u-boot/arch/arm/mach-tegra/tegra210/xusb-padctl.c
Simon Glass be7890927a dm: tegra: Convert USB setup to livetree
Adjust this code to support a live device tree. This should be implemented
as a PHY driver but that is left as an exercise for the maintainer.

Signed-off-by: Simon Glass <sjg@chromium.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
2017-07-28 12:02:47 -06:00

457 lines
14 KiB
C

/*
* Copyright (c) 2014-2015, NVIDIA CORPORATION. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0
*/
#define pr_fmt(fmt) "tegra-xusb-padctl: " fmt
#include <common.h>
#include <errno.h>
#include <dm/of_access.h>
#include <dm/ofnode.h>
#include "../xusb-padctl-common.h"
#include <asm/arch/clock.h>
#include <dt-bindings/pinctrl/pinctrl-tegra-xusb.h>
DECLARE_GLOBAL_DATA_PTR;
enum tegra210_function {
TEGRA210_FUNC_SNPS,
TEGRA210_FUNC_XUSB,
TEGRA210_FUNC_UART,
TEGRA210_FUNC_PCIE_X1,
TEGRA210_FUNC_PCIE_X4,
TEGRA210_FUNC_USB3,
TEGRA210_FUNC_SATA,
TEGRA210_FUNC_RSVD,
};
static const char *const tegra210_functions[] = {
"snps",
"xusb",
"uart",
"pcie-x1",
"pcie-x4",
"usb3",
"sata",
"rsvd",
};
static const unsigned int tegra210_otg_functions[] = {
TEGRA210_FUNC_SNPS,
TEGRA210_FUNC_XUSB,
TEGRA210_FUNC_UART,
TEGRA210_FUNC_RSVD,
};
static const unsigned int tegra210_usb_functions[] = {
TEGRA210_FUNC_SNPS,
TEGRA210_FUNC_XUSB,
};
static const unsigned int tegra210_pci_functions[] = {
TEGRA210_FUNC_PCIE_X1,
TEGRA210_FUNC_USB3,
TEGRA210_FUNC_SATA,
TEGRA210_FUNC_PCIE_X4,
};
#define TEGRA210_LANE(_name, _offset, _shift, _mask, _iddq, _funcs) \
{ \
.name = _name, \
.offset = _offset, \
.shift = _shift, \
.mask = _mask, \
.iddq = _iddq, \
.num_funcs = ARRAY_SIZE(tegra210_##_funcs##_functions), \
.funcs = tegra210_##_funcs##_functions, \
}
static const struct tegra_xusb_padctl_lane tegra210_lanes[] = {
TEGRA210_LANE("otg-0", 0x004, 0, 0x3, 0, otg),
TEGRA210_LANE("otg-1", 0x004, 2, 0x3, 0, otg),
TEGRA210_LANE("otg-2", 0x004, 4, 0x3, 0, otg),
TEGRA210_LANE("otg-3", 0x004, 6, 0x3, 0, otg),
TEGRA210_LANE("usb2-bias", 0x004, 18, 0x3, 0, otg),
TEGRA210_LANE("hsic-0", 0x004, 14, 0x1, 0, usb),
TEGRA210_LANE("hsic-1", 0x004, 15, 0x1, 0, usb),
TEGRA210_LANE("pcie-0", 0x028, 12, 0x3, 1, pci),
TEGRA210_LANE("pcie-1", 0x028, 14, 0x3, 2, pci),
TEGRA210_LANE("pcie-2", 0x028, 16, 0x3, 3, pci),
TEGRA210_LANE("pcie-3", 0x028, 18, 0x3, 4, pci),
TEGRA210_LANE("pcie-4", 0x028, 20, 0x3, 5, pci),
TEGRA210_LANE("pcie-5", 0x028, 22, 0x3, 6, pci),
TEGRA210_LANE("pcie-6", 0x028, 24, 0x3, 7, pci),
TEGRA210_LANE("sata-0", 0x028, 30, 0x3, 8, pci),
};
#define XUSB_PADCTL_ELPG_PROGRAM 0x024
#define XUSB_PADCTL_ELPG_PROGRAM_AUX_MUX_LP0_VCORE_DOWN (1 << 31)
#define XUSB_PADCTL_ELPG_PROGRAM_AUX_MUX_LP0_CLAMP_EN_EARLY (1 << 30)
#define XUSB_PADCTL_ELPG_PROGRAM_AUX_MUX_LP0_CLAMP_EN (1 << 29)
static int tegra_xusb_padctl_enable(struct tegra_xusb_padctl *padctl)
{
u32 value;
if (padctl->enable++ > 0)
return 0;
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~XUSB_PADCTL_ELPG_PROGRAM_AUX_MUX_LP0_CLAMP_EN;
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
udelay(100);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~XUSB_PADCTL_ELPG_PROGRAM_AUX_MUX_LP0_CLAMP_EN_EARLY;
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
udelay(100);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value &= ~XUSB_PADCTL_ELPG_PROGRAM_AUX_MUX_LP0_VCORE_DOWN;
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
return 0;
}
static int tegra_xusb_padctl_disable(struct tegra_xusb_padctl *padctl)
{
u32 value;
if (padctl->enable == 0) {
error("unbalanced enable/disable");
return 0;
}
if (--padctl->enable > 0)
return 0;
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value |= XUSB_PADCTL_ELPG_PROGRAM_AUX_MUX_LP0_VCORE_DOWN;
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
udelay(100);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value |= XUSB_PADCTL_ELPG_PROGRAM_AUX_MUX_LP0_CLAMP_EN_EARLY;
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
udelay(100);
value = padctl_readl(padctl, XUSB_PADCTL_ELPG_PROGRAM);
value |= XUSB_PADCTL_ELPG_PROGRAM_AUX_MUX_LP0_CLAMP_EN;
padctl_writel(padctl, value, XUSB_PADCTL_ELPG_PROGRAM);
return 0;
}
static int phy_prepare(struct tegra_xusb_phy *phy)
{
int err;
err = tegra_xusb_padctl_enable(phy->padctl);
if (err < 0)
return err;
reset_set_enable(PERIPH_ID_PEX_USB_UPHY, 0);
return 0;
}
static int phy_unprepare(struct tegra_xusb_phy *phy)
{
reset_set_enable(PERIPH_ID_PEX_USB_UPHY, 1);
return tegra_xusb_padctl_disable(phy->padctl);
}
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1 0x360
