u-boot/drivers/usb/gadget/pxa25x_udc.c
Simon Glass c05ed00afb common: Drop linux/delay.h from common header
Move this uncommon header out of the common header.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-05-18 21:19:23 -04:00

2049 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Intel PXA25x and IXP4xx on-chip full speed USB device controllers
*
* Copyright (C) 2002 Intrinsyc, Inc. (Frank Becker)
* Copyright (C) 2003 Robert Schwebel, Pengutronix
* Copyright (C) 2003 Benedikt Spranger, Pengutronix
* Copyright (C) 2003 David Brownell
* Copyright (C) 2003 Joshua Wise
* Copyright (C) 2012 Lukasz Dalek <luk0104@gmail.com>
*
* MODULE_AUTHOR("Frank Becker, Robert Schwebel, David Brownell");
*/
#define CONFIG_USB_PXA25X_SMALL
#define DRIVER_NAME "pxa25x_udc_linux"
#define ARCH_HAS_PREFETCH
#include <common.h>
#include <errno.h>
#include <log.h>
#include <asm/byteorder.h>
#include <asm/system.h>
#include <asm/mach-types.h>
#include <asm/unaligned.h>
#include <dm/devres.h>
#include <linux/bug.h>
#include <linux/compat.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/arch/pxa.h>
#include <linux/delay.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <asm/arch/pxa-regs.h>
#include "pxa25x_udc.h"
/*
* This driver handles the USB Device Controller (UDC) in Intel's PXA 25x
* series processors. The UDC for the IXP 4xx series is very similar.
* There are fifteen endpoints, in addition to ep0.
*
* Such controller drivers work with a gadget driver. The gadget driver
* returns descriptors, implements configuration and data protocols used
* by the host to interact with this device, and allocates endpoints to
* the different protocol interfaces. The controller driver virtualizes
* usb hardware so that the gadget drivers will be more portable.
*
* This UDC hardware wants to implement a bit too much USB protocol, so
* it constrains the sorts of USB configuration change events that work.
* The errata for these chips are misleading; some "fixed" bugs from
* pxa250 a0/a1 b0/b1/b2 sure act like they're still there.
*
* Note that the UDC hardware supports DMA (except on IXP) but that's
* not used here. IN-DMA (to host) is simple enough, when the data is
* suitably aligned (16 bytes) ... the network stack doesn't do that,
* other software can. OUT-DMA is buggy in most chip versions, as well
* as poorly designed (data toggle not automatic). So this driver won't
* bother using DMA. (Mostly-working IN-DMA support was available in
* kernels before 2.6.23, but was never enabled or well tested.)
*/
#define DRIVER_VERSION "18-August-2012"
#define DRIVER_DESC "PXA 25x USB Device Controller driver"
static const char driver_name[] = "pxa25x_udc";
static const char ep0name[] = "ep0";
/* Watchdog */
static inline void start_watchdog(struct pxa25x_udc *udc)
{
debug("Started watchdog\n");
udc->watchdog.base = get_timer(0);
udc->watchdog.running = 1;
}
static inline void stop_watchdog(struct pxa25x_udc *udc)
{
udc->watchdog.running = 0;
debug("Stopped watchdog\n");
}
static inline void test_watchdog(struct pxa25x_udc *udc)
{
if (!udc->watchdog.running)
return;
debug("watchdog %ld %ld\n", get_timer(udc->watchdog.base),
udc->watchdog.period);
if (get_timer(udc->watchdog.base) >= udc->watchdog.period) {
stop_watchdog(udc);
udc->watchdog.function(udc);
}
}
static void udc_watchdog(struct pxa25x_udc *dev)
{
uint32_t udccs0 = readl(&dev->regs->udccs[0]);
debug("Fired up udc_watchdog\n");
local_irq_disable();
if (dev->ep0state == EP0_STALL
&& (udccs0 & UDCCS0_FST) == 0
&& (udccs0 & UDCCS0_SST) == 0) {
writel(UDCCS0_FST|UDCCS0_FTF, &dev->regs->udccs[0]);
debug("ep0 re-stall\n");
start_watchdog(dev);
}
local_irq_enable();
}
#ifdef DEBUG
static const char * const state_name[] = {
"EP0_IDLE",
"EP0_IN_DATA_PHASE", "EP0_OUT_DATA_PHASE",
"EP0_END_XFER", "EP0_STALL"
};
static void
dump_udccr(const char *label)
{
u32 udccr = readl(&UDC_REGS->udccr);
debug("%s %02X =%s%s%s%s%s%s%s%s\n",
label, udccr,
(udccr & UDCCR_REM) ? " rem" : "",
(udccr & UDCCR_RSTIR) ? " rstir" : "",
(udccr & UDCCR_SRM) ? " srm" : "",
(udccr & UDCCR_SUSIR) ? " susir" : "",
(udccr & UDCCR_RESIR) ? " resir" : "",
(udccr & UDCCR_RSM) ? " rsm" : "",
(udccr & UDCCR_UDA) ? " uda" : "",
(udccr & UDCCR_UDE) ? " ude" : "");
}
static void
dump_udccs0(const char *label)
{
u32 udccs0 = readl(&UDC_REGS->udccs[0]);
debug("%s %s %02X =%s%s%s%s%s%s%s%s\n",
label, state_name[the_controller->ep0state], udccs0,
(udccs0 & UDCCS0_SA) ? " sa" : "",
(udccs0 & UDCCS0_RNE) ? " rne" : "",
(udccs0 & UDCCS0_FST) ? " fst" : "",
(udccs0 & UDCCS0_SST) ? " sst" : "",
(udccs0 & UDCCS0_DRWF) ? " dwrf" : "",
(udccs0 & UDCCS0_FTF) ? " ftf" : "",
(udccs0 & UDCCS0_IPR) ? " ipr" : "",
(udccs0 & UDCCS0_OPR) ? " opr" : "");
}
static void
dump_state(struct pxa25x_udc *dev)
{
u32 tmp;
unsigned i;
debug("%s, uicr %02X.%02X, usir %02X.%02x, ufnr %02X.%02X\n",
state_name[dev->ep0state],
readl(&UDC_REGS->uicr1), readl(&UDC_REGS->uicr0),
readl(&UDC_REGS->usir1), readl(&UDC_REGS->usir0),
readl(&UDC_REGS->ufnrh), readl(&UDC_REGS->ufnrl));
dump_udccr("udccr");
if (dev->has_cfr) {
tmp = readl(&UDC_REGS->udccfr);
debug("udccfr %02X =%s%s\n", tmp,
(tmp & UDCCFR_AREN) ? " aren" : "",
(tmp & UDCCFR_ACM) ? " acm" : "");
}
if (!dev->driver) {
debug("no gadget driver bound\n");
return;
} else
debug("ep0 driver '%s'\n", "ether");
dump_udccs0("udccs0");
debug("ep0 IN %lu/%lu, OUT %lu/%lu\n",
dev->stats.write.bytes, dev->stats.write.ops,
dev->stats.read.bytes, dev->stats.read.ops);
for (i = 1; i < PXA_UDC_NUM_ENDPOINTS; i++) {
if (dev->ep[i].desc == NULL)
continue;
debug("udccs%d = %02x\n", i, *dev->ep->reg_udccs);
}
}
#else /* DEBUG */
static inline void dump_udccr(const char *label) { }
static inline void dump_udccs0(const char *label) { }
static inline void dump_state(struct pxa25x_udc *dev) { }
#endif /* DEBUG */
/*
* ---------------------------------------------------------------------------
* endpoint related parts of the api to the usb controller hardware,
* used by gadget driver; and the inner talker-to-hardware core.
