mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-14 08:57:58 +00:00
9eef56dbe3
Move env_get_ulong() over to the new header file. Signed-off-by: Simon Glass <sjg@chromium.org> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
1238 lines
28 KiB
C
1238 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2013
|
|
* Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
|
|
*/
|
|
|
|
/* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
|
|
|
|
#ifdef CCDM_ID_DEBUG
|
|
#define DEBUG
|
|
#endif
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <env.h>
|
|
#include <malloc.h>
|
|
#include <fs.h>
|
|
#include <i2c.h>
|
|
#include <mmc.h>
|
|
#include <tpm-v1.h>
|
|
#include <u-boot/sha1.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/unaligned.h>
|
|
#include <pca9698.h>
|
|
|
|
#undef CCDM_FIRST_STAGE
|
|
#undef CCDM_SECOND_STAGE
|
|
#undef CCDM_AUTO_FIRST_STAGE
|
|
|
|
#ifdef CONFIG_DEVELOP
|
|
#define CCDM_DEVELOP
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRAILBLAZER
|
|
#define CCDM_FIRST_STAGE
|
|
#undef CCDM_SECOND_STAGE
|
|
#else
|
|
#undef CCDM_FIRST_STAGE
|
|
#define CCDM_SECOND_STAGE
|
|
#endif
|
|
|
|
#if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
|
|
!defined(CCCM_FIRST_STAGE)
|
|
#define CCDM_AUTO_FIRST_STAGE
|
|
#endif
|
|
|
|
/* CCDM specific contants */
|
|
enum {
|
|
/* NV indices */
|
|
NV_COMMON_DATA_INDEX = 0x40000001,
|
|
/* magics for key blob chains */
|
|
MAGIC_KEY_PROGRAM = 0x68726500,
|
|
MAGIC_HMAC = 0x68616300,
|
|
MAGIC_END_OF_CHAIN = 0x00000000,
|
|
/* sizes */
|
|
NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
|
|
};
|
|
|
|
/* other constants */
|
|
enum {
|
|
ESDHC_BOOT_IMAGE_SIG_OFS = 0x40,
|
|
ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48,
|
|
ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50,
|
|
ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58,
|
|
ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60,
|
|
};
|
|
|
|
enum {
|
|
I2C_SOC_0 = 0,
|
|
I2C_SOC_1 = 1,
|
|
};
|
|
|
|
struct key_program {
|
|
uint32_t magic;
|
|
uint32_t code_crc;
|
|
uint32_t code_size;
|
|
uint8_t code[];
|
|
};
|
|
|
|
struct h_reg {
|
|
bool valid;
|
|
uint8_t digest[20];
|
|
};
|
|
|
|
|
|
enum access_mode {
|
|
HREG_NONE = 0,
|
|
HREG_RD = 1,
|
|
HREG_WR = 2,
|
|
HREG_RDWR = 3,
|
|
};
|
|
|
|
/* register constants */
|
|
enum {
|
|
FIX_HREG_DEVICE_ID_HASH = 0,
|
|
FIX_HREG_SELF_HASH = 1,
|
|
FIX_HREG_STAGE2_HASH = 2,
|
|
FIX_HREG_VENDOR = 3,
|
|
COUNT_FIX_HREGS
|
|
};
|
|
|
|
|
|
/* hre opcodes */
|
|
enum {
|
|
/* opcodes w/o data */
|
|
HRE_NOP = 0x00,
|
|
HRE_SYNC = HRE_NOP,
|
|
HRE_CHECK0 = 0x01,
|
|
/* opcodes w/o data, w/ sync dst */
|
|
/* opcodes w/ data */
|
|
HRE_LOAD = 0x81,
|
|
/* opcodes w/data, w/sync dst */
|
|
HRE_XOR = 0xC1,
|
|
HRE_AND = 0xC2,
|
|
HRE_OR = 0xC3,
|
|
HRE_EXTEND = 0xC4,
|
|
HRE_LOADKEY = 0xC5,
|
|
};
|
|
|
|
/* hre errors */
|
|
enum {
|
|
HRE_E_OK = 0,
|
|
HRE_E_TPM_FAILURE,
|
|
HRE_E_INVALID_HREG,
|
|
};
|
|
|
|
static uint64_t device_id;
|
|
static uint64_t device_cl;
|
|
static uint64_t device_type;
|
|
|
|
static uint32_t platform_key_handle;
|
|
|
|
static void(*bl2_entry)(void);
|
|
|
|
static struct h_reg pcr_hregs[24];
|
|
static struct h_reg fix_hregs[COUNT_FIX_HREGS];
|
|
static struct h_reg var_hregs[8];
|
|
static uint32_t hre_tpm_err;
|
|
static int hre_err = HRE_E_OK;
|
|
|
|
#define IS_PCR_HREG(spec) ((spec) & 0x20)
|
|
#define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
|
|
#define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
|
|
#define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
|
|
|
|
static int get_tpm(struct udevice **devp)
|
|
{
|
|
int rc;
|
|
|
|
rc = uclass_first_device_err(UCLASS_TPM, devp);
|
|
if (rc) {
|
|
printf("Could not find TPM (ret=%d)\n", rc);
|
|
return CMD_RET_FAILURE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const uint8_t vendor[] = "Guntermann & Drunck";
|
|
|
|
/**
|
|
* @brief read a bunch of data from MMC into memory.
