(denali);
|
|
|
|
/* DMA is a four step process */
|
|
|
|
/* 1. setup transfer type and # of pages */
|
|
denali->host_write(denali, mode | page,
|
|
0x2000 | (write << 8) | page_count);
|
|
|
|
/* 2. set memory high address bits 23:8 */
|
|
denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
|
|
|
|
/* 3. set memory low address bits 23:8 */
|
|
denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
|
|
|
|
/* 4. interrupt when complete, burst len = 64 bytes */
|
|
denali->host_write(denali, mode | 0x14000, 0x2400);
|
|
}
|
|
|
|
static int denali_pio_read(struct denali_nand_info *denali, void *buf,
|
|
size_t size, int page, int raw)
|
|
{
|
|
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
|
|
uint32_t *buf32 = (uint32_t *)buf;
|
|
uint32_t irq_status, ecc_err_mask;
|
|
int i;
|
|
|
|
if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
|
|
ecc_err_mask = INTR__ECC_UNCOR_ERR;
|
|
else
|
|
ecc_err_mask = INTR__ECC_ERR;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
for (i = 0; i < size / 4; i++)
|
|
*buf32++ = denali->host_read(denali, addr);
|
|
|
|
irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
|
|
if (!(irq_status & INTR__PAGE_XFER_INC))
|
|
return -EIO;
|
|
|
|
if (irq_status & INTR__ERASED_PAGE)
|
|
memset(buf, 0xff, size);
|
|
|
|
return irq_status & ecc_err_mask ? -EBADMSG : 0;
|
|
}
|
|
|
|
static int denali_pio_write(struct denali_nand_info *denali,
|
|
const void *buf, size_t size, int page, int raw)
|
|
{
|
|
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
|
|
const uint32_t *buf32 = (uint32_t *)buf;
|
|
uint32_t irq_status;
|
|
int i;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
for (i = 0; i < size / 4; i++)
|
|
denali->host_write(denali, addr, *buf32++);
|
|
|
|
irq_status = denali_wait_for_irq(denali,
|
|
INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
|
|
if (!(irq_status & INTR__PROGRAM_COMP))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
|
|
size_t size, int page, int raw, int write)
|
|
{
|
|
if (write)
|
|
return denali_pio_write(denali, buf, size, page, raw);
|
|
else
|
|
return denali_pio_read(denali, buf, size, page, raw);
|
|
}
|
|
|
|
static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
|
|
size_t size, int page, int raw, int write)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
uint32_t irq_mask, irq_status, ecc_err_mask;
|
|
enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
|
|
int ret = 0;
|
|
|
|
dma_addr = dma_map_single(buf, size, dir);
|
|
if (dma_mapping_error(denali->dev, dma_addr)) {
|
|
dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
|
|
return denali_pio_xfer(denali, buf, size, page, raw, write);
|
|
}
|
|
|
|
if (write) {
|
|
/*
|
|
* INTR__PROGRAM_COMP is never asserted for the DMA transfer.
|
|
* We can use INTR__DMA_CMD_COMP instead. This flag is asserted
|
|
* when the page program is completed.
|
|
*/
|
|
irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
|
|
ecc_err_mask = 0;
|
|
} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
|
|
irq_mask = INTR__DMA_CMD_COMP;
|
|
ecc_err_mask = INTR__ECC_UNCOR_ERR;
|
|
} else {
|
|
irq_mask = INTR__DMA_CMD_COMP;
|
|
ecc_err_mask = INTR__ECC_ERR;
|
|
}
|
|
|
|
iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
|
|
/*
|
|
* The ->setup_dma() hook kicks DMA by using the data/command
|
|
* interface, which belongs to a different AXI port from the
|
|
* register interface. Read back the register to avoid a race.
