u-boot/arch/arm/mach-imx/imx8m/clock_imx8mm.c
Peng Fan dc2d49209e imx: imx8m: clock: not configure reserved SRC register
i.MX8M[M,N,P] SRC not has 0x1004 offset register, so drop it.

Reviewed-by: Ye Li <ye.li@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
2023-07-13 11:29:40 +02:00

932 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018-2019 NXP
*
* Peng Fan <peng.fan@nxp.com>
*/
#include <common.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/sys_proto.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <div64.h>
#include <errno.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <phy.h>
DECLARE_GLOBAL_DATA_PTR;
static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
static u32 get_root_clk(enum clk_root_index clock_id);
#ifdef CONFIG_IMX_HAB
void hab_caam_clock_enable(unsigned char enable)
{
/* The CAAM clock is always on for iMX8M */
}
#endif
void enable_ocotp_clk(unsigned char enable)
{
clock_enable(CCGR_OCOTP, !!enable);
}
int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
{
u8 i2c_ccgr[] = {
CCGR_I2C1, CCGR_I2C2, CCGR_I2C3, CCGR_I2C4,
#if (IS_ENABLED(CONFIG_IMX8MP))
CCGR_I2C5_8MP, CCGR_I2C6_8MP
#endif
};
if (i2c_num >= ARRAY_SIZE(i2c_ccgr))
return -EINVAL;
clock_enable(i2c_ccgr[i2c_num], !!enable);
return 0;
}
#ifdef CONFIG_SPL_BUILD
static struct imx_int_pll_rate_table imx8mm_fracpll_tbl[] = {
PLL_1443X_RATE(1000000000U, 250, 3, 1, 0),
PLL_1443X_RATE(933000000U, 311, 4, 1, 0),
PLL_1443X_RATE(800000000U, 300, 9, 0, 0),
PLL_1443X_RATE(750000000U, 250, 8, 0, 0),
PLL_1443X_RATE(650000000U, 325, 3, 2, 0),
PLL_1443X_RATE(600000000U, 300, 3, 2, 0),
PLL_1443X_RATE(594000000U, 99, 1, 2, 0),
PLL_1443X_RATE(400000000U, 300, 9, 1, 0),
PLL_1443X_RATE(266000000U, 400, 9, 2, 0),
PLL_1443X_RATE(167000000U, 334, 3, 4, 0),
PLL_1443X_RATE(100000000U, 300, 9, 3, 0),
};
static int fracpll_configure(enum pll_clocks pll, u32 freq)
{
int i;
u32 tmp, div_val;
void *pll_base;
struct imx_int_pll_rate_table *rate;
for (i = 0; i < ARRAY_SIZE(imx8mm_fracpll_tbl); i++) {
if (freq == imx8mm_fracpll_tbl[i].rate)
break;
}
if (i == ARRAY_SIZE(imx8mm_fracpll_tbl)) {
printf("%s: No matched freq table %u\n", __func__, freq);
return -EINVAL;
}
rate = &imx8mm_fracpll_tbl[i];
switch (pll) {
case ANATOP_DRAM_PLL:
setbits_le32(GPC_BASE_ADDR + 0xEC, 1 << 7);
setbits_le32(GPC_BASE_ADDR + 0xF8, 1 << 5);
pll_base = &ana_pll->dram_pll_gnrl_ctl;
break;
case ANATOP_VIDEO_PLL:
pll_base = &ana_pll->video_pll1_gnrl_ctl;
break;
default:
return 0;
}
/* Bypass clock and set lock to pll output lock */
tmp = readl(pll_base);
tmp |= BYPASS_MASK;
writel(tmp, pll_base);
/* Enable RST */
tmp &= ~RST_MASK;
writel(tmp, pll_base);
div_val = (rate->mdiv << MDIV_SHIFT) | (rate->pdiv << PDIV_SHIFT) |
(rate->sdiv << SDIV_SHIFT);
writel(div_val, pll_base + 4);
writel(rate->kdiv << KDIV_SHIFT, pll_base + 8);
__udelay(100);
/* Disable RST */
tmp |= RST_MASK;
writel(tmp, pll_base);
/* Wait Lock*/
while (!(readl(pll_base) & LOCK_STATUS))
;
/* Bypass */
tmp &= ~BYPASS_MASK;
writel(tmp, pll_base);
return 0;
}
void dram_pll_init(ulong pll_val)
{
fracpll_configure(ANATOP_DRAM_PLL, pll_val);
}
static struct dram_bypass_clk_setting imx8mm_dram_bypass_tbl[] = {
DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2,
CLK_ROOT_PRE_DIV2),
DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2,
CLK_ROOT_PRE_DIV2),
DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3,
CLK_ROOT_PRE_DIV2),