|
|
*
|
|
* @param mmc pointer to the mmc structure to use.
|
|
* @param src offset where the data starts on MMC/SD device (in bytes).
|
|
* @param dst pointer to the location where the read data should be stored.
|
|
* @param size number of bytes to read from the MMC/SD device.
|
|
* @return number of bytes read or -1 on error.
|
|
*/
|
|
static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
|
|
{
|
|
int result = 0;
|
|
u32 blk_len, ofs;
|
|
ulong block_no, n, cnt;
|
|
u8 *tmp_buf = NULL;
|
|
|
|
if (size <= 0)
|
|
goto end;
|
|
|
|
blk_len = mmc->read_bl_len;
|
|
tmp_buf = malloc(blk_len);
|
|
if (!tmp_buf)
|
|
goto failure;
|
|
block_no = src / blk_len;
|
|
ofs = src % blk_len;
|
|
|
|
if (ofs) {
|
|
n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
|
|
tmp_buf);
|
|
if (!n)
|
|
goto failure;
|
|
result = min(size, (int)(blk_len - ofs));
|
|
memcpy(dst, tmp_buf + ofs, result);
|
|
dst += result;
|
|
size -= result;
|
|
}
|
|
cnt = size / blk_len;
|
|
if (cnt) {
|
|
n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt,
|
|
dst);
|
|
if (n != cnt)
|
|
goto failure;
|
|
size -= cnt * blk_len;
|
|
result += cnt * blk_len;
|
|
dst += cnt * blk_len;
|
|
block_no += cnt;
|
|
}
|
|
if (size) {
|
|
n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
|
|
tmp_buf);
|
|
if (!n)
|
|
goto failure;
|
|
memcpy(dst, tmp_buf, size);
|
|
result += size;
|
|
}
|
|
goto end;
|
|
failure:
|
|
result = -1;
|
|
end:
|
|
if (tmp_buf)
|
|
free(tmp_buf);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
|
|
*
|
|
* @return pointer to the location for/of the 2nd stage bootloader
|
|
*/
|
|
static u8 *get_2nd_stage_bl_location(ulong target_addr)
|
|
{
|
|
ulong addr;
|
|
#ifdef CCDM_SECOND_STAGE
|
|
addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
|
|
#else
|
|
addr = target_addr;
|
|
#endif
|
|
return (u8 *)(addr);
|
|
}
|
|
|
|
|
|
#ifdef CCDM_SECOND_STAGE
|
|
/**
|
|
* @brief returns a location where the image can be(/ is) placed.