|
|
*/
|
|
ioread32(denali->reg + DMA_ENABLE);
|
|
|
|
denali_reset_irq(denali);
|
|
denali->setup_dma(denali, dma_addr, page, write);
|
|
|
|
irq_status = denali_wait_for_irq(denali, irq_mask);
|
|
if (!(irq_status & INTR__DMA_CMD_COMP))
|
|
ret = -EIO;
|
|
else if (irq_status & ecc_err_mask)
|
|
ret = -EBADMSG;
|
|
|
|
iowrite32(0, denali->reg + DMA_ENABLE);
|
|
|
|
dma_unmap_single(dma_addr, size, dir);
|
|
|
|
if (irq_status & INTR__ERASED_PAGE)
|
|
memset(buf, 0xff, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
|
|
size_t size, int page, int raw, int write)
|
|
{
|
|
iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
|
|
iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
|
|
denali->reg + TRANSFER_SPARE_REG);
|
|
|
|
if (denali->dma_avail)
|
|
return denali_dma_xfer(denali, buf, size, page, raw, write);
|
|
else
|
|
return denali_pio_xfer(denali, buf, size, page, raw, write);
|
|
}
|
|
|
|
static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page, int write)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
|
|
unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
|
|
int writesize = mtd->writesize;
|
|
int oobsize = mtd->oobsize;
|
|
uint8_t *bufpoi = chip->oob_poi;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
int oob_skip = denali->oob_skip_bytes;
|
|
size_t size = writesize + oobsize;
|
|
int i, pos, len;
|
|
|
|
/* BBM at the beginning of the OOB area */
|
|
chip->cmdfunc(mtd, start_cmd, writesize, page);
|
|
if (write)
|
|
chip->write_buf(mtd, bufpoi, oob_skip);
|
|
else
|
|
chip->read_buf(mtd, bufpoi, oob_skip);
|
|
bufpoi += oob_skip;
|
|
|
|
/* OOB ECC */
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = ecc_size + i * (ecc_size + ecc_bytes);
|
|
len = ecc_bytes;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
chip->cmdfunc(mtd, rnd_cmd, pos, -1);
|
|
if (write)
|
|
chip->write_buf(mtd, bufpoi, len);
|
|
else
|
|
chip->read_buf(mtd, bufpoi, len);
|
|
bufpoi += len;
|
|
if (len < ecc_bytes) {
|
|
len = ecc_bytes - len;
|
|
chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
|
|
if (write)
|
|
chip->write_buf(mtd, bufpoi, len);
|
|
else
|
|
chip->read_buf(mtd, bufpoi, len);
|
|
bufpoi += len;
|
|
}
|
|
}
|
|
|
|
/* OOB free */
|
|
len = oobsize - (bufpoi - chip->oob_poi);
|
|
chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
|
|
if (write)
|
|
chip->write_buf(mtd, bufpoi, len);
|
|
else
|
|
chip->read_buf(mtd, bufpoi, len);
|
|
}
|
|
|
|
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
int writesize = mtd->writesize;
|
|
int oobsize = mtd->oobsize;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
void *tmp_buf = denali->buf;
|
|
int oob_skip = denali->oob_skip_bytes;
|
|
size_t size = writesize + oobsize;
|
|
int ret, i, pos, len;
|
|
|
|
ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Arrange the buffer for syndrome payload/ecc layout */
|
|
if (buf) {
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = i * (ecc_size + ecc_bytes);
|
|
len = ecc_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(buf, tmp_buf + pos, len);
|
|
buf += len;
|
|
if (len < ecc_size) {
|
|
len = ecc_size - len;
|
|
memcpy(buf, tmp_buf + writesize + oob_skip,
|
|
len);
|
|
buf += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (oob_required) {
|
|
uint8_t *oob = chip->oob_poi;
|
|
|
|
/* BBM at the beginning of the OOB area */
|
|
memcpy(oob, tmp_buf + writesize, oob_skip);
|
|
oob += oob_skip;
|
|
|
|
/* OOB ECC */
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = ecc_size + i * (ecc_size + ecc_bytes);
|
|
len = ecc_bytes;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(oob, tmp_buf + pos, len);
|
|
oob += len;
|
|
if (len < ecc_bytes) {
|
|
len = ecc_bytes - len;
|
|
memcpy(oob, tmp_buf + writesize + oob_skip,
|
|
len);
|
|
oob += len;
|
|
}
|
|
}
|
|
|
|
/* OOB free */
|
|
len = oobsize - (oob - chip->oob_poi);
|
|
memcpy(oob, tmp_buf + size - len, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
denali_oob_xfer(mtd, chip, page, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
int status;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
denali_oob_xfer(mtd, chip, page, 1);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
|
|
return status & NAND_STATUS_FAIL ? -EIO : 0;
|
|
}
|
|
|
|
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
unsigned long uncor_ecc_flags = 0;
|
|
int stat = 0;
|
|
int ret;
|
|
|
|
ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
|
|
if (ret && ret != -EBADMSG)
|
|
return ret;
|
|
|
|
if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
|
|
stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
|
|
else if (ret == -EBADMSG)
|
|
stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
|
|
|
|
if (stat < 0)
|
|
return stat;
|
|
|
|
if (uncor_ecc_flags) {
|
|
ret = denali_read_oob(mtd, chip, page);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stat = denali_check_erased_page(mtd, chip, buf,
|
|
uncor_ecc_flags, stat);
|
|
}
|
|
|
|
return stat;
|
|
}
|
|
|
|
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
int writesize = mtd->writesize;
|
|
int oobsize = mtd->oobsize;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
void *tmp_buf = denali->buf;
|
|
int oob_skip = denali->oob_skip_bytes;
|
|
size_t size = writesize + oobsize;
|
|
int i, pos, len;
|
|
|
|
/*
|
|
* Fill the buffer with 0xff first except the full page transfer.