};
void dram_enable_bypass(ulong clk_val)
{
int i;
struct dram_bypass_clk_setting *config;
for (i = 0; i < ARRAY_SIZE(imx8mm_dram_bypass_tbl); i++) {
if (clk_val == imx8mm_dram_bypass_tbl[i].clk)
break;
}
if (i == ARRAY_SIZE(imx8mm_dram_bypass_tbl)) {
printf("%s: No matched freq table %lu\n", __func__, clk_val);
return;
}
config = &imx8mm_dram_bypass_tbl[i];
clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(config->alt_root_sel) |
CLK_ROOT_PRE_DIV(config->alt_pre_div));
clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(config->apb_root_sel) |
CLK_ROOT_PRE_DIV(config->apb_pre_div));
clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
}
void dram_disable_bypass(void)
{
clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(4) |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5));
}
#endif
int intpll_configure(enum pll_clocks pll, ulong freq)
{
void __iomem *pll_gnrl_ctl, __iomem *pll_div_ctl;
u32 pll_div_ctl_val, pll_clke_masks;
switch (pll) {
case ANATOP_SYSTEM_PLL1:
pll_gnrl_ctl = &ana_pll->sys_pll1_gnrl_ctl;
pll_div_ctl = &ana_pll->sys_pll1_div_ctl;
pll_clke_masks = INTPLL_DIV20_CLKE_MASK |
INTPLL_DIV10_CLKE_MASK | INTPLL_DIV8_CLKE_MASK |
INTPLL_DIV6_CLKE_MASK | INTPLL_DIV5_CLKE_MASK |
INTPLL_DIV4_CLKE_MASK | INTPLL_DIV3_CLKE_MASK |
INTPLL_DIV2_CLKE_MASK | INTPLL_CLKE_MASK;
break;
case ANATOP_SYSTEM_PLL2:
pll_gnrl_ctl = &ana_pll->sys_pll2_gnrl_ctl;
pll_div_ctl = &ana_pll->sys_pll2_div_ctl;
pll_clke_masks = INTPLL_DIV20_CLKE_MASK |
INTPLL_DIV10_CLKE_MASK | INTPLL_DIV8_CLKE_MASK |
INTPLL_DIV6_CLKE_MASK | INTPLL_DIV5_CLKE_MASK |
INTPLL_DIV4_CLKE_MASK | INTPLL_DIV3_CLKE_MASK |
INTPLL_DIV2_CLKE_MASK | INTPLL_CLKE_MASK;
break;
case ANATOP_SYSTEM_PLL3:
pll_gnrl_ctl = &ana_pll->sys_pll3_gnrl_ctl;
pll_div_ctl = &ana_pll->sys_pll3_div_ctl;
pll_clke_masks = INTPLL_CLKE_MASK;
break;
case ANATOP_ARM_PLL:
pll_gnrl_ctl = &ana_pll->arm_pll_gnrl_ctl;
pll_div_ctl = &ana_pll->arm_pll_div_ctl;
pll_clke_masks = INTPLL_CLKE_MASK;
break;
case ANATOP_GPU_PLL:
pll_gnrl_ctl = &ana_pll->gpu_pll_gnrl_ctl;
pll_div_ctl = &ana_pll->gpu_pll_div_ctl;
pll_clke_masks = INTPLL_CLKE_MASK;
break;
case ANATOP_VPU_PLL:
pll_gnrl_ctl = &ana_pll->vpu_pll_gnrl_ctl;
pll_div_ctl = &ana_pll->vpu_pll_div_ctl;
pll_clke_masks = INTPLL_CLKE_MASK;
break;
default:
return -EINVAL;
};
switch (freq) {
case MHZ(600):
/* 24 * 0x12c / 3 / 2 ^ 2 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0x12c) |
INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(2);
break;
case MHZ(750):
/* 24 * 0xfa / 2 / 2 ^ 2 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0xfa) |
INTPLL_PRE_DIV_VAL(2) | INTPLL_POST_DIV_VAL(2);
break;
case MHZ(800):
/* 24 * 0x190 / 3 / 2 ^ 2 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0x190) |
INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(2);
break;
case MHZ(1000):
/* 24 * 0xfa / 3 / 2 ^ 1 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0xfa) |
INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(1);
break;
case MHZ(1200):
/* 24 * 0x12c / 3 / 2 ^ 1 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0x12c) |
INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(1);
break;
case MHZ(1400):
/* 24 * 0x15e / 3 / 2 ^ 1 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0x15e) |
INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(1);
break;
case MHZ(1500):
/* 24 * 0x177 / 3 / 2 ^ 1 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0x177) |
INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(1);
break;
case MHZ(1600):
/* 24 * 0xc8 / 3 / 2 ^ 0 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0xc8) |
INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(0);
break;
case MHZ(1800):
/* 24 * 0xe1 / 3 / 2 ^ 0 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0xe1) |
INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(0);
break;
case MHZ(2000):
/* 24 * 0xfa / 3 / 2 ^ 0 */
pll_div_ctl_val = INTPLL_MAIN_DIV_VAL(0xfa) |
INTPLL_PRE_DIV_VAL(3) | INTPLL_POST_DIV_VAL(0);
break;
default:
return -EINVAL;
};
/* Bypass clock and set lock to pll output lock */
setbits_le32(pll_gnrl_ctl, INTPLL_BYPASS_MASK | INTPLL_LOCK_SEL_MASK);
/* Enable reset */
clrbits_le32(pll_gnrl_ctl, INTPLL_RST_MASK);
/* Configure */
writel(pll_div_ctl_val, pll_div_ctl);
__udelay(100);
/* Disable reset */
setbits_le32(pll_gnrl_ctl, INTPLL_RST_MASK);
/* Wait Lock */
while (!(readl(pll_gnrl_ctl) & INTPLL_LOCK_MASK))
;
/* Clear bypass */
clrbits_le32(pll_gnrl_ctl, INTPLL_BYPASS_MASK);
setbits_le32(pll_gnrl_ctl, pll_clke_masks);
return 0;
}
void init_uart_clk(u32 index)
{
/*
* set uart clock root
* 24M OSC
*/
switch (index) {
case 0:
clock_enable(CCGR_UART1, 0);
clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_UART1, 1);
return;
case 1:
clock_enable(CCGR_UART2, 0);
clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_UART2, 1);
return;
case 2:
clock_enable(CCGR_UART3, 0);
clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_UART3, 1);
return;
case 3:
clock_enable(CCGR_UART4, 0);
clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_UART4, 1);
return;
default:
printf("Invalid uart index\n");
return;
}
}
void init_wdog_clk(void)
{
clock_enable(CCGR_WDOG1, 0);
clock_enable(CCGR_WDOG2, 0);
clock_enable(CCGR_WDOG3, 0);
clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_WDOG1, 1);
clock_enable(CCGR_WDOG2, 1);
clock_enable(CCGR_WDOG3, 1);
}
void init_clk_usdhc(u32 index)
{
/*
* set usdhc clock root
* sys pll1 400M
*/
switch (index) {
case 0:
clock_enable(CCGR_USDHC1, 0);
clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
clock_enable(CCGR_USDHC1, 1);
return;
case 1:
clock_enable(CCGR_USDHC2, 0);
clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
clock_enable(CCGR_USDHC2, 1);
return;
case 2:
clock_enable(CCGR_USDHC3, 0);
clock_set_target_val(USDHC3_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
clock_enable(CCGR_USDHC3, 1);
return;
default:
printf("Invalid usdhc index\n");
return;
}
}
void init_clk_ecspi(u32 index)
{
switch (index) {
case 0:
clock_enable(CCGR_ECSPI1, 0);
clock_set_target_val(ECSPI1_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_ECSPI1, 1);
return;
case 1:
clock_enable(CCGR_ECSPI2, 0);
clock_set_target_val(ECSPI2_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_ECSPI2, 1);
return;
case 2:
clock_enable(CCGR_ECSPI3, 0);
clock_set_target_val(ECSPI3_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_ECSPI3, 1);
return;
default:
printf("Invalid ecspi index\n");
return;
}
}
void init_nand_clk(void)
{
/*
* set rawnand root
* sys pll1 400M
*/
clock_enable(CCGR_RAWNAND, 0);
clock_set_target_val(NAND_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(3) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4)); /* 100M */
clock_enable(CCGR_RAWNAND, 1);
}
int clock_init(void)
{
u32 val_cfg0;
/*
* The gate is not exported to clk tree, so configure them here.
