u-boot/board/delta/nand.c
Markus Klotzbücher bf7cac033b Lots of new stuff:
* Debug message can be turned on and off.
 * Waiting for events now times out.
 * Implemented RESET command.
 * Added appropriate nand_bbt_descriptor and nand_oobinfo.

Remaining Problems:
 * Read Status still behaves weird an returns invalid stuff sometimes.
 * ECC Placement does not respect our scheme in nand_oobinfo.
2006-03-04 18:35:51 +01:00

690 lines
18 KiB
C

/*
* (C) Copyright 2006 DENX Software Engineering
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
#ifdef CONFIG_NEW_NAND_CODE
#include <nand.h>
#include <asm/arch/pxa-regs.h>
/* mk@tbd move this to pxa-regs */
#define OSCR_CLK_FREQ 3.250 /* MHz */
#define CFG_DFC_DEBUG1
#define CFG_DFC_DEBUG2
#ifdef CFG_DFC_DEBUG1
# define DFC_DEBUG1(fmt, args...) printf(fmt, ##args)
#else
# define DFC_DEBUG1(fmt, args...)
#endif
#ifdef CFG_DFC_DEBUG2
# define DFC_DEBUG2(fmt, args...) printf(fmt, ##args)
#else
# define DFC_DEBUG2(fmt, args...)
#endif
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr delta_bbt_descr = {
.options = 0,
.offs = 0,
.len = 2,
.pattern = scan_ff_pattern
};
static struct nand_oobinfo delta_oob = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 6,
.eccpos = {2, 3, 4, 5, 6, 7},
.oobfree = { {8, 2}, {12, 4} }
};
/*
* not required for Monahans DFC
*/
static void delta_hwcontrol(struct mtd_info *mtdinfo, int cmd)
{
return;
}
/* read device ready pin */
static int delta_device_ready(struct mtd_info *mtdinfo)
{
if(NDSR & NDSR_RDY)
return 1;
else
return 0;
return 0;
}
/*
* Write buf to the DFC Controller Data Buffer
*/
static void delta_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
unsigned long bytes_multi = len & 0xfffffffc;
unsigned long rest = len & 0x3;
unsigned long *long_buf;
int i;
if(bytes_multi) {
for(i=0; i<bytes_multi; i+=4) {
long_buf = (unsigned long*) &buf[i];
NDDB = *long_buf;
}
}
if(rest) {
printf("delta_write_buf: ERROR, writing non 4-byte aligned data.\n");
}
return;
}
/*
* These functions are quite problematic for the DFC. Luckily they are
* not used in the current nand code, except for nand_command, which
* we've defined our own anyway. The problem is, that we always need
* to write 4 bytes to the DFC Data Buffer, but in these functions we
* don't know if to buffer the bytes/half words until we've gathered 4
* bytes or if to send them straight away.
*
* Solution: Don't use these with Mona's DFC and complain loudly.
*/
static void delta_write_word(struct mtd_info *mtd, u16 word)
{
printf("delta_write_word: WARNING, this function does not work with the Monahans DFC!\n");
}
static void delta_write_byte(struct mtd_info *mtd, u_char byte)
{
printf("delta_write_byte: WARNING, this function does not work with the Monahans DFC!\n");
}
/* The original:
* static void delta_read_buf(struct mtd_info *mtd, const u_char *buf, int len)
*
* Shouldn't this be "u_char * const buf" ?
*/
static void delta_read_buf(struct mtd_info *mtd, u_char* const buf, int len)
{
int i, j;
/* we have to be carefull not to overflow the buffer if len is
* not a multiple of 4 */
unsigned long bytes_multi = len & 0xfffffffc;
unsigned long rest = len & 0x3;
unsigned long *long_buf;
/* if there are any, first copy multiple of 4 bytes */
if(bytes_multi) {
for(i=0; i<bytes_multi; i+=4) {
long_buf = (unsigned long*) &buf[i];
*long_buf = NDDB;
}
}
/* ...then the rest */
if(rest) {
unsigned long rest_data = NDDB;
for(j=0;j<rest; j++)
buf[i+j] = (u_char) ((rest_data>>j) & 0xff);
}
return;
}
/*
* read a word. Not implemented as not used in NAND code.