|
|
*
|
|
* @return pointer to the location for/of the image
|
|
*/
|
|
static u8 *get_image_location(void)
|
|
{
|
|
ulong addr;
|
|
/* TODO use other area? */
|
|
addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
|
|
return (u8 *)(addr);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief get the size of a given (TPM) NV area
|
|
* @param index NV index of the area to get size for
|
|
* @param size pointer to the size
|
|
* @return 0 on success, != 0 on error
|
|
*/
|
|
static int get_tpm_nv_size(struct udevice *tpm, uint32_t index, uint32_t *size)
|
|
{
|
|
uint32_t err;
|
|
uint8_t info[72];
|
|
uint8_t *ptr;
|
|
uint16_t v16;
|
|
|
|
err = tpm_get_capability(tpm, TPM_CAP_NV_INDEX, index,
|
|
info, sizeof(info));
|
|
if (err) {
|
|
printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
|
|
index, err);
|
|
return 1;
|
|
}
|
|
|
|
/* skip tag and nvIndex */
|
|
ptr = info + 6;
|
|
/* skip 2 pcr info fields */
|
|
v16 = get_unaligned_be16(ptr);
|
|
ptr += 2 + v16 + 1 + 20;
|
|
v16 = get_unaligned_be16(ptr);
|
|
ptr += 2 + v16 + 1 + 20;
|
|
/* skip permission and flags */
|
|
ptr += 6 + 3;
|
|
|
|
*size = get_unaligned_be32(ptr);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief search for a key by usage auth and pub key hash.
|
|
* @param auth usage auth of the key to search for
|
|
* @param pubkey_digest (SHA1) hash of the pub key structure of the key
|
|
* @param[out] handle the handle of the key iff found
|
|
* @return 0 if key was found in TPM; != 0 if not.
|
|
*/
|
|
static int find_key(struct udevice *tpm, const uint8_t auth[20],
|
|
const uint8_t pubkey_digest[20], uint32_t *handle)
|
|
{
|
|
uint16_t key_count;
|
|
uint32_t key_handles[10];
|
|
uint8_t buf[288];
|
|
uint8_t *ptr;
|
|
uint32_t err;
|
|
uint8_t digest[20];
|
|
size_t buf_len;
|
|
unsigned int i;
|
|
|
|
/* fetch list of already loaded keys in the TPM */
|
|
err = tpm_get_capability(tpm, TPM_CAP_HANDLE, TPM_RT_KEY, buf,
|
|
sizeof(buf));
|
|
if (err)
|
|
return -1;
|
|
key_count = get_unaligned_be16(buf);
|
|
ptr = buf + 2;
|
|
for (i = 0; i < key_count; ++i, ptr += 4)
|
|
key_handles[i] = get_unaligned_be32(ptr);
|
|
|
|
/* now search a(/ the) key which we can access with the given auth */
|
|
for (i = 0; i < key_count; ++i) {
|
|
buf_len = sizeof(buf);
|
|
err = tpm_get_pub_key_oiap(tpm, key_handles[i], auth, buf,
|
|
&buf_len);
|
|
if (err && err != TPM_AUTHFAIL)
|
|
return -1;
|
|
if (err)
|
|
continue;
|
|
sha1_csum(buf, buf_len, digest);
|
|
if (!memcmp(digest, pubkey_digest, 20)) {
|
|
*handle = key_handles[i];
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* @brief read CCDM common data from TPM NV
|
|
* @return 0 if CCDM common data was found and read, !=0 if something failed.
|
|
*/
|
|
static int read_common_data(struct udevice *tpm)
|
|
{
|
|
uint32_t size;
|
|
uint32_t err;
|
|
uint8_t buf[256];
|
|
sha1_context ctx;
|
|
|
|
if (get_tpm_nv_size(tpm, NV_COMMON_DATA_INDEX, &size) ||
|
|
size < NV_COMMON_DATA_MIN_SIZE)
|
|
return 1;
|
|
err = tpm_nv_read_value(tpm, NV_COMMON_DATA_INDEX,
|
|
buf, min(sizeof(buf), size));
|
|
if (err) {
|
|
printf("tpm_nv_read_value() failed: %u\n", err);
|
|
return 1;
|
|
}
|
|
|
|
device_id = get_unaligned_be64(buf);
|
|
device_cl = get_unaligned_be64(buf + 8);
|
|
device_type = get_unaligned_be64(buf + 16);
|
|
|
|
sha1_starts(&ctx);
|
|
sha1_update(&ctx, buf, 24);
|
|
sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
|
|
fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
|
|
|
|
platform_key_handle = get_unaligned_be32(buf + 24);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief compute hash of bootloader itself.
|
|
* @param[out] dst hash register where the hash should be stored
|
|
* @return 0 on success, != 0 on failure.
|
|
*
|
|
* @note MUST be called at a time where the boot loader is accessible at the
|
|
* configured location (; so take care when code is reallocated).