* ---------------------------------------------------------------------------
*/
static void pxa25x_ep_fifo_flush(struct usb_ep *ep);
static void nuke(struct pxa25x_ep *, int status);
/* one GPIO should control a D+ pullup, so host sees this device (or not) */
static void pullup_off(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
if (mach->udc_command)
mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
}
static void pullup_on(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
if (mach->udc_command)
mach->udc_command(PXA2XX_UDC_CMD_CONNECT);
}
static void pio_irq_enable(int bEndpointAddress)
{
bEndpointAddress &= 0xf;
if (bEndpointAddress < 8) {
clrbits_le32(&the_controller->regs->uicr0,
1 << bEndpointAddress);
} else {
bEndpointAddress -= 8;
clrbits_le32(&the_controller->regs->uicr1,
1 << bEndpointAddress);
}
}
static void pio_irq_disable(int bEndpointAddress)
{
bEndpointAddress &= 0xf;
if (bEndpointAddress < 8) {
setbits_le32(&the_controller->regs->uicr0,
1 << bEndpointAddress);
} else {
bEndpointAddress -= 8;
setbits_le32(&the_controller->regs->uicr1,
1 << bEndpointAddress);
}
}
static inline void udc_set_mask_UDCCR(int mask)
{
/*
* The UDCCR reg contains mask and interrupt status bits,
* so using '|=' isn't safe as it may ack an interrupt.
*/
const uint32_t mask_bits = UDCCR_REM | UDCCR_SRM | UDCCR_UDE;
mask &= mask_bits;
clrsetbits_le32(&the_controller->regs->udccr, ~mask_bits, mask);
}
static inline void udc_clear_mask_UDCCR(int mask)
{
const uint32_t mask_bits = UDCCR_REM | UDCCR_SRM | UDCCR_UDE;
mask = ~mask & mask_bits;
clrbits_le32(&the_controller->regs->udccr, ~mask);
}
static inline void udc_ack_int_UDCCR(int mask)
{
const uint32_t mask_bits = UDCCR_REM | UDCCR_SRM | UDCCR_UDE;
mask &= ~mask_bits;
clrsetbits_le32(&the_controller->regs->udccr, ~mask_bits, mask);
}
/*
* endpoint enable/disable
*
* we need to verify the descriptors used to enable endpoints. since pxa25x
* endpoint configurations are fixed, and are pretty much always enabled,
* there's not a lot to manage here.
*
* because pxa25x can't selectively initialize bulk (or interrupt) endpoints,
* (resetting endpoint halt and toggle), SET_INTERFACE is unusable except
* for a single interface (with only the default altsetting) and for gadget
* drivers that don't halt endpoints (not reset by set_interface). that also
* means that if you use ISO, you must violate the USB spec rule that all
* iso endpoints must be in non-default altsettings.
*/
static int pxa25x_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct pxa25x_ep *ep;
struct pxa25x_udc *dev;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (!_ep || !desc || ep->desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| ep->bEndpointAddress != desc->bEndpointAddress
|| ep->fifo_size <
le16_to_cpu(get_unaligned(&desc->wMaxPacketSize))) {
printf("%s, bad ep or descriptor\n", __func__);
return -EINVAL;
}
/* xfer types must match, except that interrupt ~= bulk */
if (ep->bmAttributes != desc->bmAttributes
&& ep->bmAttributes != USB_ENDPOINT_XFER_BULK
&& desc->bmAttributes != USB_ENDPOINT_XFER_INT) {
printf("%s, %s type mismatch\n", __func__, _ep->name);
return -EINVAL;
}
/* hardware _could_ do smaller, but driver doesn't */
if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
&& le16_to_cpu(get_unaligned(&desc->wMaxPacketSize))
!= BULK_FIFO_SIZE)
|| !get_unaligned(&desc->wMaxPacketSize)) {
printf("%s, bad %s maxpacket\n", __func__, _ep->name);
return -ERANGE;
}
dev = ep->dev;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) {
printf("%s, bogus device state\n", __func__);
return -ESHUTDOWN;
}
ep->desc = desc;
ep->stopped = 0;
ep->pio_irqs = 0;
ep->ep.maxpacket = le16_to_cpu(get_unaligned(&desc->wMaxPacketSize));
/* flush fifo (mostly for OUT buffers) */
pxa25x_ep_fifo_flush(_ep);
/* ... reset halt state too, if we could ... */
debug("enabled %s\n", _ep->name);
return 0;
}
static int pxa25x_ep_disable(struct usb_ep *_ep)
{
struct pxa25x_ep *ep;
unsigned long flags;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (!_ep || !ep->desc) {
printf("%s, %s not enabled\n", __func__,
_ep ? ep->ep.name : NULL);
return -EINVAL;
}
local_irq_save(flags);
nuke(ep, -ESHUTDOWN);
/* flush fifo (mostly for IN buffers) */
pxa25x_ep_fifo_flush(_ep);
ep->desc = NULL;
ep->stopped = 1;
local_irq_restore(flags);
debug("%s disabled\n", _ep->name);
return 0;
}
/*-------------------------------------------------------------------------*/
/*
* for the pxa25x, these can just wrap kmalloc/kfree. gadget drivers
* must still pass correctly initialized endpoints, since other controller
* drivers may care about how it's currently set up (dma issues etc).
*/
/*
* pxa25x_ep_alloc_request - allocate a request data structure
*/
static struct usb_request *
pxa25x_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct pxa25x_request *req;
req = kzalloc(sizeof(*req), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
/*
* pxa25x_ep_free_request - deallocate a request data structure
*/
static void
pxa25x_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa25x_request *req;
req = container_of(_req, struct pxa25x_request, req);
WARN_ON(!list_empty(&req->queue));
kfree(req);
}
/*-------------------------------------------------------------------------*/
/*
* done - retire a request; caller blocked irqs
*/
static void done(struct pxa25x_ep *ep, struct pxa25x_request *req, int status)
{
unsigned stopped = ep->stopped;
list_del_init(&req->queue);
if (likely(req->req.status == -EINPROGRESS))
req->req.status = status;
else
status = req->req.status;
if (status && status != -ESHUTDOWN)
debug("complete %s req %p stat %d len %u/%u\n",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
/* don't modify queue heads during completion callback */
ep->stopped = 1;
req->req.complete(&ep->ep, &req->req);
ep->stopped = stopped;
}
static inline void ep0_idle(struct pxa25x_udc *dev)
{
dev->ep0state = EP0_IDLE;
}
static int
write_packet(u32 *uddr, struct pxa25x_request *req, unsigned max)
{
u8 *buf;
unsigned length, count;
debug("%s(): uddr %p\n", __func__, uddr);
buf = req->req.buf + req->req.actual;
prefetch(buf);
/* how big will this packet be? */
length = min(req->req.length - req->req.actual, max);
req->req.actual += length;
count = length;
while (likely(count--))
writeb(*buf++, uddr);
return length;
}
/*
* write to an IN endpoint fifo, as many packets as possible.
