u-boot/cpu/mpc8xx/speed.c
wdenk a2d18bb7d3 * Make sure to use a bus clock divider of 2 only when running TQM8xxM
modules at CPU clock frequencies above 66 MHz.

* Optimize flash programming speed for LWMON (by another 100% :-)
2004-02-11 21:35:18 +00:00

350 lines
9.4 KiB
C

/*
* (C) Copyright 2000-2004
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <mpc8xx.h>
#include <asm/processor.h>
#if !defined(CONFIG_TQM866M) || defined(CFG_MEASURE_CPUCLK)
#define PITC_SHIFT 16
#define PITR_SHIFT 16
/* pitc values to time for 58/8192 seconds (about 70.8 milliseconds) */
#define SPEED_PIT_COUNTS 58
#define SPEED_PITC ((SPEED_PIT_COUNTS - 1) << PITC_SHIFT)
#define SPEED_PITC_INIT ((SPEED_PIT_COUNTS + 1) << PITC_SHIFT)
/* Access functions for the Machine State Register */
static __inline__ unsigned long get_msr(void)
{
unsigned long msr;
asm volatile("mfmsr %0" : "=r" (msr) :);
return msr;
}
static __inline__ void set_msr(unsigned long msr)
{
asm volatile("mtmsr %0" : : "r" (msr));
}
/* ------------------------------------------------------------------------- */
/*
* Measure CPU clock speed (core clock GCLK1, GCLK2),
* also determine bus clock speed (checking bus divider factor)
*
* (Approx. GCLK frequency in Hz)
*
* Initializes timer 2 and PIT, but disables them before return.
* [Use timer 2, because MPC823 CPUs mask 0.x do not have timers 3 and 4]
*
* When measuring the CPU clock against the PIT, we count cpu clocks
* for 58/8192 seconds with a prescale divide by 177 for the cpu clock.
* These strange values for the timing interval and prescaling are used
* because the formula for the CPU clock is:
*
* CPU clock = count * (177 * (8192 / 58))
*
* = count * 24999.7241
*
* which is very close to
*
* = count * 25000
*
* Since the count gives the CPU clock divided by 25000, we can get
* the CPU clock rounded to the nearest 0.1 MHz by
*
* CPU clock = ((count + 2) / 4) * 100000;
*
* The rounding is important since the measurement is sometimes going
* to be high or low by 0.025 MHz, depending on exactly how the clocks
* and counters interact. By rounding we get the exact answer for any
* CPU clock that is an even multiple of 0.1 MHz.
*/
unsigned long measure_gclk(void)
{
volatile immap_t *immr = (immap_t *) CFG_IMMR;
volatile cpmtimer8xx_t *timerp = &immr->im_cpmtimer;
ulong timer2_val;
ulong msr_val;
#ifdef CONFIG_MPC866_et_al
/* dont use OSCM, only use EXTCLK/512 */
immr->im_clkrst.car_sccr |= SCCR_RTSEL | SCCR_RTDIV;
#else
immr->im_clkrst.car_sccr &= ~(SCCR_RTSEL | SCCR_RTDIV);
#endif
/* Reset + Stop Timer 2, no cascading
*/
timerp->cpmt_tgcr &= ~(TGCR_CAS2 | TGCR_RST2);
/* Keep stopped, halt in debug mode
*/
timerp->cpmt_tgcr |= (TGCR_FRZ2 | TGCR_STP2);
/* Timer 2 setup:
* Output ref. interrupt disable, int. clock
* Prescale by 177. Note that prescaler divides by value + 1
* so we must subtract 1 here.
*/
timerp->cpmt_tmr2 = ((177 - 1) << TMR_PS_SHIFT) | TMR_ICLK_IN_GEN;
timerp->cpmt_tcn2 = 0; /* reset state */
timerp->cpmt_tgcr |= TGCR_RST2; /* enable timer 2 */
/*
* PIT setup:
*
* We want to time for SPEED_PITC_COUNTS counts (of 8192 Hz),
* so the count value would be SPEED_PITC_COUNTS - 1.
