u-boot/drivers/clk/clk_kendryte.c
Sean Anderson 493110cc49 clk: k210: Move k210 clock out of its own subdirectory
Now that we have only one clock driver, we don't need to have our own
subdirectory. Move the driver back with the rest of the clock drivers.

The MAINTAINERS for kendryte pinctrl is also fixed since it has always been
wrong.

Signed-off-by: Sean Anderson <seanga2@gmail.com>
Reviewed-by: Leo Yu-Chi Liang <ycliang@andestech.com>
2021-06-17 09:40:58 +08:00

1320 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
*/
#define LOG_CATEGORY UCLASS_CLK
#include <common.h>
#include <clk.h>
#include <clk-uclass.h>
#include <div64.h>
#include <dm.h>
#include <log.h>
#include <mapmem.h>
#include <serial.h>
#include <dt-bindings/clock/k210-sysctl.h>
#include <dt-bindings/mfd/k210-sysctl.h>
#include <kendryte/pll.h>
#include <linux/bitfield.h>
DECLARE_GLOBAL_DATA_PTR;
/**
* struct k210_clk_priv - K210 clock driver private data
* @base: The base address of the sysctl device
* @in0: The "in0" external oscillator
*/
struct k210_clk_priv {
void __iomem *base;
struct clk in0;
};
/*
* All parameters for different sub-clocks are collected into parameter arrays.
* These parameters are then initialized by the clock which uses them during
* probe. To save space, ids are automatically generated for each sub-clock by
* using an enum. Instead of storing a parameter struct for each clock, even for
* those clocks which don't use a particular type of sub-clock, we can just
* store the parameters for the clocks which need them.
*
* So why do it like this? Arranging all the sub-clocks together makes it very
* easy to find bugs in the code.
*/
/**
* enum k210_clk_div_type - The type of divider
* @K210_DIV_ONE: freq = parent / (reg + 1)
* @K210_DIV_EVEN: freq = parent / 2 / (reg + 1)
* @K210_DIV_POWER: freq = parent / (2 << reg)
* @K210_DIV_FIXED: freq = parent / factor
*/
enum k210_clk_div_type {
K210_DIV_ONE,
K210_DIV_EVEN,
K210_DIV_POWER,
K210_DIV_FIXED,
};
/**
* struct k210_div_params - Parameters for dividing clocks
* @type: An &enum k210_clk_div_type specifying the dividing formula
* @off: The offset of the divider from the sysctl base address
* @shift: The offset of the LSB of the divider
* @width: The number of bits in the divider
* @div: The fixed divisor for this divider
*/
struct k210_div_params {
u8 type;
union {
struct {
u8 off;
u8 shift;
u8 width;
};
u8 div;
};
};
#define DIV_LIST \
DIV(K210_CLK_ACLK, K210_SYSCTL_SEL0, 1, 2, K210_DIV_POWER) \
DIV(K210_CLK_APB0, K210_SYSCTL_SEL0, 3, 3, K210_DIV_ONE) \
DIV(K210_CLK_APB1, K210_SYSCTL_SEL0, 6, 3, K210_DIV_ONE) \
DIV(K210_CLK_APB2, K210_SYSCTL_SEL0, 9, 3, K210_DIV_ONE) \
DIV(K210_CLK_SRAM0, K210_SYSCTL_THR0, 0, 4, K210_DIV_ONE) \
DIV(K210_CLK_SRAM1, K210_SYSCTL_THR0, 4, 4, K210_DIV_ONE) \
DIV(K210_CLK_AI, K210_SYSCTL_THR0, 8, 4, K210_DIV_ONE) \
DIV(K210_CLK_DVP, K210_SYSCTL_THR0, 12, 4, K210_DIV_ONE) \
DIV(K210_CLK_ROM, K210_SYSCTL_THR0, 16, 4, K210_DIV_ONE) \
DIV(K210_CLK_SPI0, K210_SYSCTL_THR1, 0, 8, K210_DIV_EVEN) \
DIV(K210_CLK_SPI1, K210_SYSCTL_THR1, 8, 8, K210_DIV_EVEN) \
DIV(K210_CLK_SPI2, K210_SYSCTL_THR1, 16, 8, K210_DIV_EVEN) \
DIV(K210_CLK_SPI3, K210_SYSCTL_THR1, 24, 8, K210_DIV_EVEN) \
DIV(K210_CLK_TIMER0, K210_SYSCTL_THR2, 0, 8, K210_DIV_EVEN) \
DIV(K210_CLK_TIMER1, K210_SYSCTL_THR2, 8, 8, K210_DIV_EVEN) \
DIV(K210_CLK_TIMER2, K210_SYSCTL_THR2, 16, 8, K210_DIV_EVEN) \
DIV(K210_CLK_I2S0, K210_SYSCTL_THR3, 0, 16, K210_DIV_EVEN) \
DIV(K210_CLK_I2S1, K210_SYSCTL_THR3, 16, 16, K210_DIV_EVEN) \
DIV(K210_CLK_I2S2, K210_SYSCTL_THR4, 0, 16, K210_DIV_EVEN) \
DIV(K210_CLK_I2S0_M, K210_SYSCTL_THR4, 16, 8, K210_DIV_EVEN) \