*/
static u16 delta_read_word(struct mtd_info *mtd)
{
printf("delta_write_byte: UNIMPLEMENTED.\n");
}
/* global var, too bad: mk@tbd: move to ->priv pointer */
static unsigned long read_buf = 0;
static int bytes_read = -1;
/* read a byte from NDDB Because we can only read 4 bytes from NDDB at
* a time, we buffer the remaining bytes. The buffer is reset when a
* new command is sent to the chip.
*/
static u_char delta_read_byte(struct mtd_info *mtd)
{
/* struct nand_chip *this = mtd->priv; */
unsigned char byte;
if(bytes_read < 0) {
read_buf = NDDB;
bytes_read = 0;
}
byte = (unsigned char) (read_buf>>(8 * bytes_read++));
if(bytes_read >= 4)
bytes_read = -1;
DFC_DEBUG2("delta_read_byte: byte %u: 0x%x of (0x%x).\n", bytes_read, byte, read_buf);
return byte;
}
/* calculate delta between OSCR values start and now */
static unsigned long get_delta(unsigned long start)
{
unsigned long cur = OSCR;
if(cur < start) /* OSCR overflowed */
return (cur + (start^0xffffffff));
else
return (cur - start);
}
/* delay function, this doesn't belong here */
static void wait_us(unsigned long us)
{
unsigned long start = OSCR;
us *= OSCR_CLK_FREQ;
while (get_delta(start) < us) {
/* do nothing */
}
}
static void delta_clear_nddb()
{
NDCR &= ~NDCR_ND_RUN;
wait_us(CFG_NAND_OTHER_TO);
}
/* wait_event with timeout */
static unsigned long delta_wait_event2(unsigned long event)
{
unsigned long ndsr, timeout, start = OSCR;
if(!event)
return 0xff000000;
else if(event & (NDSR_CS0_CMDD | NDSR_CS0_BBD))
timeout = CFG_NAND_PROG_ERASE_TO * OSCR_CLK_FREQ;
else
timeout = CFG_NAND_OTHER_TO * OSCR_CLK_FREQ;
while(1) {
ndsr = NDSR;
if(ndsr & event) {
NDSR |= event;
break;
}
if(get_delta(start) > timeout) {
DFC_DEBUG1("delta_wait_event: TIMEOUT waiting for event: 0x%x.\n", event);
return 0xff000000;
}
}
return ndsr;
}
#if DEADCODE
/* poll the NAND Controller Status Register for event */
static void delta_wait_event(unsigned long event)
{
if(!event)
return;
while(1) {
if(NDSR & event) {
NDSR |= event;
break;
}
}
}
#endif
/* we don't always wan't to do this */
static void delta_new_cmd()
{
int retry = 0;
unsigned long status;
while(retry++ <= CFG_NAND_SENDCMD_RETRY) {
/* Clear NDSR */
NDSR = 0xFFF;
/* set NDCR[NDRUN] */
if(!(NDCR & NDCR_ND_RUN))
NDCR |= NDCR_ND_RUN;
status = delta_wait_event2(NDSR_WRCMDREQ);
if(status & NDSR_WRCMDREQ)
return;
DFC_DEBUG2("delta_new_cmd: FAILED to get WRITECMDREQ, retry: %d.\n", retry);
delta_clear_nddb();
}
DFC_DEBUG1("delta_new_cmd: giving up after %d retries.\n", retry);
#if DEADCODE
while(1) {
if(NDSR & NDSR_WRCMDREQ) {
NDSR |= NDSR_WRCMDREQ; /* Ack */
break;
}
}
#endif
}
/* this function is called after Programm and Erase Operations to
* check for success or failure */
static int delta_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{
unsigned long ndsr=0, event=0;
/* mk@tbd set appropriate timeouts */
/* if (state == FL_ERASING) */
/* timeo = CFG_HZ * 400; */
/* else */
/* timeo = CFG_HZ * 20; */
if(state == FL_WRITING) {
event = NDSR_CS0_CMDD | NDSR_CS0_BBD;
} else if(state == FL_ERASING) {
event = NDSR_CS0_CMDD | NDSR_CS0_BBD;
}
ndsr = delta_wait_event2(event);
if((ndsr & NDSR_CS0_BBD) || (ndsr & 0xff000000))
return(0x1); /* Status Read error */
return 0;
}
/* cmdfunc send commands to the DFC */