* According to ANAMIX SPEC
* sys pll1 fixed at 800MHz
* sys pll2 fixed at 1GHz
* Here we only enable the outputs.
*/
val_cfg0 = readl(&ana_pll->sys_pll1_gnrl_ctl);
val_cfg0 |= INTPLL_CLKE_MASK | INTPLL_DIV2_CLKE_MASK |
INTPLL_DIV3_CLKE_MASK | INTPLL_DIV4_CLKE_MASK |
INTPLL_DIV5_CLKE_MASK | INTPLL_DIV6_CLKE_MASK |
INTPLL_DIV8_CLKE_MASK | INTPLL_DIV10_CLKE_MASK |
INTPLL_DIV20_CLKE_MASK;
writel(val_cfg0, &ana_pll->sys_pll1_gnrl_ctl);
val_cfg0 = readl(&ana_pll->sys_pll2_gnrl_ctl);
val_cfg0 |= INTPLL_CLKE_MASK | INTPLL_DIV2_CLKE_MASK |
INTPLL_DIV3_CLKE_MASK | INTPLL_DIV4_CLKE_MASK |
INTPLL_DIV5_CLKE_MASK | INTPLL_DIV6_CLKE_MASK |
INTPLL_DIV8_CLKE_MASK | INTPLL_DIV10_CLKE_MASK |
INTPLL_DIV20_CLKE_MASK;
writel(val_cfg0, &ana_pll->sys_pll2_gnrl_ctl);
/* Configure ARM at 1.2GHz */
clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(2));
intpll_configure(ANATOP_ARM_PLL, MHZ(1200));
/* Bypass CCM A53 ROOT, Switch to ARM PLL -> MUX-> CPU */
clock_set_target_val(CORE_SEL_CFG, CLK_ROOT_SOURCE_SEL(1));
if (is_imx8mn() || is_imx8mp())
intpll_configure(ANATOP_SYSTEM_PLL3, MHZ(600));
else
intpll_configure(ANATOP_SYSTEM_PLL3, MHZ(750));
#ifdef CONFIG_IMX8MP
/* 8MP ROM already set NOC to 800Mhz, only need to configure NOC_IO clk to 600Mhz */
/* 8MP ROM already set GIC to 400Mhz, system_pll1_800m with div = 2 */
clock_set_target_val(NOC_IO_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(2));
#else
clock_set_target_val(NOC_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(2));
/* config GIC to sys_pll2_100m */
clock_enable(CCGR_GIC, 0);
clock_set_target_val(GIC_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(3));
clock_enable(CCGR_GIC, 1);
#endif
clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
clock_enable(CCGR_DDR1, 0);
clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
clock_enable(CCGR_DDR1, 1);
init_wdog_clk();
clock_enable(CCGR_TEMP_SENSOR, 1);
clock_enable(CCGR_SEC_DEBUG, 1);
return 0;
};
u32 imx_get_uartclk(void)
{
return 24000000U;
}
static u32 decode_intpll(enum clk_root_src intpll)
{
u32 pll_gnrl_ctl, pll_div_ctl, pll_clke_mask;
u32 main_div, pre_div, post_div, div;
u64 freq;
switch (intpll) {
case ARM_PLL_CLK:
pll_gnrl_ctl = readl(&ana_pll->arm_pll_gnrl_ctl);
pll_div_ctl = readl(&ana_pll->arm_pll_div_ctl);
break;
case GPU_PLL_CLK:
pll_gnrl_ctl = readl(&ana_pll->gpu_pll_gnrl_ctl);
pll_div_ctl = readl(&ana_pll->gpu_pll_div_ctl);
break;