DIV(K210_CLK_I2S1_M, K210_SYSCTL_THR4, 24, 8, K210_DIV_EVEN) \
DIV(K210_CLK_I2S2_M, K210_SYSCTL_THR4, 0, 8, K210_DIV_EVEN) \
DIV(K210_CLK_I2C0, K210_SYSCTL_THR5, 8, 8, K210_DIV_EVEN) \
DIV(K210_CLK_I2C1, K210_SYSCTL_THR5, 16, 8, K210_DIV_EVEN) \
DIV(K210_CLK_I2C2, K210_SYSCTL_THR5, 24, 8, K210_DIV_EVEN) \
DIV(K210_CLK_WDT0, K210_SYSCTL_THR6, 0, 8, K210_DIV_EVEN) \
DIV(K210_CLK_WDT1, K210_SYSCTL_THR6, 8, 8, K210_DIV_EVEN) \
DIV_FIXED(K210_CLK_CLINT, 50) \
#define _DIVIFY(id) K210_CLK_DIV_##id
#define DIVIFY(id) _DIVIFY(id)
enum k210_div_id {
#define DIV(id, ...) DIVIFY(id),
#define DIV_FIXED DIV
DIV_LIST
#undef DIV
#undef DIV_FIXED
K210_CLK_DIV_NONE,
};
static const struct k210_div_params k210_divs[] = {
#define DIV(id, _off, _shift, _width, _type) \
[DIVIFY(id)] = { \
.type = (_type), \
.off = (_off), \
.shift = (_shift), \
.width = (_width), \
},
#define DIV_FIXED(id, _div) \
[DIVIFY(id)] = { \
.type = K210_DIV_FIXED, \
.div = (_div) \
},
DIV_LIST
#undef DIV
#undef DIV_FIXED
};
#undef DIV
#undef DIV_LIST
/**
* struct k210_gate_params - Parameters for gated clocks
* @off: The offset of the gate from the sysctl base address
* @bit_idx: The index of the bit within the register
*/
struct k210_gate_params {
u8 off;
u8 bit_idx;
};
#define GATE_LIST \
GATE(K210_CLK_CPU, K210_SYSCTL_EN_CENT, 0) \
GATE(K210_CLK_SRAM0, K210_SYSCTL_EN_CENT, 1) \
GATE(K210_CLK_SRAM1, K210_SYSCTL_EN_CENT, 2) \
GATE(K210_CLK_APB0, K210_SYSCTL_EN_CENT, 3) \
GATE(K210_CLK_APB1, K210_SYSCTL_EN_CENT, 4) \
GATE(K210_CLK_APB2, K210_SYSCTL_EN_CENT, 5) \
GATE(K210_CLK_ROM, K210_SYSCTL_EN_PERI, 0) \
GATE(K210_CLK_DMA, K210_SYSCTL_EN_PERI, 1) \
GATE(K210_CLK_AI, K210_SYSCTL_EN_PERI, 2) \
GATE(K210_CLK_DVP, K210_SYSCTL_EN_PERI, 3) \
GATE(K210_CLK_FFT, K210_SYSCTL_EN_PERI, 4) \
GATE(K210_CLK_GPIO, K210_SYSCTL_EN_PERI, 5) \
GATE(K210_CLK_SPI0, K210_SYSCTL_EN_PERI, 6) \
GATE(K210_CLK_SPI1, K210_SYSCTL_EN_PERI, 7) \
GATE(K210_CLK_SPI2, K210_SYSCTL_EN_PERI, 8) \
GATE(K210_CLK_SPI3, K210_SYSCTL_EN_PERI, 9) \
GATE(K210_CLK_I2S0, K210_SYSCTL_EN_PERI, 10) \
GATE(K210_CLK_I2S1, K210_SYSCTL_EN_PERI, 11) \
GATE(K210_CLK_I2S2, K210_SYSCTL_EN_PERI, 12) \
GATE(K210_CLK_I2C0, K210_SYSCTL_EN_PERI, 13) \
GATE(K210_CLK_I2C1, K210_SYSCTL_EN_PERI, 14) \
GATE(K210_CLK_I2C2, K210_SYSCTL_EN_PERI, 15) \
GATE(K210_CLK_UART1, K210_SYSCTL_EN_PERI, 16) \
GATE(K210_CLK_UART2, K210_SYSCTL_EN_PERI, 17) \
GATE(K210_CLK_UART3, K210_SYSCTL_EN_PERI, 18) \
GATE(K210_CLK_AES, K210_SYSCTL_EN_PERI, 19) \
GATE(K210_CLK_FPIOA, K210_SYSCTL_EN_PERI, 20) \
GATE(K210_CLK_TIMER0, K210_SYSCTL_EN_PERI, 21) \
GATE(K210_CLK_TIMER1, K210_SYSCTL_EN_PERI, 22) \
GATE(K210_CLK_TIMER2, K210_SYSCTL_EN_PERI, 23) \
GATE(K210_CLK_WDT0, K210_SYSCTL_EN_PERI, 24) \
GATE(K210_CLK_WDT1, K210_SYSCTL_EN_PERI, 25) \
GATE(K210_CLK_SHA, K210_SYSCTL_EN_PERI, 26) \
GATE(K210_CLK_OTP, K210_SYSCTL_EN_PERI, 27) \
GATE(K210_CLK_RTC, K210_SYSCTL_EN_PERI, 29)
#define _GATEIFY(id) K210_CLK_GATE_##id
#define GATEIFY(id) _GATEIFY(id)
enum k210_gate_id {
#define GATE(id, ...) GATEIFY(id),
GATE_LIST
#undef GATE
K210_CLK_GATE_NONE,
};
static const struct k210_gate_params k210_gates[] = {
#define GATE(id, _off, _idx) \
[GATEIFY(id)] = { \
.off = (_off), \
.bit_idx = (_idx), \
},
GATE_LIST
#undef GATE
};
#undef GATE_LIST
/* The most parents is PLL2 */
#define K210_CLK_MAX_PARENTS 3
/**
* struct k210_mux_params - Parameters for muxed clocks
* @parents: A list of parent clock ids
* @num_parents: The number of parent clocks
* @off: The offset of the mux from the base sysctl address
* @shift: The offset of the LSB of the mux selector