static void delta_cmdfunc(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
/* register struct nand_chip *this = mtd->priv; */
unsigned long ndcb0=0, ndcb1=0, ndcb2=0, event=0;
unsigned long what_the_hack;
/* clear the ugly byte read buffer */
bytes_read = -1;
read_buf = 0;
/* if command is a double byte cmd, we set bit double cmd bit 19 */
/* command2 = (command>>8) & 0xFF; */
/* ndcb0 = command | ((command2 ? 1 : 0) << 19); *\/ */
switch (command) {
case NAND_CMD_READ0:
delta_new_cmd();
ndcb0 = (NAND_CMD_READ0 | (4<<16));
column >>= 1; /* adjust for 16 bit bus */
ndcb1 = (((column>>1) & 0xff) |
((page_addr<<8) & 0xff00) |
((page_addr<<8) & 0xff0000) |
((page_addr<<8) & 0xff000000)); /* make this 0x01000000 ? */
event = NDSR_RDDREQ;
goto write_cmd;
case NAND_CMD_READID:
delta_new_cmd();
DFC_DEBUG2("delta_cmdfunc: NAND_CMD_READID.\n");
ndcb0 = (NAND_CMD_READID | (3 << 21) | (1 << 16)); /* addr cycles*/
event = NDSR_RDDREQ;
goto write_cmd;
case NAND_CMD_PAGEPROG:
/* sent as a multicommand in NAND_CMD_SEQIN */
DFC_DEBUG2("delta_cmdfunc: NAND_CMD_PAGEPROG empty due to multicmd.\n");
goto end;
case NAND_CMD_ERASE1:
DFC_DEBUG2("delta_cmdfunc: NAND_CMD_ERASE1.\n");
delta_new_cmd();
ndcb0 = (0xd060 | (1<<25) | (2<<21) | (1<<19) | (3<<16));
ndcb1 = (page_addr & 0x00ffffff);
goto write_cmd;
case NAND_CMD_ERASE2:
DFC_DEBUG2("delta_cmdfunc: NAND_CMD_ERASE2 empty due to multicmd.\n");
goto end;
case NAND_CMD_SEQIN:
/* send PAGE_PROG command(0x1080) */
delta_new_cmd();
DFC_DEBUG2("delta_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG.\n");
ndcb0 = (0x1080 | (1<<25) | (1<<21) | (1<<19) | (4<<16));
column >>= 1; /* adjust for 16 bit bus */
ndcb1 = (((column>>1) & 0xff) |
((page_addr<<8) & 0xff00) |
((page_addr<<8) & 0xff0000) |
((page_addr<<8) & 0xff000000)); /* make this 0x01000000 ? */
event = NDSR_WRDREQ;
goto write_cmd;
/* case NAND_CMD_SEQIN_pointer_operation: */
/* /\* This is confusing because the command names are */
/* * different compared to the ones in the K9K12Q0C */
/* * datasheet. Infact this has nothing to do with */
/* * reading, as the but with page programming */
/* * (writing). */
/* * Here we send the multibyte commands */
/* * cmd1=0x00, cmd2=0x80 (for programming main area) or */
/* * cmd1=0x50, cmd2=0x80 (for spare area) */
/* * */
/* * When all data is written to the buffer, the page */
/* * program command (0x10) is sent to actually write */
/* * the data. */
/* *\/ */
/* printf("delta_cmdfunc: NAND_CMD_SEQIN pointer op called.\n"); */
/* ndcb0 = (NAND_CMD_SEQIN<<8) | (1<<21) | (1<<19) | (4<<16); */
/* if(column >= mtd->oobblock) { */
/* /\* OOB area *\/ */
/* column -= mtd->oobblock; */
/* ndcb0 |= NAND_CMD_READOOB; */
/* } else if (column < 256) { */
/* /\* First 256 bytes --> READ0 *\/ */
/* ndcb0 |= NAND_CMD_READ0; */
/* } else { */
/* /\* Only for 8 bit devices - not delta!!! *\/ */
/* column -= 256; */
/* ndcb0 |= NAND_CMD_READ1; */
/* } */
/* event = NDSR_WRDREQ; */
/* break; */
case NAND_CMD_STATUS:
DFC_DEBUG2("delta_cmdfunc: NAND_CMD_STATUS.\n");
/* oh, this is not nice. for some reason the real
* status byte is in the second read from the data
* buffer. The hack is to read the first byte right
* here, so the next read access by the nand code
* yields the right one.