|
|
* This simplifies the logic.
|
|
*/
|
|
if (!buf || !oob_required)
|
|
memset(tmp_buf, 0xff, size);
|
|
|
|
/* Arrange the buffer for syndrome payload/ecc layout */
|
|
if (buf) {
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = i * (ecc_size + ecc_bytes);
|
|
len = ecc_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(tmp_buf + pos, buf, len);
|
|
buf += len;
|
|
if (len < ecc_size) {
|
|
len = ecc_size - len;
|
|
memcpy(tmp_buf + writesize + oob_skip, buf,
|
|
len);
|
|
buf += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (oob_required) {
|
|
const uint8_t *oob = chip->oob_poi;
|
|
|
|
/* BBM at the beginning of the OOB area */
|
|
memcpy(tmp_buf + writesize, oob, oob_skip);
|
|
oob += oob_skip;
|
|
|
|
/* OOB ECC */
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = ecc_size + i * (ecc_size + ecc_bytes);
|
|
len = ecc_bytes;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(tmp_buf + pos, oob, len);
|
|
oob += len;
|
|
if (len < ecc_bytes) {
|
|
len = ecc_bytes - len;
|
|
memcpy(tmp_buf + writesize + oob_skip, oob,
|
|
len);
|
|
oob += len;
|
|
}
|
|
}
|
|
|
|
/* OOB free */
|
|
len = oobsize - (oob - chip->oob_poi);
|
|
memcpy(tmp_buf + size - len, oob, len);
|
|
}
|
|
|
|
return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
|
|
}
|
|
|
|
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
return denali_data_xfer(denali, (void *)buf, mtd->writesize,
|
|
page, 0, 1);
|
|
}
|
|
|
|
static void denali_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
denali->active_bank = chip;
|
|
}
|
|
|
|
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_status;
|
|
|
|
/* R/B# pin transitioned from low to high? */
|
|
irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
|
|
|
|
return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
|
|
}
|
|
|
|
static int denali_erase(struct mtd_info *mtd, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_status;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
|
|
DENALI_ERASE);
|
|
|
|
/* wait for erase to complete or failure to occur */
|
|
irq_status = denali_wait_for_irq(denali,
|
|
INTR__ERASE_COMP | INTR__ERASE_FAIL);
|
|
|
|
return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
|
|
}
|
|
|
|
static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
const struct nand_sdr_timings *timings;
|
|
unsigned long t_x, mult_x;
|
|
int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
|
|
int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
|
|
int addr_2_data_mask;
|
|
uint32_t tmp;
|
|
|
|
timings = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(timings))
|
|
return PTR_ERR(timings);
|
|
|
|
/* clk_x period in picoseconds */
|
|
t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
|
|
if (!t_x)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The bus interface clock, clk_x, is phase aligned with the core clock.
|
|
* The clk_x is an integral multiple N of the core clk. The value N is
|
|
* configured at IP delivery time, and its available value is 4, 5, 6.