* irqs will use this to write the rest later.
* caller guarantees at least one packet buffer is ready (or a zlp).
*/
static int
write_fifo(struct pxa25x_ep *ep, struct pxa25x_request *req)
{
unsigned max;
max = le16_to_cpu(get_unaligned(&ep->desc->wMaxPacketSize));
do {
unsigned count;
int is_last, is_short;
count = write_packet(ep->reg_uddr, req, max);
/* last packet is usually short (or a zlp) */
if (unlikely(count != max))
is_last = is_short = 1;
else {
if (likely(req->req.length != req->req.actual)
|| req->req.zero)
is_last = 0;
else
is_last = 1;
/* interrupt/iso maxpacket may not fill the fifo */
is_short = unlikely(max < ep->fifo_size);
}
debug_cond(NOISY, "wrote %s %d bytes%s%s %d left %p\n",
ep->ep.name, count,
is_last ? "/L" : "", is_short ? "/S" : "",
req->req.length - req->req.actual, req);
/*
* let loose that packet. maybe try writing another one,
* double buffering might work. TSP, TPC, and TFS
* bit values are the same for all normal IN endpoints.
*/
writel(UDCCS_BI_TPC, ep->reg_udccs);
if (is_short)
writel(UDCCS_BI_TSP, ep->reg_udccs);
/* requests complete when all IN data is in the FIFO */
if (is_last) {
done(ep, req, 0);
if (list_empty(&ep->queue))
pio_irq_disable(ep->bEndpointAddress);
return 1;
}
/*
* TODO experiment: how robust can fifo mode tweaking be?
* double buffering is off in the default fifo mode, which
* prevents TFS from being set here.
*/
} while (readl(ep->reg_udccs) & UDCCS_BI_TFS);
return 0;
}
/*
* caller asserts req->pending (ep0 irq status nyet cleared); starts
* ep0 data stage. these chips want very simple state transitions.
*/
static inline
void ep0start(struct pxa25x_udc *dev, u32 flags, const char *tag)
{
writel(flags|UDCCS0_SA|UDCCS0_OPR, &dev->regs->udccs[0]);
writel(USIR0_IR0, &dev->regs->usir0);
dev->req_pending = 0;
debug_cond(NOISY, "%s() %s, udccs0: %02x/%02x usir: %X.%X\n",
__func__, tag, readl(&dev->regs->udccs[0]), flags,
readl(&dev->regs->usir1), readl(&dev->regs->usir0));
}
static int
write_ep0_fifo(struct pxa25x_ep *ep, struct pxa25x_request *req)
{
unsigned count;
int is_short;
count = write_packet(&ep->dev->regs->uddr0, req, EP0_FIFO_SIZE);
ep->dev->stats.write.bytes += count;
/* last packet "must be" short (or a zlp) */
is_short = (count != EP0_FIFO_SIZE);
debug_cond(NOISY, "ep0in %d bytes %d left %p\n", count,
req->req.length - req->req.actual, req);
if (unlikely(is_short)) {
if (ep->dev->req_pending)
ep0start(ep->dev, UDCCS0_IPR, "short IN");
else
writel(UDCCS0_IPR, &ep->dev->regs->udccs[0]);
count = req->req.length;
done(ep, req, 0);
ep0_idle(ep->dev);
/*
* This seems to get rid of lost status irqs in some cases:
* host responds quickly, or next request involves config
* change automagic, or should have been hidden, or ...
*
* FIXME get rid of all udelays possible...
*/
if (count >= EP0_FIFO_SIZE) {
count = 100;
do {
if ((readl(&ep->dev->regs->udccs[0]) &
UDCCS0_OPR) != 0) {
/* clear OPR, generate ack */
writel(UDCCS0_OPR,
&ep->dev->regs->udccs[0]);
break;
}
count--;
udelay(1);
} while (count);
}
} else if (ep->dev->req_pending)
ep0start(ep->dev, 0, "IN");
return is_short;
}
/*
* read_fifo - unload packet(s) from the fifo we use for usb OUT
* transfers and put them into the request. caller should have made
* sure there's at least one packet ready.
*
* returns true if the request completed because of short packet or the
* request buffer having filled (and maybe overran till end-of-packet).
*/
static int
read_fifo(struct pxa25x_ep *ep, struct pxa25x_request *req)
{
u32 udccs;
u8 *buf;
unsigned bufferspace, count, is_short;
for (;;) {
/*
* make sure there's a packet in the FIFO.
* UDCCS_{BO,IO}_RPC are all the same bit value.
* UDCCS_{BO,IO}_RNE are all the same bit value.
*/
udccs = readl(ep->reg_udccs);
if (unlikely((udccs & UDCCS_BO_RPC) == 0))
break;
buf = req->req.buf + req->req.actual;
prefetchw(buf);
bufferspace = req->req.length - req->req.actual;
/* read all bytes from this packet */
if (likely(udccs & UDCCS_BO_RNE)) {
count = 1 + (0x0ff & readl(ep->reg_ubcr));
req->req.actual += min(count, bufferspace);
} else /* zlp */
count = 0;
is_short = (count < ep->ep.maxpacket);
debug_cond(NOISY, "read %s %02x, %d bytes%s req %p %d/%d\n",
ep->ep.name, udccs, count,
is_short ? "/S" : "",
req, req->req.actual, req->req.length);
while (likely(count-- != 0)) {
u8 byte = readb(ep->reg_uddr);
if (unlikely(bufferspace == 0)) {
/*
* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
printf("%s overflow %d\n",
ep->ep.name, count);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
bufferspace--;
}
}
writel(UDCCS_BO_RPC, ep->reg_udccs);
/* RPC/RSP/RNE could now reflect the other packet buffer */
/* iso is one request per packet */
if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
if (udccs & UDCCS_IO_ROF)
req->req.status = -EHOSTUNREACH;
/* more like "is_done" */
is_short = 1;
}
/* completion */
if (is_short || req->req.actual == req->req.length) {
done(ep, req, 0);
if (list_empty(&ep->queue))
pio_irq_disable(ep->bEndpointAddress);
return 1;
}
/* finished that packet. the next one may be waiting... */
}
return 0;
}
/*
* special ep0 version of the above. no UBCR0 or double buffering; status
* handshaking is magic. most device protocols don't need control-OUT.
* CDC vendor commands (and RNDIS), mass storage CB/CBI, and some other
* protocols do use them.