|
|
*/
|
|
static int compute_self_hash(struct h_reg *dst)
|
|
{
|
|
sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
|
|
CONFIG_SYS_MONITOR_LEN, dst->digest);
|
|
dst->valid = true;
|
|
return 0;
|
|
}
|
|
|
|
int ccdm_compute_self_hash(void)
|
|
{
|
|
if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
|
|
compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief compute the hash of the 2nd stage boot loader (on SD card)
|
|
* @param[out] dst hash register to store the computed hash
|
|
* @return 0 on success, != 0 on failure
|
|
*
|
|
* Determines the size and location of the 2nd stage boot loader on SD card,
|
|
* loads the 2nd stage boot loader and computes the (SHA1) hash value.
|
|
* Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
|
|
* the desired memory location and the variable @a bl2_entry is set.
|
|
*
|
|
* @note This sets the variable @a bl2_entry to the entry point when the
|
|
* 2nd stage boot loader is loaded at its configured memory location.
|
|
*/
|
|
static int compute_second_stage_hash(struct h_reg *dst)
|
|
{
|
|
int result = 0;
|
|
u32 code_len, code_offset, target_addr, exec_entry;
|
|
struct mmc *mmc;
|
|
u8 *load_addr = NULL;
|
|
u8 buf[128];
|
|
|
|
mmc = find_mmc_device(0);
|
|
if (!mmc)
|
|
goto failure;
|
|
mmc_init(mmc);
|
|
|
|
if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
|
|
goto failure;
|
|
|
|
code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
|
|
code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
|
|
target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
|
|
exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
|
|
|
|
load_addr = get_2nd_stage_bl_location(target_addr);
|
|
if (load_addr == (u8 *)target_addr)
|
|
bl2_entry = (void(*)(void))exec_entry;
|
|
|
|
if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
|
|
goto failure;
|
|
|
|
sha1_csum(load_addr, code_len, dst->digest);
|
|
dst->valid = true;
|
|
|
|
goto end;
|
|
failure:
|
|
result = 1;
|
|
bl2_entry = NULL;
|
|
end:
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @brief get pointer to hash register by specification
|
|
* @param spec specification of a hash register
|
|
* @return pointer to hash register or NULL if @a spec does not qualify a
|
|
* valid hash register; NULL else.
|
|
*/
|
|
static struct h_reg *get_hreg(uint8_t spec)
|
|
{
|
|
uint8_t idx;
|
|
|
|
idx = HREG_IDX(spec);
|
|
if (IS_FIX_HREG(spec)) {
|
|
if (idx < ARRAY_SIZE(fix_hregs))
|
|
return fix_hregs + idx;
|
|
hre_err = HRE_E_INVALID_HREG;
|
|
} else if (IS_PCR_HREG(spec)) {
|
|
if (idx < ARRAY_SIZE(pcr_hregs))
|
|
return pcr_hregs + idx;
|
|
hre_err = HRE_E_INVALID_HREG;
|
|
} else if (IS_VAR_HREG(spec)) {
|
|
if (idx < ARRAY_SIZE(var_hregs))
|
|
return var_hregs + idx;
|
|
hre_err = HRE_E_INVALID_HREG;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* @brief get pointer of a hash register by specification and usage.
|
|
* @param spec specification of a hash register
|
|
* @param mode access mode (read or write or read/write)
|
|
* @return pointer to hash register if found and valid; NULL else.
|
|
*
|
|
* This func uses @a get_reg() to determine the hash register for a given spec.
|
|
* If a register is found it is validated according to the desired access mode.
|
|
* The value of automatic registers (PCR register and fixed registers) is
|
|
* loaded or computed on read access.