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1_FREQ_NDIV_MASK (0xff << 20)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1_FREQ_NDIV(x) (((x) & 0xff) << 20)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1_FREQ_MDIV_MASK (0x3 << 16)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1_LOCKDET_STATUS (1 << 15)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1_PWR_OVRD (1 << 4)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1_ENABLE (1 << 3)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1_SLEEP_MASK (0x3 << 1)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1_SLEEP(x) (((x) & 0x3) << 1)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL1_IDDQ (1 << 0)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL2 0x364
#define XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_CTRL_MASK (0xffffff << 4)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_CTRL(x) (((x) & 0xffffff) << 4)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_OVRD (1 << 2)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_DONE (1 << 1)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_EN (1 << 0)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL4 0x36c
#define XUSB_PADCTL_UPHY_PLL_P0_CTL4_TXCLKREF_EN (1 << 15)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL4_TXCLKREF_SEL_MASK (0x3 << 12)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL4_TXCLKREF_SEL(x) (((x) & 0x3) << 12)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL4_REFCLKBUF_EN (1 << 8)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL4_REFCLK_SEL_MASK (0xf << 4)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL5 0x370
#define XUSB_PADCTL_UPHY_PLL_P0_CTL5_DCO_CTRL_MASK (0xff << 16)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL5_DCO_CTRL(x) (((x) & 0xff) << 16)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL8 0x37c
#define XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_DONE (1 << 31)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_OVRD (1 << 15)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_CLK_EN (1 << 13)
#define XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_EN (1 << 12)
#define CLK_RST_XUSBIO_PLL_CFG0 0x51c
#define CLK_RST_XUSBIO_PLL_CFG0_SEQ_ENABLE (1 << 24)
#define CLK_RST_XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ (1 << 13)
#define CLK_RST_XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET (1 << 6)
#define CLK_RST_XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL (1 << 2)
#define CLK_RST_XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL (1 << 0)
static int pcie_phy_enable(struct tegra_xusb_phy *phy)
{
struct tegra_xusb_padctl *padctl = phy->padctl;
unsigned long start;
u32 value;
debug("> %s(phy=%p)\n", __func__, phy);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_CTRL_MASK;
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_CTRL(0x136);
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL5);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL5_DCO_CTRL_MASK;
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL5_DCO_CTRL(0x2a);
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL5);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL1_PWR_OVRD;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_OVRD;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_OVRD;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL4);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL4_TXCLKREF_SEL_MASK;
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL4_REFCLK_SEL_MASK;
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL4_TXCLKREF_SEL(2);
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL4_TXCLKREF_EN;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL4);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL1_FREQ_MDIV_MASK;
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL1_FREQ_NDIV_MASK;
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL1_FREQ_NDIV(25);
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL1_IDDQ;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL1_SLEEP_MASK;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
udelay(1);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL4);
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL4_REFCLKBUF_EN;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL4);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_EN;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
debug(" waiting for calibration\n");
start = get_timer(0);
while (get_timer(start) < 250) {
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
if (value & XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_DONE)
break;
}