*/
static int
read_ep0_fifo(struct pxa25x_ep *ep, struct pxa25x_request *req)
{
u8 *buf, byte;
unsigned bufferspace;
buf = req->req.buf + req->req.actual;
bufferspace = req->req.length - req->req.actual;
while (readl(&ep->dev->regs->udccs[0]) & UDCCS0_RNE) {
byte = (u8)readb(&ep->dev->regs->uddr0);
if (unlikely(bufferspace == 0)) {
/*
* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
printf("%s overflow\n", ep->ep.name);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
req->req.actual++;
bufferspace--;
}
}
writel(UDCCS0_OPR | UDCCS0_IPR, &ep->dev->regs->udccs[0]);
/* completion */
if (req->req.actual >= req->req.length)
return 1;
/* finished that packet. the next one may be waiting... */
return 0;
}
/*-------------------------------------------------------------------------*/
static int
pxa25x_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct pxa25x_request *req;
struct pxa25x_ep *ep;
struct pxa25x_udc *dev;
unsigned long flags;
req = container_of(_req, struct pxa25x_request, req);
if (unlikely(!_req || !_req->complete || !_req->buf
|| !list_empty(&req->queue))) {
printf("%s, bad params\n", __func__);
return -EINVAL;
}
ep = container_of(_ep, struct pxa25x_ep, ep);
if (unlikely(!_ep || (!ep->desc && ep->ep.name != ep0name))) {
printf("%s, bad ep\n", __func__);
return -EINVAL;
}
dev = ep->dev;
if (unlikely(!dev->driver
|| dev->gadget.speed == USB_SPEED_UNKNOWN)) {
printf("%s, bogus device state\n", __func__);
return -ESHUTDOWN;
}
/*
* iso is always one packet per request, that's the only way
* we can report per-packet status. that also helps with dma.
*/
if (unlikely(ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
&& req->req.length >
le16_to_cpu(get_unaligned(&ep->desc->wMaxPacketSize))))
return -EMSGSIZE;
debug_cond(NOISY, "%s queue req %p, len %d buf %p\n",
_ep->name, _req, _req->length, _req->buf);
local_irq_save(flags);
_req->status = -EINPROGRESS;
_req->actual = 0;
/* kickstart this i/o queue? */
if (list_empty(&ep->queue) && !ep->stopped) {
if (ep->desc == NULL/* ep0 */) {
unsigned length = _req->length;
switch (dev->ep0state) {
case EP0_IN_DATA_PHASE:
dev->stats.write.ops++;
if (write_ep0_fifo(ep, req))
req = NULL;
break;
case EP0_OUT_DATA_PHASE:
dev->stats.read.ops++;
/* messy ... */
if (dev->req_config) {
debug("ep0 config ack%s\n",
dev->has_cfr ? "" : " raced");
if (dev->has_cfr)
writel(UDCCFR_AREN|UDCCFR_ACM
|UDCCFR_MB1,
&ep->dev->regs->udccfr);
done(ep, req, 0);
dev->ep0state = EP0_END_XFER;
local_irq_restore(flags);
return 0;
}
if (dev->req_pending)
ep0start(dev, UDCCS0_IPR, "OUT");
if (length == 0 ||
((readl(
&ep->dev->regs->udccs[0])
& UDCCS0_RNE) != 0
&& read_ep0_fifo(ep, req))) {
ep0_idle(dev);
done(ep, req, 0);
req = NULL;
}
break;
default:
printf("ep0 i/o, odd state %d\n",
dev->ep0state);
local_irq_restore(flags);
return -EL2HLT;
}
/* can the FIFO can satisfy the request immediately? */
} else if ((ep->bEndpointAddress & USB_DIR_IN) != 0) {
if ((readl(ep->reg_udccs) & UDCCS_BI_TFS) != 0
&& write_fifo(ep, req))
req = NULL;
} else if ((readl(ep->reg_udccs) & UDCCS_BO_RFS) != 0
&& read_fifo(ep, req)) {
req = NULL;
}
if (likely(req && ep->desc))
pio_irq_enable(ep->bEndpointAddress);
}
/* pio or dma irq handler advances the queue. */
if (likely(req != NULL))
list_add_tail(&req->queue, &ep->queue);
local_irq_restore(flags);
return 0;
}
/*
* nuke - dequeue ALL requests
*/
static void nuke(struct pxa25x_ep *ep, int status)
{
struct pxa25x_request *req;
/* called with irqs blocked */
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next,
struct pxa25x_request,
queue);
done(ep, req, status);
}
if (ep->desc)
pio_irq_disable(ep->bEndpointAddress);
}
/* dequeue JUST ONE request */
static int pxa25x_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa25x_ep *ep;
struct pxa25x_request *req;
unsigned long flags;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (!_ep || ep->ep.name == ep0name)
return -EINVAL;
local_irq_save(flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
local_irq_restore(flags);
return -EINVAL;
}
done(ep, req, -ECONNRESET);
local_irq_restore(flags);
return 0;
}
/*-------------------------------------------------------------------------*/
static int pxa25x_ep_set_halt(struct usb_ep *_ep, int value)
{
struct pxa25x_ep *ep;
unsigned long flags;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (unlikely(!_ep
|| (!ep->desc && ep->ep.name != ep0name))
|| ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
printf("%s, bad ep\n", __func__);
return -EINVAL;
}
if (value == 0) {
/*
* this path (reset toggle+halt) is needed to implement
* SET_INTERFACE on normal hardware. but it can't be
* done from software on the PXA UDC, and the hardware
* forgets to do it as part of SET_INTERFACE automagic.