* @width: The number of bits in the mux selector
*/
struct k210_mux_params {
u8 parents[K210_CLK_MAX_PARENTS];
u8 num_parents;
u8 off;
u8 shift;
u8 width;
};
#define MUX(id, reg, shift, width) \
MUX_PARENTS(id, reg, shift, width, K210_CLK_IN0, K210_CLK_PLL0)
#define MUX_LIST \
MUX_PARENTS(K210_CLK_PLL2, K210_SYSCTL_PLL2, 26, 2, \
K210_CLK_IN0, K210_CLK_PLL0, K210_CLK_PLL1) \
MUX(K210_CLK_ACLK, K210_SYSCTL_SEL0, 0, 1) \
MUX(K210_CLK_SPI3, K210_SYSCTL_SEL0, 12, 1) \
MUX(K210_CLK_TIMER0, K210_SYSCTL_SEL0, 13, 1) \
MUX(K210_CLK_TIMER1, K210_SYSCTL_SEL0, 14, 1) \
MUX(K210_CLK_TIMER2, K210_SYSCTL_SEL0, 15, 1)
#define _MUXIFY(id) K210_CLK_MUX_##id
#define MUXIFY(id) _MUXIFY(id)
enum k210_mux_id {
#define MUX_PARENTS(id, ...) MUXIFY(id),
MUX_LIST
#undef MUX_PARENTS
K210_CLK_MUX_NONE,
};
static const struct k210_mux_params k210_muxes[] = {
#define MUX_PARENTS(id, _off, _shift, _width, ...) \
[MUXIFY(id)] = { \
.parents = { __VA_ARGS__ }, \
.num_parents = __count_args(__VA_ARGS__), \
.off = (_off), \
.shift = (_shift), \
.width = (_width), \
},
MUX_LIST
#undef MUX_PARENTS
};
#undef MUX
#undef MUX_LIST
/**
* struct k210_pll_params - K210 PLL parameters
* @off: The offset of the PLL from the base sysctl address
* @shift: The offset of the LSB of the lock status
* @width: The number of bits in the lock status
*/
struct k210_pll_params {
u8 off;
u8 shift;
u8 width;
};
static const struct k210_pll_params k210_plls[] = {
#define PLL(_off, _shift, _width) { \
.off = (_off), \
.shift = (_shift), \
.width = (_width), \
}
[0] = PLL(K210_SYSCTL_PLL0, 0, 2),
[1] = PLL(K210_SYSCTL_PLL1, 8, 1),
[2] = PLL(K210_SYSCTL_PLL2, 16, 1),
#undef PLL
};
/**
* enum k210_clk_flags - The type of a K210 clock
* @K210_CLKF_MUX: This clock has a mux and not a static parent
* @K210_CLKF_PLL: This clock is a PLL
*/
enum k210_clk_flags {
K210_CLKF_MUX = BIT(0),
K210_CLKF_PLL = BIT(1),
};
/**
* struct k210_clk_params - The parameters defining a K210 clock
* @name: The name of the clock
* @flags: A set of &enum k210_clk_flags defining which fields are valid
* @mux: An &enum k210_mux_id of this clock's mux
* @parent: The clock id of this clock's parent
* @pll: The id of the PLL (if this clock is a PLL)
* @div: An &enum k210_div_id of this clock's divider
* @gate: An &enum k210_gate_id of this clock's gate
*/
struct k210_clk_params {
#if CONFIG_IS_ENABLED(CMD_CLK)
const char *name;
#endif
u8 flags;
union {
u8 parent;
u8 mux;
};
union {
u8 pll;
struct {
u8 div;
u8 gate;
};
};
};
static const struct k210_clk_params k210_clks[] = {
#if CONFIG_IS_ENABLED(CMD_CLK)
#define NAME(_name) .name = (_name),
#else
#define NAME(name)
#endif
#define CLK(id, _name, _parent, _div, _gate) \
[id] = { \
NAME(_name) \
.parent = (_parent), \
.div = (_div), \
.gate = (_gate), \
}
#define CLK_MUX(id, _name, _mux, _div, _gate) \
[id] = { \
NAME(_name) \
.flags = K210_CLKF_MUX, \
.mux = (_mux), \
.div = (_div), \
.gate = (_gate), \
}
#define CLK_PLL(id, _pll, _parent) \
[id] = { \
NAME("pll" #_pll) \
.flags = K210_CLKF_PLL, \
.parent = (_parent), \
.pll = (_pll), \
}
#define CLK_FULL(id, name) \
CLK_MUX(id, name, MUXIFY(id), DIVIFY(id), GATEIFY(id))
#define CLK_NOMUX(id, name, parent) \
CLK(id, name, parent, DIVIFY(id), GATEIFY(id))
#define CLK_DIV(id, name, parent) \
CLK(id, name, parent, DIVIFY(id), K210_CLK_GATE_NONE)
#define CLK_GATE(id, name, parent) \
CLK(id, name, parent, K210_CLK_DIV_NONE, GATEIFY(id))
CLK_PLL(K210_CLK_PLL0, 0, K210_CLK_IN0),
CLK_PLL(K210_CLK_PLL1, 1, K210_CLK_IN0),
[K210_CLK_PLL2] = {
NAME("pll2")
.flags = K210_CLKF_MUX | K210_CLKF_PLL,
.mux = MUXIFY(K210_CLK_PLL2),
.pll = 2,
},