*/
delta_new_cmd();
ndcb0 = NAND_CMD_STATUS | (4<<21);
event = NDSR_RDDREQ;
#undef READ_STATUS_BUG
#ifdef READ_STATUS_BUG
NDCB0 = ndcb0;
NDCB0 = ndcb1;
NDCB0 = ndcb2;
delta_wait_event2(event);
what_the_hack = NDDB;
if(what_the_hack != 0xffffffff) {
DFC_DEBUG2("what the hack.\n");
read_buf = what_the_hack;
bytes_read = 0;
}
goto end;
#endif
goto write_cmd;
case NAND_CMD_RESET:
DFC_DEBUG2("delta_cmdfunc: NAND_CMD_RESET.\n");
ndcb0 = NAND_CMD_RESET | (5<<21);
event = NDSR_CS0_CMDD;
goto write_cmd;
default:
printk("delta_cmdfunc: error, unsupported command.\n");
goto end;
}
write_cmd:
NDCB0 = ndcb0;
NDCB0 = ndcb1;
NDCB0 = ndcb2;
wait_event:
delta_wait_event2(event);
end:
return;
}
static void delta_dfc_gpio_init()
{
DFC_DEBUG2("Setting up DFC GPIO's.\n");
/* no idea what is done here, see zylonite.c */
GPIO4 = 0x1;
DF_ALE_WE1 = 0x00000001;
DF_ALE_WE2 = 0x00000001;
DF_nCS0 = 0x00000001;
DF_nCS1 = 0x00000001;
DF_nWE = 0x00000001;
DF_nRE = 0x00000001;
DF_IO0 = 0x00000001;
DF_IO8 = 0x00000001;
DF_IO1 = 0x00000001;
DF_IO9 = 0x00000001;
DF_IO2 = 0x00000001;
DF_IO10 = 0x00000001;
DF_IO3 = 0x00000001;
DF_IO11 = 0x00000001;
DF_IO4 = 0x00000001;
DF_IO12 = 0x00000001;
DF_IO5 = 0x00000001;
DF_IO13 = 0x00000001;
DF_IO6 = 0x00000001;
DF_IO14 = 0x00000001;
DF_IO7 = 0x00000001;
DF_IO15 = 0x00000001;
DF_nWE = 0x1901;
DF_nRE = 0x1901;
DF_CLE_NOE = 0x1900;
DF_ALE_WE1 = 0x1901;
DF_INT_RnB = 0x1900;
}
/*
* Board-specific NAND initialization. The following members of the
* argument are board-specific (per include/linux/mtd/nand_new.h):
* - IO_ADDR_R?: address to read the 8 I/O lines of the flash device
* - IO_ADDR_W?: address to write the 8 I/O lines of the flash device
* - hwcontrol: hardwarespecific function for accesing control-lines
* - dev_ready: hardwarespecific function for accesing device ready/busy line
* - enable_hwecc?: function to enable (reset) hardware ecc generator. Must
* only be provided if a hardware ECC is available
* - eccmode: mode of ecc, see defines
* - chip_delay: chip dependent delay for transfering data from array to
* read regs (tR)
* - options: various chip options. They can partly be set to inform
* nand_scan about special functionality. See the defines for further
* explanation
* Members with a "?" were not set in the merged testing-NAND branch,
* so they are not set here either.