case VPU_PLL_CLK:
pll_gnrl_ctl = readl(&ana_pll->vpu_pll_gnrl_ctl);
pll_div_ctl = readl(&ana_pll->vpu_pll_div_ctl);
break;
case SYSTEM_PLL1_800M_CLK:
case SYSTEM_PLL1_400M_CLK:
case SYSTEM_PLL1_266M_CLK:
case SYSTEM_PLL1_200M_CLK:
case SYSTEM_PLL1_160M_CLK:
case SYSTEM_PLL1_133M_CLK:
case SYSTEM_PLL1_100M_CLK:
case SYSTEM_PLL1_80M_CLK:
case SYSTEM_PLL1_40M_CLK:
pll_gnrl_ctl = readl(&ana_pll->sys_pll1_gnrl_ctl);
pll_div_ctl = readl(&ana_pll->sys_pll1_div_ctl);
break;
case SYSTEM_PLL2_1000M_CLK:
case SYSTEM_PLL2_500M_CLK:
case SYSTEM_PLL2_333M_CLK:
case SYSTEM_PLL2_250M_CLK:
case SYSTEM_PLL2_200M_CLK:
case SYSTEM_PLL2_166M_CLK:
case SYSTEM_PLL2_125M_CLK:
case SYSTEM_PLL2_100M_CLK:
case SYSTEM_PLL2_50M_CLK:
pll_gnrl_ctl = readl(&ana_pll->sys_pll2_gnrl_ctl);
pll_div_ctl = readl(&ana_pll->sys_pll2_div_ctl);
break;
case SYSTEM_PLL3_CLK:
pll_gnrl_ctl = readl(&ana_pll->sys_pll3_gnrl_ctl);
pll_div_ctl = readl(&ana_pll->sys_pll3_div_ctl);
break;
default:
return -EINVAL;
}
/* Only support SYS_XTAL 24M, PAD_CLK not take into consideration */
if ((pll_gnrl_ctl & INTPLL_REF_CLK_SEL_MASK) != 0)
return 0;
if ((pll_gnrl_ctl & INTPLL_RST_MASK) == 0)
return 0;
/*
* When BYPASS is equal to 1, PLL enters the bypass mode
* regardless of the values of RESETB
*/
if (pll_gnrl_ctl & INTPLL_BYPASS_MASK)
return 24000000u;
if (!(pll_gnrl_ctl & INTPLL_LOCK_MASK)) {
puts("pll not locked\n");
return 0;
}
switch (intpll) {
case ARM_PLL_CLK:
case GPU_PLL_CLK:
case VPU_PLL_CLK:
case SYSTEM_PLL3_CLK:
case SYSTEM_PLL1_800M_CLK:
case SYSTEM_PLL2_1000M_CLK:
pll_clke_mask = INTPLL_CLKE_MASK;
div = 1;
break;
case SYSTEM_PLL1_400M_CLK:
case SYSTEM_PLL2_500M_CLK:
pll_clke_mask = INTPLL_DIV2_CLKE_MASK;
div = 2;
break;
case SYSTEM_PLL1_266M_CLK:
case SYSTEM_PLL2_333M_CLK:
pll_clke_mask = INTPLL_DIV3_CLKE_MASK;
div = 3;
break;
case SYSTEM_PLL1_200M_CLK:
case SYSTEM_PLL2_250M_CLK:
pll_clke_mask = INTPLL_DIV4_CLKE_MASK;
div = 4;
break;
case SYSTEM_PLL1_160M_CLK:
case SYSTEM_PLL2_200M_CLK:
pll_clke_mask = INTPLL_DIV5_CLKE_MASK;
div = 5;
break;
case SYSTEM_PLL1_133M_CLK:
case SYSTEM_PLL2_166M_CLK:
pll_clke_mask = INTPLL_DIV6_CLKE_MASK;
div = 6;
break;
case SYSTEM_PLL1_100M_CLK:
case SYSTEM_PLL2_125M_CLK:
pll_clke_mask = INTPLL_DIV8_CLKE_MASK;
div = 8;
break;
case SYSTEM_PLL1_80M_CLK:
case SYSTEM_PLL2_100M_CLK:
pll_clke_mask = INTPLL_DIV10_CLKE_MASK;
div = 10;
break;
case SYSTEM_PLL1_40M_CLK:
case SYSTEM_PLL2_50M_CLK:
pll_clke_mask = INTPLL_DIV20_CLKE_MASK;
div = 20;
break;
default:
return -EINVAL;
}
if ((pll_gnrl_ctl & pll_clke_mask) == 0)
return 0;
main_div = (pll_div_ctl & INTPLL_MAIN_DIV_MASK) >>
INTPLL_MAIN_DIV_SHIFT;
pre_div = (pll_div_ctl & INTPLL_PRE_DIV_MASK) >>
INTPLL_PRE_DIV_SHIFT;
post_div = (pll_div_ctl & INTPLL_POST_DIV_MASK) >>
INTPLL_POST_DIV_SHIFT;
/* FFVCO = (m * FFIN) / p, FFOUT = (m * FFIN) / (p * 2^s) */
freq = 24000000ULL * main_div;
return lldiv(freq, pre_div * (1 << post_div) * div);
}
static u32 decode_fracpll(enum clk_root_src frac_pll)
{
u32 pll_gnrl_ctl, pll_fdiv_ctl0, pll_fdiv_ctl1;
u32 main_div, pre_div, post_div, k;
switch (frac_pll) {
case DRAM_PLL1_CLK:
pll_gnrl_ctl = readl(&ana_pll->dram_pll_gnrl_ctl);
pll_fdiv_ctl0 = readl(&ana_pll->dram_pll_fdiv_ctl0);
pll_fdiv_ctl1 = readl(&ana_pll->dram_pll_fdiv_ctl1);
break;
case AUDIO_PLL1_CLK:
pll_gnrl_ctl = readl(&ana_pll->audio_pll1_gnrl_ctl);
pll_fdiv_ctl0 = readl(&ana_pll->audio_pll1_fdiv_ctl0);
pll_fdiv_ctl1 = readl(&ana_pll->audio_pll1_fdiv_ctl1);
break;
case AUDIO_PLL2_CLK:
pll_gnrl_ctl = readl(&ana_pll->audio_pll2_gnrl_ctl);
pll_fdiv_ctl0 = readl(&ana_pll->audio_pll2_fdiv_ctl0);
pll_fdiv_ctl1 = readl(&ana_pll->audio_pll2_fdiv_ctl1);
break;
case VIDEO_PLL_CLK:
pll_gnrl_ctl = readl(&ana_pll->video_pll1_gnrl_ctl);
pll_fdiv_ctl0 = readl(&ana_pll->video_pll1_fdiv_ctl0);
pll_fdiv_ctl1 = readl(&ana_pll->video_pll1_fdiv_ctl1);
break;
default:
printf("Unsupported clk_root_src %d\n", frac_pll);
return 0;
}
/* Only support SYS_XTAL 24M, PAD_CLK not take into consideration */
if ((pll_gnrl_ctl & GENMASK(1, 0)) != 0)
return 0;
if ((pll_gnrl_ctl & RST_MASK) == 0)
return 0;
/*
* When BYPASS is equal to 1, PLL enters the bypass mode
* regardless of the values of RESETB
*/
if (pll_gnrl_ctl & BYPASS_MASK)
return 24000000u;
if (!(pll_gnrl_ctl & LOCK_STATUS)) {
puts("pll not locked\n");
return 0;
}
if (!(pll_gnrl_ctl & CLKE_MASK))
return 0;
main_div = (pll_fdiv_ctl0 & MDIV_MASK) >>
MDIV_SHIFT;
pre_div = (pll_fdiv_ctl0 & PDIV_MASK) >>
PDIV_SHIFT;
post_div = (pll_fdiv_ctl0 & SDIV_MASK) >>
SDIV_SHIFT;
k = pll_fdiv_ctl1 & KDIV_MASK;
return lldiv((main_div * 65536 + k) * 24000000ULL,
65536 * pre_div * (1 << post_div));
}
static u32 get_root_src_clk(enum clk_root_src root_src)
{
switch (root_src) {
case OSC_24M_CLK:
return 24000000u;
case OSC_HDMI_CLK:
return 26000000u;
case OSC_32K_CLK:
return 32000u;
case ARM_PLL_CLK:
case GPU_PLL_CLK:
case VPU_PLL_CLK:
case SYSTEM_PLL1_800M_CLK:
case SYSTEM_PLL1_400M_CLK:
case SYSTEM_PLL1_266M_CLK:
case SYSTEM_PLL1_200M_CLK:
case SYSTEM_PLL1_160M_CLK:
case SYSTEM_PLL1_133M_CLK:
case SYSTEM_PLL1_100M_CLK:
case SYSTEM_PLL1_80M_CLK:
case SYSTEM_PLL1_40M_CLK:
case SYSTEM_PLL2_1000M_CLK:
case SYSTEM_PLL2_500M_CLK:
case SYSTEM_PLL2_333M_CLK:
case SYSTEM_PLL2_250M_CLK:
case SYSTEM_PLL2_200M_CLK:
case SYSTEM_PLL2_166M_CLK:
case SYSTEM_PLL2_125M_CLK:
case SYSTEM_PLL2_100M_CLK:
case SYSTEM_PLL2_50M_CLK:
case SYSTEM_PLL3_CLK:
return decode_intpll(root_src);
case DRAM_PLL1_CLK:
case AUDIO_PLL1_CLK:
case AUDIO_PLL2_CLK:
case VIDEO_PLL_CLK:
return decode_fracpll(root_src);
case ARM_A53_ALT_CLK:
return get_root_clk(ARM_A53_CLK_ROOT);
default:
return 0;
}
return 0;
}
static u32 get_root_clk(enum clk_root_index clock_id)
{
enum clk_root_src root_src;
u32 post_podf, pre_podf, root_src_clk;
if (clock_root_enabled(clock_id) <= 0)
return 0;
if (clock_get_prediv(clock_id, &pre_podf) < 0)
return 0;
if (clock_get_postdiv(clock_id, &post_podf) < 0)
return 0;
if (clock_get_src(clock_id, &root_src) < 0)
return 0;
root_src_clk = get_root_src_clk(root_src);
return root_src_clk / (post_podf + 1) / (pre_podf + 1);
}
u32 get_arm_core_clk(void)
{
enum clk_root_src root_src;
u32 root_src_clk;
if (clock_get_src(CORE_SEL_CFG, &root_src) < 0)
return 0;
root_src_clk = get_root_src_clk(root_src);
return root_src_clk;
}
u32 mxc_get_clock(enum mxc_clock clk)
{
u32 val;
switch (clk) {
case MXC_ARM_CLK:
return get_arm_core_clk();
case MXC_IPG_CLK:
clock_get_target_val(IPG_CLK_ROOT, &val);
val = val & 0x3;
return get_root_clk(AHB_CLK_ROOT) / 2 / (val + 1);
case MXC_CSPI_CLK:
return get_root_clk(ECSPI1_CLK_ROOT);
case MXC_ESDHC_CLK:
return get_root_clk(USDHC1_CLK_ROOT);
case MXC_ESDHC2_CLK:
return get_root_clk(USDHC2_CLK_ROOT);
case MXC_ESDHC3_CLK:
return get_root_clk(USDHC3_CLK_ROOT);
case MXC_I2C_CLK:
return get_root_clk(I2C1_CLK_ROOT);
case MXC_UART_CLK:
return get_root_clk(UART1_CLK_ROOT);
case MXC_QSPI_CLK:
return get_root_clk(QSPI_CLK_ROOT);
default:
printf("Unsupported mxc_clock %d\n", clk);
break;
}
return 0;
}
#if defined(CONFIG_IMX8MP) && defined(CONFIG_DWC_ETH_QOS)
static int imx8mp_eqos_interface_init(struct udevice *dev,
phy_interface_t interface_type)
{
struct iomuxc_gpr_base_regs *gpr =
(struct iomuxc_gpr_base_regs *)IOMUXC_GPR_BASE_ADDR;
clrbits_le32(&gpr->gpr[1],