CLK_MUX(K210_CLK_ACLK, "aclk", MUXIFY(K210_CLK_ACLK),
DIVIFY(K210_CLK_ACLK), K210_CLK_GATE_NONE),
CLK_FULL(K210_CLK_SPI3, "spi3"),
CLK_FULL(K210_CLK_TIMER0, "timer0"),
CLK_FULL(K210_CLK_TIMER1, "timer1"),
CLK_FULL(K210_CLK_TIMER2, "timer2"),
CLK_NOMUX(K210_CLK_SRAM0, "sram0", K210_CLK_ACLK),
CLK_NOMUX(K210_CLK_SRAM1, "sram1", K210_CLK_ACLK),
CLK_NOMUX(K210_CLK_ROM, "rom", K210_CLK_ACLK),
CLK_NOMUX(K210_CLK_DVP, "dvp", K210_CLK_ACLK),
CLK_NOMUX(K210_CLK_APB0, "apb0", K210_CLK_ACLK),
CLK_NOMUX(K210_CLK_APB1, "apb1", K210_CLK_ACLK),
CLK_NOMUX(K210_CLK_APB2, "apb2", K210_CLK_ACLK),
CLK_NOMUX(K210_CLK_AI, "ai", K210_CLK_PLL1),
CLK_NOMUX(K210_CLK_I2S0, "i2s0", K210_CLK_PLL2),
CLK_NOMUX(K210_CLK_I2S1, "i2s1", K210_CLK_PLL2),
CLK_NOMUX(K210_CLK_I2S2, "i2s2", K210_CLK_PLL2),
CLK_NOMUX(K210_CLK_WDT0, "wdt0", K210_CLK_IN0),
CLK_NOMUX(K210_CLK_WDT1, "wdt1", K210_CLK_IN0),
CLK_NOMUX(K210_CLK_SPI0, "spi0", K210_CLK_PLL0),
CLK_NOMUX(K210_CLK_SPI1, "spi1", K210_CLK_PLL0),
CLK_NOMUX(K210_CLK_SPI2, "spi2", K210_CLK_PLL0),
CLK_NOMUX(K210_CLK_I2C0, "i2c0", K210_CLK_PLL0),
CLK_NOMUX(K210_CLK_I2C1, "i2c1", K210_CLK_PLL0),
CLK_NOMUX(K210_CLK_I2C2, "i2c2", K210_CLK_PLL0),
CLK_DIV(K210_CLK_I2S0_M, "i2s0_m", K210_CLK_PLL2),
CLK_DIV(K210_CLK_I2S1_M, "i2s1_m", K210_CLK_PLL2),
CLK_DIV(K210_CLK_I2S2_M, "i2s2_m", K210_CLK_PLL2),
CLK_DIV(K210_CLK_CLINT, "clint", K210_CLK_ACLK),
CLK_GATE(K210_CLK_CPU, "cpu", K210_CLK_ACLK),
CLK_GATE(K210_CLK_DMA, "dma", K210_CLK_ACLK),
CLK_GATE(K210_CLK_FFT, "fft", K210_CLK_ACLK),
CLK_GATE(K210_CLK_GPIO, "gpio", K210_CLK_APB0),
CLK_GATE(K210_CLK_UART1, "uart1", K210_CLK_APB0),
CLK_GATE(K210_CLK_UART2, "uart2", K210_CLK_APB0),
CLK_GATE(K210_CLK_UART3, "uart3", K210_CLK_APB0),
CLK_GATE(K210_CLK_FPIOA, "fpioa", K210_CLK_APB0),
CLK_GATE(K210_CLK_SHA, "sha", K210_CLK_APB0),
CLK_GATE(K210_CLK_AES, "aes", K210_CLK_APB1),
CLK_GATE(K210_CLK_OTP, "otp", K210_CLK_APB1),
CLK_GATE(K210_CLK_RTC, "rtc", K210_CLK_IN0),
#undef NAME
#undef CLK_PLL
#undef CLK
#undef CLK_FULL
#undef CLK_NOMUX
#undef CLK_DIV
#undef CLK_GATE
#undef CLK_LIST
};
#define K210_PLL_CLKR GENMASK(3, 0)
#define K210_PLL_CLKF GENMASK(9, 4)
#define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */
#define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */
#define K210_PLL_RESET BIT(20)
#define K210_PLL_PWRD BIT(21) /* PoWeReD */
#define K210_PLL_INTFB BIT(22) /* Internal FeedBack */
#define K210_PLL_BYPASS BIT(23)
#define K210_PLL_TEST BIT(24)
#define K210_PLL_EN BIT(25)
#define K210_PLL_TEST_EN BIT(26)
#define K210_PLL_LOCK 0
#define K210_PLL_CLEAR_SLIP 2
#define K210_PLL_TEST_OUT 3
#ifdef CONFIG_CLK_K210_SET_RATE
static int k210_pll_enable(struct k210_clk_priv *priv, int id);
static int k210_pll_disable(struct k210_clk_priv *priv, int id);
static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in);
/*
* The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
* General-Purpose PLL. The logical layout of the PLL with internal feedback is
* approximately the following:
*
* +---------------+
* |reference clock|
* +---------------+
* |
* v
* +--+
* |/r|
* +--+
* |
* v
* +-------------+
* |divided clock|
* +-------------+
* |
* v
* +--------------+
* |phase detector|<---+
* +--------------+ |
* | |
* v +--------------+
* +---+ |feedback clock|
* |VCO| +--------------+
* +---+ ^
* | +--+ |
* +--->|/f|---+
* | +--+
* v
* +---+
* |/od|
* +---+
* |
* v
* +------+
* |output|
* +------+
*
* The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
* the effect of the division by f is to multiply the input frequency. The
* equation for the output rate is
* rate = (rate_in * f) / (r * od).