*/
printf("only host can clear %s halt\n", _ep->name);
return -EROFS;
}
local_irq_save(flags);
if ((ep->bEndpointAddress & USB_DIR_IN) != 0
&& ((readl(ep->reg_udccs) & UDCCS_BI_TFS) == 0
|| !list_empty(&ep->queue))) {
local_irq_restore(flags);
return -EAGAIN;
}
/* FST bit is the same for control, bulk in, bulk out, interrupt in */
writel(UDCCS_BI_FST|UDCCS_BI_FTF, ep->reg_udccs);
/* ep0 needs special care */
if (!ep->desc) {
start_watchdog(ep->dev);
ep->dev->req_pending = 0;
ep->dev->ep0state = EP0_STALL;
/* and bulk/intr endpoints like dropping stalls too */
} else {
unsigned i;
for (i = 0; i < 1000; i += 20) {
if (readl(ep->reg_udccs) & UDCCS_BI_SST)
break;
udelay(20);
}
}
local_irq_restore(flags);
debug("%s halt\n", _ep->name);
return 0;
}
static int pxa25x_ep_fifo_status(struct usb_ep *_ep)
{
struct pxa25x_ep *ep;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (!_ep) {
printf("%s, bad ep\n", __func__);
return -ENODEV;
}
/* pxa can't report unclaimed bytes from IN fifos */
if ((ep->bEndpointAddress & USB_DIR_IN) != 0)
return -EOPNOTSUPP;
if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN
|| (readl(ep->reg_udccs) & UDCCS_BO_RFS) == 0)
return 0;
else
return (readl(ep->reg_ubcr) & 0xfff) + 1;
}
static void pxa25x_ep_fifo_flush(struct usb_ep *_ep)
{
struct pxa25x_ep *ep;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (!_ep || ep->ep.name == ep0name || !list_empty(&ep->queue)) {
printf("%s, bad ep\n", __func__);
return;
}
/* toggle and halt bits stay unchanged */
/* for OUT, just read and discard the FIFO contents. */
if ((ep->bEndpointAddress & USB_DIR_IN) == 0) {
while (((readl(ep->reg_udccs)) & UDCCS_BO_RNE) != 0)
(void)readb(ep->reg_uddr);
return;
}
/* most IN status is the same, but ISO can't stall */
writel(UDCCS_BI_TPC|UDCCS_BI_FTF|UDCCS_BI_TUR
| (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
? 0 : UDCCS_BI_SST), ep->reg_udccs);
}
static struct usb_ep_ops pxa25x_ep_ops = {
.enable = pxa25x_ep_enable,
.disable = pxa25x_ep_disable,
.alloc_request = pxa25x_ep_alloc_request,
.free_request = pxa25x_ep_free_request,
.queue = pxa25x_ep_queue,
.dequeue = pxa25x_ep_dequeue,
.set_halt = pxa25x_ep_set_halt,
.fifo_status = pxa25x_ep_fifo_status,
.fifo_flush = pxa25x_ep_fifo_flush,
};
/* ---------------------------------------------------------------------------
* device-scoped parts of the api to the usb controller hardware
* ---------------------------------------------------------------------------
*/
static int pxa25x_udc_get_frame(struct usb_gadget *_gadget)
{
return ((readl(&the_controller->regs->ufnrh) & 0x07) << 8) |
(readl(&the_controller->regs->ufnrl) & 0xff);
}
static int pxa25x_udc_wakeup(struct usb_gadget *_gadget)
{
/* host may not have enabled remote wakeup */
if ((readl(&the_controller->regs->udccs[0]) & UDCCS0_DRWF) == 0)
return -EHOSTUNREACH;
udc_set_mask_UDCCR(UDCCR_RSM);
return 0;
}
static void stop_activity(struct pxa25x_udc *, struct usb_gadget_driver *);
static void udc_enable(struct pxa25x_udc *);
static void udc_disable(struct pxa25x_udc *);
/*
* We disable the UDC -- and its 48 MHz clock -- whenever it's not
* in active use.
*/
static int pullup(struct pxa25x_udc *udc)
{
if (udc->pullup)
pullup_on();
else
pullup_off();
int is_active = udc->pullup;
if (is_active) {
if (!udc->active) {
udc->active = 1;
udc_enable(udc);
}
} else {
if (udc->active) {
if (udc->gadget.speed != USB_SPEED_UNKNOWN)
stop_activity(udc, udc->driver);
udc_disable(udc);
udc->active = 0;
}
}
return 0;
}
/* VBUS reporting logically comes from a transceiver */
static int pxa25x_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
{
struct pxa25x_udc *udc;
udc = container_of(_gadget, struct pxa25x_udc, gadget);
printf("vbus %s\n", is_active ? "supplied" : "inactive");
pullup(udc);
return 0;
}
/* drivers may have software control over D+ pullup */
static int pxa25x_udc_pullup(struct usb_gadget *_gadget, int is_active)
{
struct pxa25x_udc *udc;
udc = container_of(_gadget, struct pxa25x_udc, gadget);
/* not all boards support pullup control */
if (!udc->mach->udc_command)
return -EOPNOTSUPP;
udc->pullup = (is_active != 0);
pullup(udc);
return 0;
}
/*
* boards may consume current from VBUS, up to 100-500mA based on config.
* the 500uA suspend ceiling means that exclusively vbus-powered PXA designs
* violate USB specs.
*/
static int pxa25x_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
{
return -EOPNOTSUPP;
}
static const struct usb_gadget_ops pxa25x_udc_ops = {
.get_frame = pxa25x_udc_get_frame,
.wakeup = pxa25x_udc_wakeup,
.vbus_session = pxa25x_udc_vbus_session,
.pullup = pxa25x_udc_pullup,
.vbus_draw = pxa25x_udc_vbus_draw,
};
/*-------------------------------------------------------------------------*/
/*
* udc_disable - disable USB device controller
*/
static void udc_disable(struct pxa25x_udc *dev)
{
/* block all irqs */
udc_set_mask_UDCCR(UDCCR_SRM|UDCCR_REM);
writel(0xff, &dev->regs->uicr0);
writel(0xff, &dev->regs->uicr1);
writel(UFNRH_SIM, &dev->regs->ufnrh);
/* if hardware supports it, disconnect from usb */
pullup_off();
udc_clear_mask_UDCCR(UDCCR_UDE);
ep0_idle(dev);
dev->gadget.speed = USB_SPEED_UNKNOWN;
}
/*
* udc_reinit - initialize software state
*/
static void udc_reinit(struct pxa25x_udc *dev)
{
u32 i;
/* device/ep0 records init */
INIT_LIST_HEAD(&dev->gadget.ep_list);
INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
dev->ep0state = EP0_IDLE;
/* basic endpoint records init */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa25x_ep *ep = &dev->ep[i];
if (i != 0)
list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
ep->desc = NULL;
ep->stopped = 0;
INIT_LIST_HEAD(&ep->queue);
ep->pio_irqs = 0;
}
/* the rest was statically initialized, and is read-only */
}
/*
* until it's enabled, this UDC should be completely invisible
* to any USB host.
*/
static void udc_enable(struct pxa25x_udc *dev)
{
debug("udc: enabling udc\n");
udc_clear_mask_UDCCR(UDCCR_UDE);
/*
* Try to clear these bits before we enable the udc.
* Do not touch reset ack bit, we would take care of it in
* interrupt handle routine
*/
udc_ack_int_UDCCR(UDCCR_SUSIR|UDCCR_RESIR);
ep0_idle(dev);
dev->gadget.speed = USB_SPEED_UNKNOWN;
dev->stats.irqs = 0;
/*
* sequence taken from chapter 12.5.10, PXA250 AppProcDevManual:
* - enable UDC
* - if RESET is already in progress, ack interrupt
* - unmask reset interrupt
*/
udc_set_mask_UDCCR(UDCCR_UDE);
if (!(readl(&dev->regs->udccr) & UDCCR_UDA))
udc_ack_int_UDCCR(UDCCR_RSTIR);
if (dev->has_cfr /* UDC_RES2 is defined */) {
/*
* pxa255 (a0+) can avoid a set_config race that could
* prevent gadget drivers from configuring correctly
*/
writel(UDCCFR_ACM | UDCCFR_MB1, &dev->regs->udccfr);
}
/* enable suspend/resume and reset irqs */
udc_clear_mask_UDCCR(UDCCR_SRM | UDCCR_REM);
/* enable ep0 irqs */
clrbits_le32(&dev->regs->uicr0, UICR0_IM0);
/* if hardware supports it, pullup D+ and wait for reset */
pullup_on();
}
static inline void clear_ep_state(struct pxa25x_udc *dev)
{
unsigned i;
/*
* hardware SET_{CONFIGURATION,INTERFACE} automagic resets endpoint
* fifos, and pending transactions mustn't be continued in any case.