IOMUXC_GPR_GPR1_GPR_ENET_QOS_INTF_SEL_MASK |
IOMUXC_GPR_GPR1_GPR_ENET_QOS_RGMII_EN |
IOMUXC_GPR_GPR1_GPR_ENET_QOS_CLK_TX_CLK_SEL |
IOMUXC_GPR_GPR1_GPR_ENET_QOS_CLK_GEN_EN);
switch (interface_type) {
case PHY_INTERFACE_MODE_MII:
setbits_le32(&gpr->gpr[1],
IOMUXC_GPR_GPR1_GPR_ENET_QOS_CLK_GEN_EN |
IOMUXC_GPR_GPR1_GPR_ENET_QOS_INTF_SEL_MII);
break;
case PHY_INTERFACE_MODE_RMII:
setbits_le32(&gpr->gpr[1],
IOMUXC_GPR_GPR1_GPR_ENET_QOS_CLK_TX_CLK_SEL |
IOMUXC_GPR_GPR1_GPR_ENET_QOS_CLK_GEN_EN |
IOMUXC_GPR_GPR1_GPR_ENET_QOS_INTF_SEL_RMII);
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
setbits_le32(&gpr->gpr[1],
IOMUXC_GPR_GPR1_GPR_ENET_QOS_RGMII_EN |
IOMUXC_GPR_GPR1_GPR_ENET_QOS_CLK_GEN_EN |
IOMUXC_GPR_GPR1_GPR_ENET_QOS_INTF_SEL_RGMII);
break;
default:
return -EINVAL;
}
return 0;
}
#else
static int imx8mp_eqos_interface_init(struct udevice *dev,
phy_interface_t interface_type)
{
return 0;
}
#endif
#ifdef CONFIG_FEC_MXC
static int imx8mp_fec_interface_init(struct udevice *dev,
phy_interface_t interface_type,
bool mx8mp)
{
/* i.MX8MP has extra RGMII_EN bit in IOMUXC GPR1 register */
const u32 rgmii_en = mx8mp ? IOMUXC_GPR_GPR1_GPR_ENET1_RGMII_EN : 0;
struct iomuxc_gpr_base_regs *gpr =
(struct iomuxc_gpr_base_regs *)IOMUXC_GPR_BASE_ADDR;
clrbits_le32(&gpr->gpr[1],
rgmii_en |
IOMUXC_GPR_GPR1_GPR_ENET1_TX_CLK_SEL);
switch (interface_type) {
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_RMII:
setbits_le32(&gpr->gpr[1], IOMUXC_GPR_GPR1_GPR_ENET1_TX_CLK_SEL);
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
setbits_le32(&gpr->gpr[1], rgmii_en);
break;
default:
return -EINVAL;
}
return 0;
}
#endif
int board_interface_eth_init(struct udevice *dev, phy_interface_t interface_type)
{
if (IS_ENABLED(CONFIG_IMX8MM) &&
IS_ENABLED(CONFIG_FEC_MXC) &&
device_is_compatible(dev, "fsl,imx8mm-fec"))
return imx8mp_fec_interface_init(dev, interface_type, false);
if (IS_ENABLED(CONFIG_IMX8MN) &&
IS_ENABLED(CONFIG_FEC_MXC) &&
device_is_compatible(dev, "fsl,imx8mn-fec"))
return imx8mp_fec_interface_init(dev, interface_type, false);
if (IS_ENABLED(CONFIG_IMX8MP) &&
IS_ENABLED(CONFIG_FEC_MXC) &&
device_is_compatible(dev, "fsl,imx8mp-fec"))
return imx8mp_fec_interface_init(dev, interface_type, true);
if (IS_ENABLED(CONFIG_IMX8MP) &&
IS_ENABLED(CONFIG_DWC_ETH_QOS) &&
device_is_compatible(dev, "nxp,imx8mp-dwmac-eqos"))
return imx8mp_eqos_interface_init(dev, interface_type);
return -EINVAL;
}