* But there would be an uncertainty in the start time of 1/4
* count since when we enable the PIT the count is not
* synchronized to the 32768 Hz oscillator. The trick here is
* to start the count higher and wait until the PIT count
* changes to the required value before starting timer 2.
*
* One count high should be enough, but occasionally the start
* is off by 1 or 2 counts of 32768 Hz. With the start value
* set two counts high it seems very reliable.
*/
immr->im_sitk.sitk_pitck = KAPWR_KEY; /* PIT initialization */
immr->im_sit.sit_pitc = SPEED_PITC_INIT;
immr->im_sitk.sitk_piscrk = KAPWR_KEY;
immr->im_sit.sit_piscr = CFG_PISCR;
/*
* Start measurement - disable interrupts, just in case
*/
msr_val = get_msr ();
set_msr (msr_val & ~MSR_EE);
immr->im_sit.sit_piscr |= PISCR_PTE;
/* spin until get exact count when we want to start */
while (immr->im_sit.sit_pitr > SPEED_PITC);
timerp->cpmt_tgcr &= ~TGCR_STP2; /* Start Timer 2 */
while ((immr->im_sit.sit_piscr & PISCR_PS) == 0);
timerp->cpmt_tgcr |= TGCR_STP2; /* Stop Timer 2 */
/* re-enable external interrupts if they were on */
set_msr (msr_val);
/* Disable timer and PIT
*/
timer2_val = timerp->cpmt_tcn2; /* save before reset timer */
timerp->cpmt_tgcr &= ~(TGCR_RST2 | TGCR_FRZ2 | TGCR_STP2);
immr->im_sit.sit_piscr &= ~PISCR_PTE;
#if defined(CONFIG_MPC866_et_al)
/* not using OSCM, using XIN, so scale appropriately */
return (((timer2_val + 2) / 4) * (CFG_8XX_XIN/512))/8192 * 100000L;
#else
return ((timer2_val + 2) / 4) * 100000L; /* convert to Hz */
#endif
}
#endif
#if !defined(CONFIG_TQM866M)
/*
* get_clocks() fills in gd->cpu_clock depending on CONFIG_8xx_GCLK_FREQ
* or (if it is not defined) measure_gclk() (which uses the ref clock)
* from above.
*/
int get_clocks (void)
{
DECLARE_GLOBAL_DATA_PTR;
volatile immap_t *immr = (immap_t *) CFG_IMMR;
#ifndef CONFIG_8xx_GCLK_FREQ
gd->cpu_clk = measure_gclk();
#else /* CONFIG_8xx_GCLK_FREQ */
/*
* If for some reason measuring the gclk frequency won't
* work, we return the hardwired value.
* (For example, the cogent CMA286-60 CPU module has no
* separate oscillator for PITRTCLK)
*/
gd->cpu_clk = CONFIG_8xx_GCLK_FREQ;
#endif /* CONFIG_8xx_GCLK_FREQ */
if ((immr->im_clkrst.car_sccr & SCCR_EBDF11) == 0) {
/* No Bus Divider active */
gd->bus_clk = gd->cpu_clk;
} else {
/* The MPC8xx has only one BDF: half clock speed */
gd->bus_clk = gd->cpu_clk / 2;
}
return (0);
}
#else /* CONFIG_MPC866_et_al */
static long init_pll_866 (long clk);
/* This function sets up PLL (init_pll_866() is called) and
* fills gd->cpu_clk and gd->bus_clk according to the environment
* variable 'cpuclk' or to CFG_866_CPUCLK_DEFAULT (if 'cpuclk'
* contains invalid value).
* This functions requires an MPC866 series CPU.