*/
void board_nand_init(struct nand_chip *nand)
{
unsigned long tCH, tCS, tWH, tWP, tRH, tRP, tRP_high, tR, tWHR, tAR;
/* set up GPIO Control Registers */
delta_dfc_gpio_init();
/* turn on the NAND Controller Clock (104 MHz @ D0) */
CKENA |= (CKENA_4_NAND | CKENA_9_SMC);
/* wait ? */
/* printf("stupid loop start...\n"); */
/* wait(200); */
/* printf("stupid loop end.\n"); */
/* NAND Timing Parameters (in ns) */
#define NAND_TIMING_tCH 10
#define NAND_TIMING_tCS 0
#define NAND_TIMING_tWH 20
#define NAND_TIMING_tWP 40
#define NAND_TIMING_tRH 20
#define NAND_TIMING_tRP 40
/* #define NAND_TIMING_tRH 25 */
/* #define NAND_TIMING_tRP 50 */
#define NAND_TIMING_tR 11123
/* #define NAND_TIMING_tWHR 110 */
#define NAND_TIMING_tWHR 100
#define NAND_TIMING_tAR 10
/* Maximum values for NAND Interface Timing Registers in DFC clock
* periods */
#define DFC_MAX_tCH 7
#define DFC_MAX_tCS 7
#define DFC_MAX_tWH 7
#define DFC_MAX_tWP 7
#define DFC_MAX_tRH 7
#define DFC_MAX_tRP 15
#define DFC_MAX_tR 65535
#define DFC_MAX_tWHR 15
#define DFC_MAX_tAR 15
#define DFC_CLOCK 104 /* DFC Clock is 104 MHz */
#define DFC_CLK_PER_US DFC_CLOCK/1000 /* clock period in ns */
#define MIN(x, y) ((x < y) ? x : y)
#ifndef CFG_TIMING_TIGHT
tCH = MIN(((unsigned long) (NAND_TIMING_tCH * DFC_CLK_PER_US) + 1),
DFC_MAX_tCH);
tCS = MIN(((unsigned long) (NAND_TIMING_tCS * DFC_CLK_PER_US) + 1),
DFC_MAX_tCS);
tWH = MIN(((unsigned long) (NAND_TIMING_tWH * DFC_CLK_PER_US) + 1),
DFC_MAX_tWH);
tWP = MIN(((unsigned long) (NAND_TIMING_tWP * DFC_CLK_PER_US) + 1),
DFC_MAX_tWP);
tRH = MIN(((unsigned long) (NAND_TIMING_tRH * DFC_CLK_PER_US) + 1),
DFC_MAX_tRH);
tRP = MIN(((unsigned long) (NAND_TIMING_tRP * DFC_CLK_PER_US) + 1),
DFC_MAX_tRP);
tR = MIN(((unsigned long) (NAND_TIMING_tR * DFC_CLK_PER_US) + 1),
DFC_MAX_tR);
tWHR = MIN(((unsigned long) (NAND_TIMING_tWHR * DFC_CLK_PER_US) + 1),
DFC_MAX_tWHR);
tAR = MIN(((unsigned long) (NAND_TIMING_tAR * DFC_CLK_PER_US) + 1),
DFC_MAX_tAR);
#else /* this is the tight timing */
tCH = MIN(((unsigned long) (NAND_TIMING_tCH * DFC_CLK_PER_US)),
DFC_MAX_tCH);
tCS = MIN(((unsigned long) (NAND_TIMING_tCS * DFC_CLK_PER_US)),
DFC_MAX_tCS);
tWH = MIN(((unsigned long) (NAND_TIMING_tWH * DFC_CLK_PER_US)),
DFC_MAX_tWH);
tWP = MIN(((unsigned long) (NAND_TIMING_tWP * DFC_CLK_PER_US)),
DFC_MAX_tWP);
tRH = MIN(((unsigned long) (NAND_TIMING_tRH * DFC_CLK_PER_US)),
DFC_MAX_tRH);
tRP = MIN(((unsigned long) (NAND_TIMING_tRP * DFC_CLK_PER_US)),
DFC_MAX_tRP);