|
|
*/
|
|
static struct h_reg *access_hreg(struct udevice *tpm, uint8_t spec,
|
|
enum access_mode mode)
|
|
{
|
|
struct h_reg *result;
|
|
|
|
result = get_hreg(spec);
|
|
if (!result)
|
|
return NULL;
|
|
|
|
if (mode & HREG_WR) {
|
|
if (IS_FIX_HREG(spec)) {
|
|
hre_err = HRE_E_INVALID_HREG;
|
|
return NULL;
|
|
}
|
|
}
|
|
if (mode & HREG_RD) {
|
|
if (!result->valid) {
|
|
if (IS_PCR_HREG(spec)) {
|
|
hre_tpm_err = tpm_pcr_read(tpm, HREG_IDX(spec),
|
|
result->digest, 20);
|
|
result->valid = (hre_tpm_err == TPM_SUCCESS);
|
|
} else if (IS_FIX_HREG(spec)) {
|
|
switch (HREG_IDX(spec)) {
|
|
case FIX_HREG_DEVICE_ID_HASH:
|
|
read_common_data(tpm);
|
|
break;
|
|
case FIX_HREG_SELF_HASH:
|
|
ccdm_compute_self_hash();
|
|
break;
|
|
case FIX_HREG_STAGE2_HASH:
|
|
compute_second_stage_hash(result);
|
|
break;
|
|
case FIX_HREG_VENDOR:
|
|
memcpy(result->digest, vendor, 20);
|
|
result->valid = true;
|
|
break;
|
|
}
|
|
} else {
|
|
result->valid = true;
|
|
}
|
|
}
|
|
if (!result->valid) {
|
|
hre_err = HRE_E_INVALID_HREG;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void *compute_and(void *_dst, const void *_src, size_t n)
|
|
{
|
|
uint8_t *dst = _dst;
|
|
const uint8_t *src = _src;
|
|
size_t i;
|
|
|
|
for (i = n; i-- > 0; )
|
|
*dst++ &= *src++;
|
|
|
|
return _dst;
|
|
}
|
|
|
|
static void *compute_or(void *_dst, const void *_src, size_t n)
|
|
{
|
|
uint8_t *dst = _dst;
|
|
const uint8_t *src = _src;
|
|
size_t i;
|
|
|
|
for (i = n; i-- > 0; )
|
|
*dst++ |= *src++;
|
|
|
|
return _dst;
|
|
}
|
|
|
|
static void *compute_xor(void *_dst, const void *_src, size_t n)
|
|
{
|
|
uint8_t *dst = _dst;
|
|
const uint8_t *src = _src;
|
|
size_t i;
|
|
|
|
for (i = n; i-- > 0; )
|
|
*dst++ ^= *src++;
|
|
|
|
return _dst;
|
|
}
|
|
|
|
static void *compute_extend(void *_dst, const void *_src, size_t n)
|
|
{
|
|
uint8_t digest[20];
|
|
sha1_context ctx;
|
|
|
|
sha1_starts(&ctx);
|
|
sha1_update(&ctx, _dst, n);
|
|
sha1_update(&ctx, _src, n);
|
|
sha1_finish(&ctx, digest);
|
|
memcpy(_dst, digest, min(n, sizeof(digest)));
|
|
|
|
return _dst;
|
|
}
|
|
|
|
static int hre_op_loadkey(struct udevice *tpm, struct h_reg *src_reg,
|
|
struct h_reg *dst_reg, const void *key,
|
|
size_t key_size)
|
|
{
|
|
uint32_t parent_handle;
|
|
uint32_t key_handle;
|
|
|
|
if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
|
|
return -1;
|
|
if (find_key(tpm, src_reg->digest, dst_reg->digest, &parent_handle))
|
|
return -1;
|
|
hre_tpm_err = tpm_load_key2_oiap(tpm, parent_handle, key, key_size,
|
|
src_reg->digest, &key_handle);
|
|
if (hre_tpm_err) {
|
|
hre_err = HRE_E_TPM_FAILURE;
|
|
return -1;
|
|
}
|
|
/* TODO remember key handle somehow? */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief executes the next opcode on the hash register engine.
|
|
* @param[in,out] ip pointer to the opcode (instruction pointer)
|
|
* @param[in,out] code_size (remaining) size of the code
|
|
* @return new instruction pointer on success, NULL on error.