|
|
*/
|
|
mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
|
|
if (mult_x < 4 || mult_x > 6)
|
|
return -EINVAL;
|
|
|
|
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
/* tREA -> ACC_CLKS */
|
|
acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
|
|
acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + ACC_CLKS);
|
|
tmp &= ~ACC_CLKS__VALUE;
|
|
tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
|
|
iowrite32(tmp, denali->reg + ACC_CLKS);
|
|
|
|
/* tRWH -> RE_2_WE */
|
|
re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
|
|
re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + RE_2_WE);
|
|
tmp &= ~RE_2_WE__VALUE;
|
|
tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
|
|
iowrite32(tmp, denali->reg + RE_2_WE);
|
|
|
|
/* tRHZ -> RE_2_RE */
|
|
re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
|
|
re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + RE_2_RE);
|
|
tmp &= ~RE_2_RE__VALUE;
|
|
tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
|
|
iowrite32(tmp, denali->reg + RE_2_RE);
|
|
|
|
/*
|
|
* tCCS, tWHR -> WE_2_RE
|
|
*
|
|
* With WE_2_RE properly set, the Denali controller automatically takes
|
|
* care of the delay; the driver need not set NAND_WAIT_TCCS.
|
|
*/
|
|
we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
|
|
we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
|
|
|
|
tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
|
|
tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
|
|
tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
|
|
iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
|
|
|
|
/* tADL -> ADDR_2_DATA */
|
|
|
|
/* for older versions, ADDR_2_DATA is only 6 bit wide */
|
|
addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
|
|
if (denali->revision < 0x0501)
|
|
addr_2_data_mask >>= 1;
|
|
|
|
addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
|
|
addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
|
|
|
|
tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
|
|
tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
|
|
tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
|
|
iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
|
|
|
|
/* tREH, tWH -> RDWR_EN_HI_CNT */
|
|
rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
|
|
t_x);
|
|
rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
|
|
tmp &= ~RDWR_EN_HI_CNT__VALUE;
|
|
tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
|
|
iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
|
|
|
|
/* tRP, tWP -> RDWR_EN_LO_CNT */
|
|
rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
|
|
rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
|
|
t_x);
|
|
rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
|
|
rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
|
|
rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
|
|
tmp &= ~RDWR_EN_LO_CNT__VALUE;
|
|
tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
|
|
iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
|
|
|
|
/* tCS, tCEA -> CS_SETUP_CNT */
|
|
cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
|
|
(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
|
|
0);
|
|
cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
|
|
|
|
tmp = ioread32(denali->reg + CS_SETUP_CNT);
|
|
tmp &= ~CS_SETUP_CNT__VALUE;
|
|
tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
|
|
iowrite32(tmp, denali->reg + CS_SETUP_CNT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void denali_reset_banks(struct denali_nand_info *denali)
|
|
{
|
|
u32 irq_status;
|
|
int i;
|
|
|
|
for (i = 0; i < denali->max_banks; i++) {
|
|
denali->active_bank = i;
|
|
|
|
denali_reset_irq(denali);
|
|
|
|
iowrite32(DEVICE_RESET__BANK(i),
|
|
denali->reg + DEVICE_RESET);
|
|
|
|
irq_status = denali_wait_for_irq(denali,
|
|
INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
|
|
if (!(irq_status & INTR__INT_ACT))
|
|
break;
|
|
}
|
|
|
|
dev_dbg(denali->dev, "%d chips connected\n", i);
|
|
denali->max_banks = i;
|
|
}
|
|
|
|
static void denali_hw_init(struct denali_nand_info *denali)
|
|
{
|
|
/*
|
|
* The REVISION register may not be reliable. Platforms are allowed to
|
|
* override it.
|
|
*/
|
|
if (!denali->revision)
|
|
denali->revision = swab16(ioread32(denali->reg + REVISION));
|
|
|
|
/*
|
|
* Set how many bytes should be skipped before writing data in OOB.
|
|
* If a platform requests a non-zero value, set it to the register.
|
|
* Otherwise, read the value out, expecting it has already been set up
|
|
* by firmware.