*/
int get_clocks_866 (void)
{
DECLARE_GLOBAL_DATA_PTR;
volatile immap_t *immr = (immap_t *) CFG_IMMR;
char tmp[64];
long cpuclk = 0;
long sccr_reg;
if (getenv_r ("cpuclk", tmp, sizeof (tmp)) > 0)
cpuclk = simple_strtoul (tmp, NULL, 10) * 1000000;
if ((CFG_866_CPUCLK_MIN > cpuclk) || (CFG_866_CPUCLK_MAX < cpuclk))
cpuclk = CFG_866_CPUCLK_DEFAULT;
gd->cpu_clk = init_pll_866 (cpuclk);
#if defined(CFG_MEASURE_CPUCLK)
gd->cpu_clk = measure_gclk ();
#endif
/* if cpu clock <= 66 MHz then set bus division factor to 1,
* otherwise set it to 2
*/
sccr_reg = immr->im_clkrst.car_sccr;
sccr_reg &= ~SCCR_EBDF11;
if (gd->cpu_clk <= 66000000) {
sccr_reg |= SCCR_EBDF00; /* bus division factor = 1 */
gd->bus_clk = gd->cpu_clk;
} else {
sccr_reg |= SCCR_EBDF01; /* bus division factor = 2 */
gd->bus_clk = gd->cpu_clk / 2;
}
immr->im_clkrst.car_sccr = sccr_reg;
return (0);
}
/* Adjust sdram refresh rate to actual CPU clock.
*/
int sdram_adjust_866 (void)
{
DECLARE_GLOBAL_DATA_PTR;
volatile immap_t *immr = (immap_t *) CFG_IMMR;
long mamr;
mamr = immr->im_memctl.memc_mamr;
mamr &= ~MAMR_PTA_MSK;
mamr |= ((gd->cpu_clk / CFG_866_PTA_PER_CLK) << MAMR_PTA_SHIFT);
immr->im_memctl.memc_mamr = mamr;
return (0);
}
/* Configure PLL for MPC866/859 CPU series
* PLL multiplication factor is set to the value nearest to the desired clk,
* assuming a oscclk of 10 MHz.
*/
static long init_pll_866 (long clk)
{
extern void plprcr_write_866 (long);
volatile immap_t *immr = (immap_t *) CFG_IMMR;
long n, plprcr;
char mfi, mfn, mfd, s, pdf;
long step_mfi, step_mfn;
if (clk < 20000000) {
clk *= 2;
pdf = 1;
} else {
pdf = 0;
}
if (clk < 40000000) {
s = 2;
step_mfi = CFG_866_OSCCLK / 4;
mfd = 7;
step_mfn = CFG_866_OSCCLK / 30;
} else if (clk < 80000000) {
s = 1;
step_mfi = CFG_866_OSCCLK / 2;
mfd = 14;
step_mfn = CFG_866_OSCCLK / 30;
} else {
s = 0;
step_mfi = CFG_866_OSCCLK;
mfd = 29;
step_mfn = CFG_866_OSCCLK / 30;
}
/* Calculate integer part of multiplication factor
*/
n = clk / step_mfi;
mfi = (char)n;
/* Calculate numerator of fractional part of multiplication factor
*/
n = clk - (n * step_mfi);
mfn = (char)(n / step_mfn);
/* Calculate effective clk
*/
n = ((mfi * step_mfi) + (mfn * step_mfn)) / (pdf + 1);
immr->im_clkrstk.cark_plprcrk = KAPWR_KEY;
plprcr = (immr->im_clkrst.car_plprcr & ~(PLPRCR_MFN_MSK
| PLPRCR_MFD_MSK | PLPRCR_S_MSK
| PLPRCR_MFI_MSK | PLPRCR_DBRMO
| PLPRCR_PDF_MSK))
| (mfn << PLPRCR_MFN_SHIFT)
| (mfd << PLPRCR_MFD_SHIFT)
| (s << PLPRCR_S_SHIFT)
| (mfi << PLPRCR_MFI_SHIFT)
| (pdf << PLPRCR_PDF_SHIFT);
if( (mfn > 0) && ((mfd / mfn) > 10) )
plprcr |= PLPRCR_DBRMO;
plprcr_write_866 (plprcr); /* set value using SIU4/9 workaround */
immr->im_clkrstk.cark_plprcrk = 0x00000000;
return (n);
}
#endif /* CONFIG_MPC866_et_al */
/* ------------------------------------------------------------------------- */