|
|
*/
|
|
static const uint8_t *hre_execute_op(struct udevice *tpm, const uint8_t **ip,
|
|
size_t *code_size)
|
|
{
|
|
bool dst_modified = false;
|
|
uint32_t ins;
|
|
uint8_t opcode;
|
|
uint8_t src_spec;
|
|
uint8_t dst_spec;
|
|
uint16_t data_size;
|
|
struct h_reg *src_reg, *dst_reg;
|
|
uint8_t buf[20];
|
|
const uint8_t *src_buf, *data;
|
|
uint8_t *ptr;
|
|
int i;
|
|
void * (*bin_func)(void *, const void *, size_t);
|
|
|
|
if (*code_size < 4)
|
|
return NULL;
|
|
|
|
ins = get_unaligned_be32(*ip);
|
|
opcode = **ip;
|
|
data = *ip + 4;
|
|
src_spec = (ins >> 18) & 0x3f;
|
|
dst_spec = (ins >> 12) & 0x3f;
|
|
data_size = (ins & 0x7ff);
|
|
|
|
debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
|
|
opcode, src_spec, dst_spec, data_size);
|
|
|
|
if ((opcode & 0x80) && (data_size + 4) > *code_size)
|
|
return NULL;
|
|
|
|
src_reg = access_hreg(tpm, src_spec, HREG_RD);
|
|
if (hre_err || hre_tpm_err)
|
|
return NULL;
|
|
dst_reg = access_hreg(tpm, dst_spec,
|
|
(opcode & 0x40) ? HREG_RDWR : HREG_WR);
|
|
if (hre_err || hre_tpm_err)
|
|
return NULL;
|
|
|
|
switch (opcode) {
|
|
case HRE_NOP:
|
|
goto end;
|
|
case HRE_CHECK0:
|
|
if (src_reg) {
|
|
for (i = 0; i < 20; ++i) {
|
|
if (src_reg->digest[i])
|
|
return NULL;
|
|
}
|
|
}
|
|
break;
|
|
case HRE_LOAD:
|
|
bin_func = memcpy;
|
|
goto do_bin_func;
|
|
case HRE_XOR:
|
|
bin_func = compute_xor;
|
|
goto do_bin_func;
|
|
case HRE_AND:
|
|
bin_func = compute_and;
|
|
goto do_bin_func;
|
|
case HRE_OR:
|
|
bin_func = compute_or;
|
|
goto do_bin_func;
|
|
case HRE_EXTEND:
|
|
bin_func = compute_extend;
|
|
do_bin_func:
|
|
if (!dst_reg)
|
|
return NULL;
|
|
if (src_reg) {
|
|
src_buf = src_reg->digest;
|
|
} else {
|
|
if (!data_size) {
|
|
memset(buf, 0, 20);
|
|
src_buf = buf;
|
|
} else if (data_size == 1) {
|
|
memset(buf, *data, 20);
|
|
src_buf = buf;
|
|
} else if (data_size >= 20) {
|
|
src_buf = data;
|
|
} else {
|
|
src_buf = buf;
|
|
for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
|
|
i -= data_size, ptr += data_size)
|
|
memcpy(ptr, data,
|
|
min_t(size_t, i, data_size));
|
|
}
|
|
}
|
|
bin_func(dst_reg->digest, src_buf, 20);
|
|
dst_reg->valid = true;
|
|
dst_modified = true;
|
|
break;
|
|
case HRE_LOADKEY:
|
|
if (hre_op_loadkey(tpm, src_reg, dst_reg, data, data_size))
|
|
return NULL;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
|
|
hre_tpm_err = tpm_extend(tpm, HREG_IDX(dst_spec),
|
|
dst_reg->digest, dst_reg->digest);
|
|
if (hre_tpm_err) {
|
|
hre_err = HRE_E_TPM_FAILURE;
|
|
return NULL;
|
|
}
|
|
}
|
|
end:
|
|
*ip += 4;
|
|
*code_size -= 4;
|
|
if (opcode & 0x80) {
|
|
*ip += data_size;
|
|
*code_size -= data_size;
|
|
}
|
|
|
|
return *ip;
|
|
}
|
|
|
|
/**
|
|
* @brief runs a program on the hash register engine.
|
|
* @param code pointer to the (HRE) code.
|
|
* @param code_size size of the code (in bytes).
|
|
* @return 0 on success, != 0 on failure.