|
|
*/
|
|
if (denali->oob_skip_bytes)
|
|
iowrite32(denali->oob_skip_bytes,
|
|
denali->reg + SPARE_AREA_SKIP_BYTES);
|
|
else
|
|
denali->oob_skip_bytes = ioread32(denali->reg +
|
|
SPARE_AREA_SKIP_BYTES);
|
|
|
|
denali_detect_max_banks(denali);
|
|
iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
|
|
iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
|
|
|
|
iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
|
|
iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT);
|
|
}
|
|
|
|
int denali_calc_ecc_bytes(int step_size, int strength)
|
|
{
|
|
/* BCH code. Denali requires ecc.bytes to be multiple of 2 */
|
|
return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
|
|
}
|
|
EXPORT_SYMBOL(denali_calc_ecc_bytes);
|
|
|
|
static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
|
|
struct denali_nand_info *denali)
|
|
{
|
|
int oobavail = mtd->oobsize - denali->oob_skip_bytes;
|
|
int ret;
|
|
|
|
/*
|
|
* If .size and .strength are already set (usually by DT),
|
|
* check if they are supported by this controller.
|
|
*/
|
|
if (chip->ecc.size && chip->ecc.strength)
|
|
return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
|
|
|
|
/*
|
|
* We want .size and .strength closest to the chip's requirement
|
|
* unless NAND_ECC_MAXIMIZE is requested.
|
|
*/
|
|
if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
|
|
ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
|
|
if (!ret)
|
|
return 0;
|
|
}
|
|
|
|
/* Max ECC strength is the last thing we can do */
|
|
return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
|
|
}
|
|
|
|
static struct nand_ecclayout nand_oob;
|
|
|
|
static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = denali->oob_skip_bytes;
|
|
oobregion->length = chip->ecc.total;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
|
|
.ecc = denali_ooblayout_ecc,
|
|
.rfree = denali_ooblayout_free,
|
|
};
|
|
|
|
static int denali_multidev_fixup(struct denali_nand_info *denali)
|
|
{
|
|
struct nand_chip *chip = &denali->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
/*
|
|
* Support for multi device:
|
|
* When the IP configuration is x16 capable and two x8 chips are
|
|
* connected in parallel, DEVICES_CONNECTED should be set to 2.
|
|
* In this case, the core framework knows nothing about this fact,
|
|
* so we should tell it the _logical_ pagesize and anything necessary.
|
|
*/
|
|
denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
|
|
|
|
/*
|
|
* On some SoCs, DEVICES_CONNECTED is not auto-detected.
|
|
* For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
|
|
*/
|
|
if (denali->devs_per_cs == 0) {
|
|
denali->devs_per_cs = 1;
|
|
iowrite32(1, denali->reg + DEVICES_CONNECTED);
|
|
}
|
|
|
|
if (denali->devs_per_cs == 1)
|
|
return 0;
|
|
|
|
if (denali->devs_per_cs != 2) {
|
|
dev_err(denali->dev, "unsupported number of devices %d\n",
|
|
denali->devs_per_cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* 2 chips in parallel */
|
|
mtd->size <<= 1;
|
|
mtd->erasesize <<= 1;
|
|
mtd->writesize <<= 1;
|
|
mtd->oobsize <<= 1;
|
|
chip->chipsize <<= 1;
|
|
chip->page_shift += 1;
|
|
chip->phys_erase_shift += 1;
|
|
chip->bbt_erase_shift += 1;
|
|
chip->chip_shift += 1;
|
|
chip->pagemask <<= 1;
|
|
chip->ecc.size <<= 1;
|
|
chip->ecc.bytes <<= 1;
|
|
chip->ecc.strength <<= 1;
|
|
denali->oob_skip_bytes <<= 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int denali_wait_reset_complete(struct denali_nand_info *denali)
|
|
{
|
|
u32 irq_status;
|
|
|
|
irq_status = denali_wait_for_irq(denali, INTR__RST_COMP);
|
|
if (!(irq_status & INTR__RST_COMP))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int denali_init(struct denali_nand_info *denali)
|
|
{
|
|
struct nand_chip *chip = &denali->nand;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u32 features = ioread32(denali->reg + FEATURES);
|
|
int ret;
|
|
|
|
denali_hw_init(denali);
|
|
|
|
denali_clear_irq_all(denali);
|
|
|
|
denali_reset_banks(denali);
|
|
|
|
denali->active_bank = DENALI_INVALID_BANK;