*/
for (i = 1; i < PXA_UDC_NUM_ENDPOINTS; i++)
nuke(&dev->ep[i], -ECONNABORTED);
}
static void handle_ep0(struct pxa25x_udc *dev)
{
u32 udccs0 = readl(&dev->regs->udccs[0]);
struct pxa25x_ep *ep = &dev->ep[0];
struct pxa25x_request *req;
union {
struct usb_ctrlrequest r;
u8 raw[8];
u32 word[2];
} u;
if (list_empty(&ep->queue))
req = NULL;
else
req = list_entry(ep->queue.next, struct pxa25x_request, queue);
/* clear stall status */
if (udccs0 & UDCCS0_SST) {
nuke(ep, -EPIPE);
writel(UDCCS0_SST, &dev->regs->udccs[0]);
stop_watchdog(dev);
ep0_idle(dev);
}
/* previous request unfinished? non-error iff back-to-back ... */
if ((udccs0 & UDCCS0_SA) != 0 && dev->ep0state != EP0_IDLE) {
nuke(ep, 0);
stop_watchdog(dev);
ep0_idle(dev);
}
switch (dev->ep0state) {
case EP0_IDLE:
/* late-breaking status? */
udccs0 = readl(&dev->regs->udccs[0]);
/* start control request? */
if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))
== (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))) {
int i;
nuke(ep, -EPROTO);
/* read SETUP packet */
for (i = 0; i < 8; i++) {
if (unlikely(!(readl(&dev->regs->udccs[0]) &
UDCCS0_RNE))) {
bad_setup:
debug("SETUP %d!\n", i);
goto stall;
}
u.raw[i] = (u8)readb(&dev->regs->uddr0);
}
if (unlikely((readl(&dev->regs->udccs[0]) &
UDCCS0_RNE) != 0))
goto bad_setup;
got_setup:
debug("SETUP %02x.%02x v%04x i%04x l%04x\n",
u.r.bRequestType, u.r.bRequest,
le16_to_cpu(u.r.wValue),
le16_to_cpu(u.r.wIndex),
le16_to_cpu(u.r.wLength));
/* cope with automagic for some standard requests. */
dev->req_std = (u.r.bRequestType & USB_TYPE_MASK)
== USB_TYPE_STANDARD;
dev->req_config = 0;
dev->req_pending = 1;
switch (u.r.bRequest) {
/* hardware restricts gadget drivers here! */
case USB_REQ_SET_CONFIGURATION:
debug("GOT SET_CONFIGURATION\n");
if (u.r.bRequestType == USB_RECIP_DEVICE) {
/*
* reflect hardware's automagic
* up to the gadget driver.
*/
config_change:
dev->req_config = 1;
clear_ep_state(dev);
/*
* if !has_cfr, there's no synch
* else use AREN (later) not SA|OPR
* USIR0_IR0 acts edge sensitive
*/
}
break;
/* ... and here, even more ... */
case USB_REQ_SET_INTERFACE:
if (u.r.bRequestType == USB_RECIP_INTERFACE) {
/*
* udc hardware is broken by design:
* - altsetting may only be zero;
* - hw resets all interfaces' eps;
* - ep reset doesn't include halt(?).
*/
printf("broken set_interface (%d/%d)\n",
le16_to_cpu(u.r.wIndex),
le16_to_cpu(u.r.wValue));
goto config_change;
}
break;
/* hardware was supposed to hide this */
case USB_REQ_SET_ADDRESS:
debug("GOT SET ADDRESS\n");
if (u.r.bRequestType == USB_RECIP_DEVICE) {
ep0start(dev, 0, "address");
return;
}
break;
}
if (u.r.bRequestType & USB_DIR_IN)
dev->ep0state = EP0_IN_DATA_PHASE;
else
dev->ep0state = EP0_OUT_DATA_PHASE;
i = dev->driver->setup(&dev->gadget, &u.r);
if (i < 0) {
/* hardware automagic preventing STALL... */
if (dev->req_config) {
/*
* hardware sometimes neglects to tell
* tell us about config change events,
* so later ones may fail...
*/
printf("config change %02x fail %d?\n",
u.r.bRequest, i);
return;
/*
* TODO experiment: if has_cfr,
* hardware didn't ACK; maybe we
* could actually STALL!
*/
}
if (0) {
stall:
/* uninitialized when goto stall */
i = 0;
}
debug("protocol STALL, "
"%02x err %d\n",
readl(&dev->regs->udccs[0]), i);
/*
* the watchdog timer helps deal with cases
* where udc seems to clear FST wrongly, and
* then NAKs instead of STALLing.
*/
ep0start(dev, UDCCS0_FST|UDCCS0_FTF, "stall");
start_watchdog(dev);
dev->ep0state = EP0_STALL;
/* deferred i/o == no response yet */
} else if (dev->req_pending) {
if (likely(dev->ep0state == EP0_IN_DATA_PHASE
|| dev->req_std || u.r.wLength))
ep0start(dev, 0, "defer");
else
ep0start(dev, UDCCS0_IPR, "defer/IPR");
}
/* expect at least one data or status stage irq */
return;
} else if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA))
== (UDCCS0_OPR|UDCCS0_SA))) {
unsigned i;
/*
* pxa210/250 erratum 131 for B0/B1 says RNE lies.
* still observed on a pxa255 a0.
*/
debug("e131\n");
nuke(ep, -EPROTO);
/* read SETUP data, but don't trust it too much */
for (i = 0; i < 8; i++)
u.raw[i] = (u8)readb(&dev->regs->uddr0);
if ((u.r.bRequestType & USB_RECIP_MASK)
> USB_RECIP_OTHER)
goto stall;
if (u.word[0] == 0 && u.word[1] == 0)
goto stall;
goto got_setup;
} else {
/*
* some random early IRQ:
* - we acked FST
* - IPR cleared
* - OPR got set, without SA (likely status stage)
*/
debug("random IRQ %X %X\n", udccs0,
readl(&dev->regs->udccs[0]));
writel(udccs0 & (UDCCS0_SA|UDCCS0_OPR),
&dev->regs->udccs[0]);
}
break;
case EP0_IN_DATA_PHASE: /* GET_DESCRIPTOR etc */
if (udccs0 & UDCCS0_OPR) {
debug("ep0in premature status\n");
if (req)
done(ep, req, 0);
ep0_idle(dev);
} else /* irq was IPR clearing */ {
if (req) {
debug("next ep0 in packet\n");
/* this IN packet might finish the request */
(void) write_ep0_fifo(ep, req);
} /* else IN token before response was written */
}
break;
case EP0_OUT_DATA_PHASE: /* SET_DESCRIPTOR etc */
if (udccs0 & UDCCS0_OPR) {
if (req) {
/* this OUT packet might finish the request */
if (read_ep0_fifo(ep, req))
done(ep, req, 0);
/* else more OUT packets expected */
} /* else OUT token before read was issued */
} else /* irq was IPR clearing */ {
debug("ep0out premature status\n");
if (req)
done(ep, req, 0);
ep0_idle(dev);
}
break;
case EP0_END_XFER:
if (req)
done(ep, req, 0);
/*
* ack control-IN status (maybe in-zlp was skipped)
* also appears after some config change events.