* Moving knowns to one side of the equation, we get
* rate / rate_in = f / (r * od)
* Rearranging slightly,
* abs_error = abs((rate / rate_in) - (f / (r * od))).
* To get relative, error, we divide by the expected ratio
* error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
* Simplifying,
* error = abs(1 - f / (r * od)) / (rate / rate_in)
* error = abs(1 - (f * rate_in) / (r * od * rate))
* Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
* error = abs((f * inv_ratio) / (r * od) - 1)
* This is the error used in evaluating parameters.
*
* r and od are four bits each, while f is six bits. Because r and od are
* multiplied together, instead of the full 256 values possible if both bits
* were used fully, there are only 97 distinct products. Combined with f, there
* are 6208 theoretical settings for the PLL. However, most of these settings
* can be ruled out immediately because they do not have the correct ratio.
*
* In addition to the constraint of approximating the desired ratio, parameters
* must also keep internal pll frequencies within acceptable ranges. The divided
* clock's minimum and maximum frequencies have a ratio of around 128. This
* leaves fairly substantial room to work with, especially since the only
* affected parameter is r. The VCO's minimum and maximum frequency have a ratio
* of 5, which is considerably more restrictive.
*
* The r and od factors are stored in a table. This is to make it easy to find
* the next-largest product. Some products have multiple factorizations, but
* only when one factor has at least a 2.5x ratio to the factors of the other
* factorization. This is because any smaller ratio would not make a difference
* when ensuring the VCO's frequency is within spec.
*
* Throughout the calculation function, fixed point arithmetic is used. Because
* the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
* 32.32 fixed-point numbers are used to represent ratios. In general, to
* implement division, the numerator is first multiplied by 2^32. This gives a
* result where the whole number part is in the upper 32 bits, and the fraction
* is in the lower 32 bits.
*
* In general, rounding is done to the closest integer. This helps find the best
* approximation for the ratio. Rounding in one direction (e.g down) could cause
* the function to miss a better ratio with one of the parameters increased by
* one.
*/
/*
* The factors table was generated with the following python code:
*
* def p(x, y):
* return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
*
* factors = {}
* for i in range(1, 17):
* for j in range(1, 17):
* fs = factors.get(i*j) or []
* if fs == [] or all([
* (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
* for (x, y) in fs]):
* fs.append((i, j))
* factors[i*j] = fs
*
* for k, l in sorted(factors.items()):
* for v in l:
* print("PACK(%s, %s)," % v)
*/
#define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF))
#define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1)
#define UNPACK_OD(val) (((val) & 0xF) + 1)
static const u8 factors[] = {
PACK(1, 1),
PACK(1, 2),
PACK(1, 3),
PACK(1, 4),
PACK(1, 5),
PACK(1, 6),
PACK(1, 7),
PACK(1, 8),
PACK(1, 9),
PACK(3, 3),
PACK(1, 10),
PACK(1, 11),
PACK(1, 12),
PACK(3, 4),
PACK(1, 13),
PACK(1, 14),
PACK(1, 15),
PACK(3, 5),
PACK(1, 16),
PACK(4, 4),
PACK(2, 9),
PACK(2, 10),
PACK(3, 7),
PACK(2, 11),
PACK(2, 12),
PACK(5, 5),
PACK(2, 13),
PACK(3, 9),
PACK(2, 14),
PACK(2, 15),
PACK(2, 16),
PACK(3, 11),
PACK(5, 7),
PACK(3, 12),
PACK(3, 13),
PACK(4, 10),
PACK(3, 14),
PACK(4, 11),
PACK(3, 15),
PACK(3, 16),
PACK(7, 7),
PACK(5, 10),
PACK(4, 13),
PACK(6, 9),
PACK(5, 11),
PACK(4, 14),
PACK(4, 15),
PACK(7, 9),
PACK(4, 16),
PACK(5, 13),
PACK(6, 11),
PACK(5, 14),
PACK(6, 12),
PACK(5, 15),
PACK(7, 11),
PACK(6, 13),
PACK(5, 16),
PACK(9, 9),
PACK(6, 14),
PACK(8, 11),
PACK(6, 15),
PACK(7, 13),
PACK(6, 16),
PACK(7, 14),
PACK(9, 11),
PACK(10, 10),
PACK(8, 13),
PACK(7, 15),
PACK(9, 12),
PACK(10, 11),
PACK(7, 16),
PACK(9, 13),
PACK(8, 15),
PACK(11, 11),
PACK(9, 14),
PACK(8, 16),
PACK(10, 13),
PACK(11, 12),
PACK(9, 15),
PACK(10, 14),
PACK(11, 13),
PACK(9, 16),
PACK(10, 15),
PACK(11, 14),
PACK(12, 13),
PACK(10, 16),
PACK(11, 15),
PACK(12, 14),
PACK(13, 13),
PACK(11, 16),
PACK(12, 15),
PACK(13, 14),
PACK(12, 16),
PACK(13, 15),
PACK(14, 14),
PACK(13, 16),
PACK(14, 15),
PACK(14, 16),
PACK(15, 15),
PACK(15, 16),
PACK(16, 16),
};
TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
struct k210_pll_config *best)
{
int i;
s64 error, best_error;
u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */
u64 max_r;
u64 r, f, od;
/*
* Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
* VCO frequency. These are not the same limits as below because od can
* reduce the output frequency by 16.