tR = MIN(((unsigned long) (NAND_TIMING_tR * DFC_CLK_PER_US) - tCH - 2),
DFC_MAX_tR);
tWHR = MIN(((unsigned long) (NAND_TIMING_tWHR * DFC_CLK_PER_US) - tCH - 2),
DFC_MAX_tWHR);
tAR = MIN(((unsigned long) (NAND_TIMING_tAR * DFC_CLK_PER_US) - 2),
DFC_MAX_tAR);
#endif /* CFG_TIMING_TIGHT */
DFC_DEBUG2("tCH=%u, tCS=%u, tWH=%u, tWP=%u, tRH=%u, tRP=%u, tR=%u, tWHR=%u, tAR=%u.\n", tCH, tCS, tWH, tWP, tRH, tRP, tR, tWHR, tAR);
/* tRP value is split in the register */
if(tRP & (1 << 4)) {
tRP_high = 1;
tRP &= ~(1 << 4);
} else {
tRP_high = 0;
}
NDTR0CS0 = (tCH << 19) |
(tCS << 16) |
(tWH << 11) |
(tWP << 8) |
(tRP_high << 6) |
(tRH << 3) |
(tRP << 0);
NDTR1CS0 = (tR << 16) |
(tWHR << 4) |
(tAR << 0);
/* If it doesn't work (unlikely) think about:
* - ecc enable
* - chip select don't care
* - read id byte count
*
* Intentionally enabled by not setting bits:
* - dma (DMA_EN)
* - page size = 512
* - cs don't care, see if we can enable later!
* - row address start position (after second cycle)
* - pages per block = 32
* - ND_RDY : clears command buffer
*/
/* NDCR_NCSX | /\* Chip select busy don't care *\/ */
NDCR = (NDCR_SPARE_EN | /* use the spare area */
NDCR_DWIDTH_C | /* 16bit DFC data bus width */
NDCR_DWIDTH_M | /* 16 bit Flash device data bus width */
(7 << 16) | /* read id count = 7 ???? mk@tbd */
NDCR_ND_ARB_EN | /* enable bus arbiter */
NDCR_RDYM | /* flash device ready ir masked */
NDCR_CS0_PAGEDM | /* ND_nCSx page done ir masked */
NDCR_CS1_PAGEDM |
NDCR_CS0_CMDDM | /* ND_CSx command done ir masked */
NDCR_CS1_CMDDM |
NDCR_CS0_BBDM | /* ND_CSx bad block detect ir masked */
NDCR_CS1_BBDM |
NDCR_DBERRM | /* double bit error ir masked */
NDCR_SBERRM | /* single bit error ir masked */
NDCR_WRDREQM | /* write data request ir masked */
NDCR_RDDREQM | /* read data request ir masked */
NDCR_WRCMDREQM); /* write command request ir masked */
/* wait 10 us due to cmd buffer clear reset */
/* wait(10); */
nand->hwcontrol = delta_hwcontrol;
/* nand->dev_ready = delta_device_ready; */
nand->eccmode = NAND_ECC_SOFT;
nand->chip_delay = NAND_DELAY_US;
nand->options = NAND_BUSWIDTH_16;
nand->waitfunc = delta_wait;
nand->read_byte = delta_read_byte;
nand->write_byte = delta_write_byte;
nand->read_word = delta_read_word;
nand->write_word = delta_write_word;
nand->read_buf = delta_read_buf;
nand->write_buf = delta_write_buf;
nand->cmdfunc = delta_cmdfunc;
nand->autooob = &delta_oob;
nand->badblock_pattern = &delta_bbt_descr;
}
#else
#error "U-Boot legacy NAND support not available for delta board."
#endif
#endif