*/
if (udccs0 & UDCCS0_OPR)
writel(UDCCS0_OPR, &dev->regs->udccs[0]);
ep0_idle(dev);
break;
case EP0_STALL:
writel(UDCCS0_FST, &dev->regs->udccs[0]);
break;
}
writel(USIR0_IR0, &dev->regs->usir0);
}
static void handle_ep(struct pxa25x_ep *ep)
{
struct pxa25x_request *req;
int is_in = ep->bEndpointAddress & USB_DIR_IN;
int completed;
u32 udccs, tmp;
do {
completed = 0;
if (likely(!list_empty(&ep->queue)))
req = list_entry(ep->queue.next,
struct pxa25x_request, queue);
else
req = NULL;
/* TODO check FST handling */
udccs = readl(ep->reg_udccs);
if (unlikely(is_in)) { /* irq from TPC, SST, or (ISO) TUR */
tmp = UDCCS_BI_TUR;
if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
tmp |= UDCCS_BI_SST;
tmp &= udccs;
if (likely(tmp))
writel(tmp, ep->reg_udccs);
if (req && likely((udccs & UDCCS_BI_TFS) != 0))
completed = write_fifo(ep, req);
} else { /* irq from RPC (or for ISO, ROF) */
if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
tmp = UDCCS_BO_SST | UDCCS_BO_DME;
else
tmp = UDCCS_IO_ROF | UDCCS_IO_DME;
tmp &= udccs;
if (likely(tmp))
writel(tmp, ep->reg_udccs);
/* fifos can hold packets, ready for reading... */
if (likely(req))
completed = read_fifo(ep, req);
else
pio_irq_disable(ep->bEndpointAddress);
}
ep->pio_irqs++;
} while (completed);
}
/*
* pxa25x_udc_irq - interrupt handler
*
* avoid delays in ep0 processing. the control handshaking isn't always
* under software control (pxa250c0 and the pxa255 are better), and delays
* could cause usb protocol errors.
*/
static struct pxa25x_udc memory;
static int
pxa25x_udc_irq(void)
{
struct pxa25x_udc *dev = &memory;
int handled;
test_watchdog(dev);
dev->stats.irqs++;
do {
u32 udccr = readl(&dev->regs->udccr);
handled = 0;
/* SUSpend Interrupt Request */
if (unlikely(udccr & UDCCR_SUSIR)) {
udc_ack_int_UDCCR(UDCCR_SUSIR);
handled = 1;
debug("USB suspend\n");
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->suspend)
dev->driver->suspend(&dev->gadget);
ep0_idle(dev);
}
/* RESume Interrupt Request */
if (unlikely(udccr & UDCCR_RESIR)) {
udc_ack_int_UDCCR(UDCCR_RESIR);
handled = 1;
debug("USB resume\n");
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->resume)
dev->driver->resume(&dev->gadget);
}
/* ReSeT Interrupt Request - USB reset */
if (unlikely(udccr & UDCCR_RSTIR)) {
udc_ack_int_UDCCR(UDCCR_RSTIR);
handled = 1;
if ((readl(&dev->regs->udccr) & UDCCR_UDA) == 0) {
debug("USB reset start\n");
/*
* reset driver and endpoints,
* in case that's not yet done
*/
stop_activity(dev, dev->driver);
} else {
debug("USB reset end\n");
dev->gadget.speed = USB_SPEED_FULL;
memset(&dev->stats, 0, sizeof dev->stats);
/* driver and endpoints are still reset */
}
} else {
u32 uicr0 = readl(&dev->regs->uicr0);
u32 uicr1 = readl(&dev->regs->uicr1);
u32 usir0 = readl(&dev->regs->usir0);
u32 usir1 = readl(&dev->regs->usir1);
usir0 = usir0 & ~uicr0;
usir1 = usir1 & ~uicr1;
int i;
if (unlikely(!usir0 && !usir1))
continue;
debug_cond(NOISY, "irq %02x.%02x\n", usir1, usir0);
/* control traffic */
if (usir0 & USIR0_IR0) {
dev->ep[0].pio_irqs++;
handle_ep0(dev);
handled = 1;
}
/* endpoint data transfers */
for (i = 0; i < 8; i++) {
u32 tmp = 1 << i;
if (i && (usir0 & tmp)) {
handle_ep(&dev->ep[i]);
setbits_le32(&dev->regs->usir0, tmp);
handled = 1;
}
#ifndef CONFIG_USB_PXA25X_SMALL
if (usir1 & tmp) {
handle_ep(&dev->ep[i+8]);
setbits_le32(&dev->regs->usir1, tmp);
handled = 1;
}
#endif
}
}
/* we could also ask for 1 msec SOF (SIR) interrupts */
} while (handled);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
/*
* this uses load-time allocation and initialization (instead of
* doing it at run-time) to save code, eliminate fault paths, and
* be more obviously correct.