*/
if (rate > 1750000000 || rate < 21250000)
return -EINVAL;
/* Similar restrictions on the input rate */
if (rate_in > 1750000000 || rate_in < 13300000)
return -EINVAL;
ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in);
inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
/* Can't increase by more than 64 or reduce by more than 256 */
if (rate > rate_in && ratio > (64ULL << 32))
return -EINVAL;
else if (rate <= rate_in && inv_ratio > (256ULL << 32))
return -EINVAL;
/*
* The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3
* MHz. There is no minimum, since the only way to get a higher input
* clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
* cannot output frequencies greater than 1.75 GHz, the minimum would
* never be greater than one.
*/
max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000);
/* Variables get immediately incremented, so start at -1th iteration */
i = -1;
f = 0;
r = 0;
od = 0;
best_error = S64_MAX;
error = best_error;
/* do-while here so we always try at least one ratio */
do {
/*
* Whether we swapped r and od while enforcing frequency limits
*/
bool swapped = false;
u64 last_od = od;
u64 last_r = r;
/*
* Try the next largest value for f (or r and od) and
* recalculate the other parameters based on that
*/
if (rate > rate_in) {
/*
* Skip factors of the same product if we already tried
* out that product
*/
do {
i++;
r = UNPACK_R(factors[i]);
od = UNPACK_OD(factors[i]);
} while (i + 1 < ARRAY_SIZE(factors) &&
r * od == last_r * last_od);
/* Round close */
f = (r * od * ratio + BIT(31)) >> 32;
if (f > 64)
f = 64;
} else {
u64 tmp = ++f * inv_ratio;
bool round_up = !!(tmp & BIT(31));
u32 goal = (tmp >> 32) + round_up;
u32 err, last_err;
/* Get the next r/od pair in factors */
while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) {
i++;
r = UNPACK_R(factors[i]);
od = UNPACK_OD(factors[i]);
}
/*
* This is a case of double rounding. If we rounded up
* above, we need to round down (in cases of ties) here.
* This prevents off-by-one errors resulting from
* choosing X+2 over X when X.Y rounds up to X+1 and
* there is no r * od = X+1. For the converse, when X.Y
* is rounded down to X, we should choose X+1 over X-1.
*/
err = abs(r * od - goal);
last_err = abs(last_r * last_od - goal);
if (last_err < err || (round_up && last_err == err)) {
i--;
r = last_r;
od = last_od;
}
}
/*
* Enforce limits on internal clock frequencies. If we
* aren't in spec, try swapping r and od. If everything is
* in-spec, calculate the relative error.
*/
while (true) {
/*
* Whether the intermediate frequencies are out-of-spec
*/
bool out_of_spec = false;
if (r > max_r) {
out_of_spec = true;
} else {
/*
* There is no way to only divide once; we need
* to examine the frequency with and without the
* effect of od.
*/
u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);
if (vco > 1750000000 || vco < 340000000)
out_of_spec = true;
}
if (out_of_spec) {
if (!swapped) {
u64 tmp = r;
r = od;
od = tmp;
swapped = true;
continue;
} else {
/*
* Try looking ahead to see if there are
* additional factors for the same
* product.
*/
if (i + 1 < ARRAY_SIZE(factors)) {
u64 new_r, new_od;
i++;
new_r = UNPACK_R(factors[i]);
new_od = UNPACK_OD(factors[i]);
if (r * od == new_r * new_od) {
r = new_r;
od = new_od;
swapped = false;
continue;
}
i--;
}
break;
}
}
error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od);
/* The lower 16 bits are spurious */
error = abs((error - BIT(32))) >> 16;
if (error < best_error) {
best->r = r;
best->f = f;
best->od = od;
best_error = error;
}
break;
}
} while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0);
if (best_error == S64_MAX)
return -EINVAL;
log_debug("best error %lld\n", best_error);
return 0;
}
static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
ulong rate_in)
{
int err;
const struct k210_pll_params *pll = &k210_plls[id];
struct k210_pll_config config = {};
u32 reg;
ulong calc_rate;
if (rate_in < 0)
return rate_in;
err = k210_pll_calc_config(rate, rate_in, &config);
if (err)
return err;
log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od);
/* Don't bother setting the rate if we're already at that rate */
calc_rate = DIV_ROUND_DOWN_ULL(((u64)rate_in) * config.f,
config.r * config.od);
if (calc_rate == k210_pll_get_rate(priv, id, rate))
return calc_rate;
k210_pll_disable(priv, id);
reg = readl(priv->base + pll->off);
reg &= ~K210_PLL_CLKR
& ~K210_PLL_CLKF
& ~K210_PLL_CLKOD
& ~K210_PLL_BWADJ;
reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1)
| FIELD_PREP(K210_PLL_CLKF, config.f - 1)
| FIELD_PREP(K210_PLL_CLKOD, config.od - 1)
| FIELD_PREP(K210_PLL_BWADJ, config.f - 1);
writel(reg, priv->base + pll->off);
k210_pll_enable(priv, id);
serial_setbrg();
return k210_pll_get_rate(priv, id, rate);
}
#else
static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
ulong rate_in)
{
return -ENOSYS;
}
#endif /* CONFIG_CLK_K210_SET_RATE */
static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id,
ulong rate_in)
{
u64 r, f, od;
u32 reg = readl(priv->base + k210_plls[id].off);
if (rate_in < 0 || (reg & K210_PLL_BYPASS))
return rate_in;
if (!(reg & K210_PLL_PWRD))
return 0;
r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;
return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od);
}
/*
* Wait for the PLL to be locked. If the PLL is not locked, try clearing the
* slip before retrying
*/
static void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id)
{
const struct k210_pll_params *pll = &k210_plls[id];
u32 mask = (BIT(pll->width) - 1) << pll->shift;
while (true) {
u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK);
if ((reg & mask) == mask)
break;
reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP);
writel(reg, priv->base + K210_SYSCTL_PLL_LOCK);
}
}
static bool k210_pll_enabled(u32 reg)
{
return (reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) &&
!(reg & K210_PLL_RESET);
}
/* Adapted from sysctl_pll_enable */
static int k210_pll_enable(struct k210_clk_priv *priv, int id)
{
const struct k210_pll_params *pll = &k210_plls[id];
u32 reg = readl(priv->base + pll->off);
if (k210_pll_enabled(reg))
return 0;
reg |= K210_PLL_PWRD;
writel(reg, priv->base + pll->off);
/* Ensure reset is low before asserting it */
reg &= ~K210_PLL_RESET;
writel(reg, priv->base + pll->off);
reg |= K210_PLL_RESET;
writel(reg, priv->base + pll->off);
nop();
nop();
reg &= ~K210_PLL_RESET;
writel(reg, priv->base + pll->off);
k210_pll_waitfor_lock(priv, id);
reg &= ~K210_PLL_BYPASS;
reg |= K210_PLL_EN;
writel(reg, priv->base + pll->off);
return 0;
}
static int k210_pll_disable(struct k210_clk_priv *priv, int id)
{
const struct k210_pll_params *pll = &k210_plls[id];
u32 reg = readl(priv->base + pll->off);
/*
* Bypassing before powering off is important so child clocks don't stop
* working. This is especially important for pll0, the indirect parent
* of the cpu clock.