|
|
|
|
chip->flash_node = dev_ofnode(denali->dev);
|
|
/* Fallback to the default name if DT did not give "label" property */
|
|
if (!mtd->name)
|
|
mtd->name = "denali-nand";
|
|
|
|
chip->select_chip = denali_select_chip;
|
|
chip->read_byte = denali_read_byte;
|
|
chip->write_byte = denali_write_byte;
|
|
chip->read_word = denali_read_word;
|
|
chip->cmd_ctrl = denali_cmd_ctrl;
|
|
chip->dev_ready = denali_dev_ready;
|
|
chip->waitfunc = denali_waitfunc;
|
|
|
|
if (features & FEATURES__INDEX_ADDR) {
|
|
denali->host_read = denali_indexed_read;
|
|
denali->host_write = denali_indexed_write;
|
|
} else {
|
|
denali->host_read = denali_direct_read;
|
|
denali->host_write = denali_direct_write;
|
|
}
|
|
|
|
/* clk rate info is needed for setup_data_interface */
|
|
if (denali->clk_x_rate)
|
|
chip->setup_data_interface = denali_setup_data_interface;
|
|
|
|
ret = nand_scan_ident(mtd, denali->max_banks, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
|
|
denali->dma_avail = 1;
|
|
|
|
if (denali->dma_avail) {
|
|
chip->buf_align = ARCH_DMA_MINALIGN;
|
|
if (denali->caps & DENALI_CAP_DMA_64BIT)
|
|
denali->setup_dma = denali_setup_dma64;
|
|
else
|
|
denali->setup_dma = denali_setup_dma32;
|
|
} else {
|
|
chip->buf_align = 4;
|
|
}
|
|
|
|
chip->options |= NAND_USE_BOUNCE_BUFFER;
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
|
|
/* no subpage writes on denali */
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
ret = denali_ecc_setup(mtd, chip, denali);
|
|
if (ret) {
|
|
dev_err(denali->dev, "Failed to setup ECC settings.\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(denali->dev,
|
|
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
|
|
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
|
|
|
|
iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
|
|
FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
|
|
denali->reg + ECC_CORRECTION);
|
|
iowrite32(mtd->erasesize / mtd->writesize,
|
|
denali->reg + PAGES_PER_BLOCK);
|
|
iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
|
|
denali->reg + DEVICE_WIDTH);
|
|
iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
|
|
denali->reg + TWO_ROW_ADDR_CYCLES);
|
|
iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
|
|
iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
|
|
|
|
iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
|
|
iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
|
|
/* chip->ecc.steps is set by nand_scan_tail(); not available here */
|
|
iowrite32(mtd->writesize / chip->ecc.size,
|
|
denali->reg + CFG_NUM_DATA_BLOCKS);
|
|
|
|
mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
|
|
|
|
nand_oob.eccbytes = denali->nand.ecc.bytes;
|
|
denali->nand.ecc.layout = &nand_oob;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
chip->read_buf = denali_read_buf16;
|
|
chip->write_buf = denali_write_buf16;
|
|
} else {
|
|
chip->read_buf = denali_read_buf;
|
|
chip->write_buf = denali_write_buf;
|
|
}
|
|
chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
|
|
chip->ecc.read_page = denali_read_page;
|
|
chip->ecc.read_page_raw = denali_read_page_raw;
|
|
chip->ecc.write_page = denali_write_page;
|
|
chip->ecc.write_page_raw = denali_write_page_raw;
|
|
chip->ecc.read_oob = denali_read_oob;
|
|
chip->ecc.write_oob = denali_write_oob;
|
|
chip->erase = denali_erase;
|
|
|
|
ret = denali_multidev_fixup(denali);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* This buffer is DMA-mapped by denali_{read,write}_page_raw. Do not
|
|
* use devm_kmalloc() because the memory allocated by devm_ does not
|
|
* guarantee DMA-safe alignment.
|
|
*/
|
|
denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
|
|
if (!denali->buf)
|
|
return -ENOMEM;
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret)
|
|
goto free_buf;
|
|
|
|
ret = nand_register(0, mtd);
|
|
if (ret) {
|
|
dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
|
|
goto free_buf;
|
|
}
|
|
return 0;
|
|
|
|
free_buf:
|
|
kfree(denali->buf);
|
|
|
|
return ret;
|
|
}
|