*/
static struct pxa25x_udc memory = {
.regs = UDC_REGS,
.gadget = {
.ops = &pxa25x_udc_ops,
.ep0 = &memory.ep[0].ep,
.name = driver_name,
},
/* control endpoint */
.ep[0] = {
.ep = {
.name = ep0name,
.ops = &pxa25x_ep_ops,
.maxpacket = EP0_FIFO_SIZE,
},
.dev = &memory,
.reg_udccs = &UDC_REGS->udccs[0],
.reg_uddr = &UDC_REGS->uddr0,
},
/* first group of endpoints */
.ep[1] = {
.ep = {
.name = "ep1in-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 1,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDC_REGS->udccs[1],
.reg_uddr = &UDC_REGS->uddr1,
},
.ep[2] = {
.ep = {
.name = "ep2out-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 2,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDC_REGS->udccs[2],
.reg_ubcr = &UDC_REGS->ubcr2,
.reg_uddr = &UDC_REGS->uddr2,
},
#ifndef CONFIG_USB_PXA25X_SMALL
.ep[3] = {
.ep = {
.name = "ep3in-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 3,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDC_REGS->udccs[3],
.reg_uddr = &UDC_REGS->uddr3,
},
.ep[4] = {
.ep = {
.name = "ep4out-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 4,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDC_REGS->udccs[4],
.reg_ubcr = &UDC_REGS->ubcr4,
.reg_uddr = &UDC_REGS->uddr4,
},
.ep[5] = {
.ep = {
.name = "ep5in-int",
.ops = &pxa25x_ep_ops,
.maxpacket = INT_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 5,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.reg_udccs = &UDC_REGS->udccs[5],
.reg_uddr = &UDC_REGS->uddr5,
},
/* second group of endpoints */
.ep[6] = {
.ep = {
.name = "ep6in-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 6,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDC_REGS->udccs[6],
.reg_uddr = &UDC_REGS->uddr6,
},
.ep[7] = {
.ep = {
.name = "ep7out-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 7,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDC_REGS->udccs[7],
.reg_ubcr = &UDC_REGS->ubcr7,
.reg_uddr = &UDC_REGS->uddr7,
},
.ep[8] = {
.ep = {
.name = "ep8in-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 8,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDC_REGS->udccs[8],
.reg_uddr = &UDC_REGS->uddr8,
},
.ep[9] = {
.ep = {
.name = "ep9out-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 9,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDC_REGS->udccs[9],
.reg_ubcr = &UDC_REGS->ubcr9,
.reg_uddr = &UDC_REGS->uddr9,
},
.ep[10] = {
.ep = {
.name = "ep10in-int",
.ops = &pxa25x_ep_ops,
.maxpacket = INT_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 10,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.reg_udccs = &UDC_REGS->udccs[10],
.reg_uddr = &UDC_REGS->uddr10,
},
/* third group of endpoints */
.ep[11] = {
.ep = {
.name = "ep11in-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 11,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDC_REGS->udccs[11],
.reg_uddr = &UDC_REGS->uddr11,
},
.ep[12] = {
.ep = {
.name = "ep12out-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 12,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDC_REGS->udccs[12],
.reg_ubcr = &UDC_REGS->ubcr12,
.reg_uddr = &UDC_REGS->uddr12,
},
.ep[13] = {
.ep = {
.name = "ep13in-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 13,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDC_REGS->udccs[13],
.reg_uddr = &UDC_REGS->uddr13,
},
.ep[14] = {
.ep = {
.name = "ep14out-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 14,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDC_REGS->udccs[14],
.reg_ubcr = &UDC_REGS->ubcr14,
.reg_uddr = &UDC_REGS->uddr14,
},
.ep[15] = {
.ep = {
.name = "ep15in-int",
.ops = &pxa25x_ep_ops,
.maxpacket = INT_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 15,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.reg_udccs = &UDC_REGS->udccs[15],
.reg_uddr = &UDC_REGS->uddr15,
},
#endif /* !CONFIG_USB_PXA25X_SMALL */
};
static void udc_command(int cmd)
{
switch (cmd) {
case PXA2XX_UDC_CMD_CONNECT:
setbits_le32(GPDR(CONFIG_USB_DEV_PULLUP_GPIO),
GPIO_bit(CONFIG_USB_DEV_PULLUP_GPIO));
/* enable pullup */
writel(GPIO_bit(CONFIG_USB_DEV_PULLUP_GPIO),
GPCR(CONFIG_USB_DEV_PULLUP_GPIO));
debug("Connected to USB\n");
break;
case PXA2XX_UDC_CMD_DISCONNECT:
/* disable pullup resistor */
writel(GPIO_bit(CONFIG_USB_DEV_PULLUP_GPIO),
GPSR(CONFIG_USB_DEV_PULLUP_GPIO));
/* setup pin as input, line will float */
clrbits_le32(GPDR(CONFIG_USB_DEV_PULLUP_GPIO),
GPIO_bit(CONFIG_USB_DEV_PULLUP_GPIO));
debug("Disconnected from USB\n");
break;
}
}
static struct pxa2xx_udc_mach_info mach_info = {
.udc_command = udc_command,
};
/*
* when a driver is successfully registered, it will receive
* control requests including set_configuration(), which enables
* non-control requests. then usb traffic follows until a
* disconnect is reported. then a host may connect again, or
* the driver might get unbound.
*/
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct pxa25x_udc *dev = &memory;
int retval;
uint32_t chiprev;
if (!driver
|| driver->speed < USB_SPEED_FULL
|| !driver->disconnect
|| !driver->setup)
return -EINVAL;
if (!dev)
return -ENODEV;
if (dev->driver)
return -EBUSY;
/* Enable clock for usb controller */
setbits_le32(CKEN, CKEN11_USB);
/* first hook up the driver ... */
dev->driver = driver;
dev->pullup = 1;
/* trigger chiprev-specific logic */
switch ((chiprev = pxa_get_cpu_revision())) {
case PXA255_A0:
dev->has_cfr = 1;
break;
case PXA250_A0:
case PXA250_A1:
/* A0/A1 "not released"; ep 13, 15 unusable */
/* fall through */
case PXA250_B2: case PXA210_B2:
case PXA250_B1: case PXA210_B1:
case PXA250_B0: case PXA210_B0:
/* OUT-DMA is broken ... */
/* fall through */
case PXA250_C0: case PXA210_C0:
break;
default:
printf("%s: unrecognized processor: %08x\n",
DRIVER_NAME, chiprev);
return -ENODEV;
}
the_controller = dev;
/* prepare watchdog timer */
dev->watchdog.running = 0;
dev->watchdog.period = 5000 * CONFIG_SYS_HZ / 1000000; /* 5 ms */
dev->watchdog.function = udc_watchdog;
dev->mach = &mach_info;
udc_disable(dev);
udc_reinit(dev);
dev->gadget.name = "pxa2xx_udc";
retval = driver->bind(&dev->gadget);
if (retval) {
printf("bind to driver %s --> error %d\n",
DRIVER_NAME, retval);
dev->driver = NULL;
return retval;
}
/*
* ... then enable host detection and ep0; and we're ready
* for set_configuration as well as eventual disconnect.
*/
printf("registered gadget driver '%s'\n", DRIVER_NAME);
pullup(dev);
dump_state(dev);
return 0;
}
static void
stop_activity(struct pxa25x_udc *dev, struct usb_gadget_driver *driver)
{
int i;
/* don't disconnect drivers more than once */
if (dev->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
dev->gadget.speed = USB_SPEED_UNKNOWN;
/* prevent new request submissions, kill any outstanding requests */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa25x_ep *ep = &dev->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
stop_watchdog(dev);
/* report disconnect; the driver is already quiesced */
if (driver)
driver->disconnect(&dev->gadget);
/* re-init driver-visible data structures */
udc_reinit(dev);
}
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct pxa25x_udc *dev = the_controller;
if (!dev)
return -ENODEV;
if (!driver || driver != dev->driver || !driver->unbind)
return -EINVAL;
local_irq_disable();
dev->pullup = 0;
pullup(dev);
stop_activity(dev, driver);
local_irq_enable();
driver->unbind(&dev->gadget);
dev->driver = NULL;
printf("unregistered gadget driver '%s'\n", DRIVER_NAME);
dump_state(dev);
the_controller = NULL;
clrbits_le32(CKEN, CKEN11_USB);
return 0;
}
extern void udc_disconnect(void)
{
setbits_le32(CKEN, CKEN11_USB);
udc_clear_mask_UDCCR(UDCCR_UDE);
udc_command(PXA2XX_UDC_CMD_DISCONNECT);
clrbits_le32(CKEN, CKEN11_USB);
}
/*-------------------------------------------------------------------------*/
extern int
usb_gadget_handle_interrupts(int index)
{
return pxa25x_udc_irq();
}