*/
reg |= K210_PLL_BYPASS;
writel(reg, priv->base + pll->off);
reg &= ~K210_PLL_PWRD;
reg &= ~K210_PLL_EN;
writel(reg, priv->base + pll->off);
return 0;
}
static u32 k210_clk_readl(struct k210_clk_priv *priv, u8 off, u8 shift,
u8 width)
{
u32 reg = readl(priv->base + off);
return (reg >> shift) & (BIT(width) - 1);
}
static void k210_clk_writel(struct k210_clk_priv *priv, u8 off, u8 shift,
u8 width, u32 val)
{
u32 reg = readl(priv->base + off);
u32 mask = (BIT(width) - 1) << shift;
reg &= ~mask;
reg |= mask & (val << shift);
writel(reg, priv->base + off);
}
static int k210_clk_get_parent(struct k210_clk_priv *priv, int id)
{
u32 sel;
const struct k210_mux_params *mux;
if (!(k210_clks[id].flags & K210_CLKF_MUX))
return k210_clks[id].parent;
mux = &k210_muxes[k210_clks[id].mux];
sel = k210_clk_readl(priv, mux->off, mux->shift, mux->width);
assert(sel < mux->num_parents);
return mux->parents[sel];
}
static ulong do_k210_clk_get_rate(struct k210_clk_priv *priv, int id)
{
int parent;
u32 val;
ulong parent_rate;
const struct k210_div_params *div;
if (id == K210_CLK_IN0)
return clk_get_rate(&priv->in0);
parent = k210_clk_get_parent(priv, id);
parent_rate = do_k210_clk_get_rate(priv, parent);
if (k210_clks[id].flags & K210_CLKF_PLL)
return k210_pll_get_rate(priv, k210_clks[id].pll, parent_rate);
if (k210_clks[id].div == K210_CLK_DIV_NONE)
return parent_rate;
div = &k210_divs[k210_clks[id].div];
if (div->type == K210_DIV_FIXED)
return parent_rate / div->div;
val = k210_clk_readl(priv, div->off, div->shift, div->width);
switch (div->type) {
case K210_DIV_ONE:
return parent_rate / (val + 1);
case K210_DIV_EVEN:
return parent_rate / 2 / (val + 1);
case K210_DIV_POWER:
/* This is ACLK, which has no divider on IN0 */
if (parent == K210_CLK_IN0)
return parent_rate;
return parent_rate / (2 << val);
default:
assert(false);
return -EINVAL;
};
}
static ulong k210_clk_get_rate(struct clk *clk)
{
return do_k210_clk_get_rate(dev_get_priv(clk->dev), clk->id);
}
static int do_k210_clk_set_parent(struct k210_clk_priv *priv, int id, int new)
{
int i;
const struct k210_mux_params *mux;
if (!(k210_clks[id].flags & K210_CLKF_MUX))
return -ENOSYS;
mux = &k210_muxes[k210_clks[id].mux];
for (i = 0; i < mux->num_parents; i++) {
if (mux->parents[i] == new) {
k210_clk_writel(priv, mux->off, mux->shift, mux->width,
i);
return 0;
}
}
return -EINVAL;
}
static int k210_clk_set_parent(struct clk *clk, struct clk *parent)
{
return do_k210_clk_set_parent(dev_get_priv(clk->dev), clk->id,
parent->id);
}
static ulong k210_clk_set_rate(struct clk *clk, unsigned long rate)
{
int parent, ret, err;
ulong rate_in, val;
const struct k210_div_params *div;
struct k210_clk_priv *priv = dev_get_priv(clk->dev);
if (clk->id == K210_CLK_IN0)
return clk_set_rate(&priv->in0, rate);
parent = k210_clk_get_parent(priv, clk->id);
rate_in = do_k210_clk_get_rate(priv, parent);
log_debug("id=%ld rate=%lu rate_in=%lu\n", clk->id, rate, rate_in);
if (clk->id == K210_CLK_PLL0) {
/* Bypass ACLK so the CPU keeps going */
ret = do_k210_clk_set_parent(priv, K210_CLK_ACLK, K210_CLK_IN0);
if (ret)
return ret;
} else if (clk->id == K210_CLK_PLL1 && gd->flags & GD_FLG_RELOC) {
/*
* We can't bypass the AI clock like we can ACLK, and after
* relocation we are using the AI ram.