if (!(value & XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_DONE)) {
debug(" timeout\n");
return -ETIMEDOUT;
}
debug(" done\n");
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_EN;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
debug(" waiting for calibration to stop\n");
start = get_timer(0);
while (get_timer(start) < 250) {
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
if ((value & XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_DONE) == 0)
break;
}
if (value & XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_DONE) {
debug(" timeout\n");
return -ETIMEDOUT;
}
debug(" done\n");
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL1_ENABLE;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
debug(" waiting for PLL to lock...\n");
start = get_timer(0);
while (get_timer(start) < 250) {
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
if (value & XUSB_PADCTL_UPHY_PLL_P0_CTL1_LOCKDET_STATUS)
break;
}
if (!(value & XUSB_PADCTL_UPHY_PLL_P0_CTL1_LOCKDET_STATUS)) {
debug(" timeout\n");
return -ETIMEDOUT;
}
debug(" done\n");
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_CLK_EN;
value |= XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_EN;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
debug(" waiting for register calibration...\n");
start = get_timer(0);
while (get_timer(start) < 250) {
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
if (value & XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_DONE)
break;
}
if (!(value & XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_DONE)) {
debug(" timeout\n");
return -ETIMEDOUT;
}
debug(" done\n");
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_EN;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
debug(" waiting for register calibration to stop...\n");
start = get_timer(0);
while (get_timer(start) < 250) {
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
if ((value & XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_DONE) == 0)
break;
}
if (value & XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_DONE) {
debug(" timeout\n");
return -ETIMEDOUT;
}
debug(" done\n");
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_CLK_EN;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
value = readl(NV_PA_CLK_RST_BASE + CLK_RST_XUSBIO_PLL_CFG0);
value &= ~CLK_RST_XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL;
value &= ~CLK_RST_XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL;
value |= CLK_RST_XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET;
value |= CLK_RST_XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ;
writel(value, NV_PA_CLK_RST_BASE + CLK_RST_XUSBIO_PLL_CFG0);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL1_PWR_OVRD;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL1);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL2_CAL_OVRD;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL2);
value = padctl_readl(padctl, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
value &= ~XUSB_PADCTL_UPHY_PLL_P0_CTL8_RCAL_OVRD;
padctl_writel(padctl, value, XUSB_PADCTL_UPHY_PLL_P0_CTL8);
udelay(1);
value = readl(NV_PA_CLK_RST_BASE + CLK_RST_XUSBIO_PLL_CFG0);
value |= CLK_RST_XUSBIO_PLL_CFG0_SEQ_ENABLE;
writel(value, NV_PA_CLK_RST_BASE + CLK_RST_XUSBIO_PLL_CFG0);
debug("< %s()\n", __func__);
return 0;
}
static int pcie_phy_disable(struct tegra_xusb_phy *phy)
{
return 0;
}
static const struct tegra_xusb_phy_ops pcie_phy_ops = {
.prepare = phy_prepare,
.enable = pcie_phy_enable,
.disable = pcie_phy_disable,
.unprepare = phy_unprepare,
};
static struct tegra_xusb_phy tegra210_phys[] = {
{
.type = TEGRA_XUSB_PADCTL_PCIE,
.ops = &pcie_phy_ops,
.padctl = &padctl,
},
};
static const struct tegra_xusb_padctl_soc tegra210_socdata = {
.lanes = tegra210_lanes,
.num_lanes = ARRAY_SIZE(tegra210_lanes),
.functions = tegra210_functions,
.num_functions = ARRAY_SIZE(tegra210_functions),
.phys = tegra210_phys,
.num_phys = ARRAY_SIZE(tegra210_phys),
};
void tegra_xusb_padctl_init(void)
{
ofnode nodes[1];
int count = 0;
int ret;
debug("%s: start\n", __func__);
if (of_live_active()) {
struct device_node *np = of_find_compatible_node(NULL, NULL,
"nvidia,tegra210-xusb-padctl");
debug("np=%p\n", np);
if (np) {
nodes[0] = np_to_ofnode(np);
count = 1;
}
} else {
int node_offsets[1];
int i;
count = fdtdec_find_aliases_for_id(gd->fdt_blob, "padctl",
COMPAT_NVIDIA_TEGRA210_XUSB_PADCTL,
node_offsets, ARRAY_SIZE(node_offsets));
for (i = 0; i < count; i++)
nodes[i] = offset_to_ofnode(node_offsets[i]);
}
ret = tegra_xusb_process_nodes(nodes, count, &tegra210_socdata);
debug("%s: done, ret=%d\n", __func__, ret);
}