*/
return -EPERM;
}
if (k210_clks[clk->id].flags & K210_CLKF_PLL) {
ret = k210_pll_set_rate(priv, k210_clks[clk->id].pll, rate,
rate_in);
if (!IS_ERR_VALUE(ret) && clk->id == K210_CLK_PLL0) {
/*
* This may have the side effect of reparenting ACLK,
* but I don't really want to keep track of what the old
* parent was.
*/
err = do_k210_clk_set_parent(priv, K210_CLK_ACLK,
K210_CLK_PLL0);
if (err)
return err;
}
return ret;
}
if (k210_clks[clk->id].div == K210_CLK_DIV_NONE)
return -ENOSYS;
div = &k210_divs[k210_clks[clk->id].div];
switch (div->type) {
case K210_DIV_ONE:
val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
val = val ? val - 1 : 0;
break;
case K210_DIV_EVEN:
val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, 2 * rate);
break;
case K210_DIV_POWER:
/* This is ACLK, which has no divider on IN0 */
if (parent == K210_CLK_IN0)
return -ENOSYS;
val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
val = __ffs(val);
break;
default:
assert(false);
return -EINVAL;
};
val = val ? val - 1 : 0;
k210_clk_writel(priv, div->off, div->shift, div->width, val);
return do_k210_clk_get_rate(priv, clk->id);
}
static int k210_clk_endisable(struct k210_clk_priv *priv, int id, bool enable)
{
int parent = k210_clk_get_parent(priv, id);
const struct k210_gate_params *gate;
if (id == K210_CLK_IN0) {
if (enable)
return clk_enable(&priv->in0);
else
return clk_disable(&priv->in0);
}
/* Only recursively enable clocks since we don't track refcounts */
if (enable) {
int ret = k210_clk_endisable(priv, parent, true);
if (ret && ret != -ENOSYS)
return ret;
}
if (k210_clks[id].flags & K210_CLKF_PLL) {
if (enable)
return k210_pll_enable(priv, k210_clks[id].pll);
else
return k210_pll_disable(priv, k210_clks[id].pll);
}
if (k210_clks[id].gate == K210_CLK_GATE_NONE)
return -ENOSYS;
gate = &k210_gates[k210_clks[id].gate];
k210_clk_writel(priv, gate->off, gate->bit_idx, 1, enable);
return 0;
}
static int k210_clk_enable(struct clk *clk)
{
return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, true);
}
static int k210_clk_disable(struct clk *clk)
{
return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, false);
}
static int k210_clk_request(struct clk *clk)
{
if (clk->id >= ARRAY_SIZE(k210_clks))
return -EINVAL;
return 0;
}
static const struct clk_ops k210_clk_ops = {
.request = k210_clk_request,
.set_rate = k210_clk_set_rate,
.get_rate = k210_clk_get_rate,
.set_parent = k210_clk_set_parent,
.enable = k210_clk_enable,
.disable = k210_clk_disable,
};
static int k210_clk_probe(struct udevice *dev)
{
int ret;
struct k210_clk_priv *priv = dev_get_priv(dev);
priv->base = dev_read_addr_ptr(dev_get_parent(dev));
if (!priv->base)
return -EINVAL;
ret = clk_get_by_index(dev, 0, &priv->in0);
if (ret)
return ret;
/*
* Force setting defaults, even before relocation. This is so we can
* set the clock rate for PLL1 before we relocate into aisram.
*/
if (!(gd->flags & GD_FLG_RELOC))
clk_set_defaults(dev, CLK_DEFAULTS_POST_FORCE);
return 0;
}
static const struct udevice_id k210_clk_ids[] = {
{ .compatible = "kendryte,k210-clk" },
{ },
};
U_BOOT_DRIVER(k210_clk) = {
.name = "k210_clk",
.id = UCLASS_CLK,
.of_match = k210_clk_ids,
.ops = &k210_clk_ops,
.probe = k210_clk_probe,
.priv_auto = sizeof(struct k210_clk_priv),
};
#if CONFIG_IS_ENABLED(CMD_CLK)
static char show_enabled(struct k210_clk_priv *priv, int id)
{
bool enabled;
if (k210_clks[id].flags & K210_CLKF_PLL) {
const struct k210_pll_params *pll =
&k210_plls[k210_clks[id].pll];
enabled = k210_pll_enabled(readl(priv->base + pll->off));
} else if (k210_clks[id].gate == K210_CLK_GATE_NONE) {
return '-';
} else {
const struct k210_gate_params *gate =
&k210_gates[k210_clks[id].gate];
enabled = k210_clk_readl(priv, gate->off, gate->bit_idx, 1);
}
return enabled ? 'y' : 'n';
}
static void show_clks(struct k210_clk_priv *priv, int id, int depth)
{
int i;
for (i = 0; i < ARRAY_SIZE(k210_clks); i++) {
if (k210_clk_get_parent(priv, i) != id)
continue;
printf(" %-9lu %-7c %*s%s\n", do_k210_clk_get_rate(priv, i),
show_enabled(priv, i), depth * 4, "",
k210_clks[i].name);
show_clks(priv, i, depth + 1);
}
}
int soc_clk_dump(void)
{
int ret;
struct udevice *dev;
struct k210_clk_priv *priv;
ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(k210_clk),
&dev);
if (ret)
return ret;
priv = dev_get_priv(dev);
puts(" Rate Enabled Name\n");
puts("------------------------\n");
printf(" %-9lu %-7c %*s%s\n", clk_get_rate(&priv->in0), 'y', 0, "",
priv->in0.dev->name);
show_clks(priv, K210_CLK_IN0, 1);
return 0;
}
#endif