|
|
*/
|
|
static int hre_run_program(struct udevice *tpm, const uint8_t *code,
|
|
size_t code_size)
|
|
{
|
|
size_t code_left;
|
|
const uint8_t *ip = code;
|
|
|
|
code_left = code_size;
|
|
hre_tpm_err = 0;
|
|
hre_err = HRE_E_OK;
|
|
while (code_left > 0)
|
|
if (!hre_execute_op(tpm, &ip, &code_left))
|
|
return -1;
|
|
|
|
return hre_err;
|
|
}
|
|
|
|
static int check_hmac(struct key_program *hmac,
|
|
const uint8_t *data, size_t data_size)
|
|
{
|
|
uint8_t key[20], computed_hmac[20];
|
|
uint32_t type;
|
|
|
|
type = get_unaligned_be32(hmac->code);
|
|
if (type != 0)
|
|
return 1;
|
|
memset(key, 0, sizeof(key));
|
|
compute_extend(key, pcr_hregs[1].digest, 20);
|
|
compute_extend(key, pcr_hregs[2].digest, 20);
|
|
compute_extend(key, pcr_hregs[3].digest, 20);
|
|
compute_extend(key, pcr_hregs[4].digest, 20);
|
|
|
|
sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
|
|
|
|
return memcmp(computed_hmac, hmac->code + 4, 20);
|
|
}
|
|
|
|
static int verify_program(struct key_program *prg)
|
|
{
|
|
uint32_t crc;
|
|
crc = crc32(0, prg->code, prg->code_size);
|
|
|
|
if (crc != prg->code_crc) {
|
|
printf("HRC crc mismatch: %08x != %08x\n",
|
|
crc, prg->code_crc);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
|
|
static struct key_program *load_sd_key_program(void)
|
|
{
|
|
u32 code_len, code_offset;
|
|
struct mmc *mmc;
|
|
u8 buf[128];
|
|
struct key_program *result = NULL, *hmac = NULL;
|
|
struct key_program header;
|
|
|
|
mmc = find_mmc_device(0);
|
|
if (!mmc)
|
|
return NULL;
|
|
mmc_init(mmc);
|
|
|
|
if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
|
|
goto failure;
|
|
|
|
code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
|
|
code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
|
|
|
|
code_offset += code_len;
|
|
/* TODO: the following needs to be the size of the 2nd stage env */
|
|
code_offset += CONFIG_ENV_SIZE;
|
|
|
|
if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
|
|
goto failure;
|
|
|
|
header.magic = get_unaligned_be32(buf);
|
|
header.code_crc = get_unaligned_be32(buf + 4);
|
|
header.code_size = get_unaligned_be32(buf + 8);
|
|
|
|
if (header.magic != MAGIC_KEY_PROGRAM)
|
|
goto failure;
|
|
|
|
result = malloc(sizeof(struct key_program) + header.code_size);
|
|
if (!result)
|
|
goto failure;
|
|
*result = header;
|
|
|
|
printf("load key program chunk from SD card (%u bytes) ",
|
|
header.code_size);
|
|
code_offset += 12;
|
|
if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
|
|
< 0)
|
|
goto failure;
|
|
code_offset += header.code_size;
|
|
puts("\n");
|
|
|
|
if (verify_program(result))
|
|
goto failure;
|
|
|
|
if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
|
|
goto failure;
|
|
|
|
header.magic = get_unaligned_be32(buf);
|
|
header.code_crc = get_unaligned_be32(buf + 4);
|
|
header.code_size = get_unaligned_be32(buf + 8);
|
|
|
|
if (header.magic == MAGIC_HMAC) {
|
|
puts("check integrity\n");
|
|
hmac = malloc(sizeof(struct key_program) + header.code_size);
|
|
if (!hmac)
|
|
goto failure;
|
|
*hmac = header;
|
|
code_offset += 12;
|
|
if (ccdm_mmc_read(mmc, code_offset, hmac->code,
|
|
hmac->code_size) < 0)
|
|
goto failure;
|
|
if (verify_program(hmac))
|
|
goto failure;
|
|
if (check_hmac(hmac, result->code, result->code_size)) {
|
|
puts("key program integrity could not be verified\n");
|
|
goto failure;
|
|
}
|
|
puts("key program verified\n");
|
|
}
|
|
|
|
goto end;
|
|
failure:
|
|
if (result)
|
|
free(result);
|
|
result = NULL;
|
|
end:
|
|
if (hmac)
|
|
free(hmac);
|
|
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CCDM_SECOND_STAGE
|
|
/**
|
|
* @brief load a key program from file system.
|
|
* @param ifname interface of the file system
|
|
* @param dev_part_str device part of the file system
|
|
* @param fs_type tyep of the file system
|
|
* @param path path of the file to load.
|
|
* @return the loaded structure or NULL on failure.
|
|
*/
|
|
static struct key_program *load_key_chunk(const char *ifname,
|
|
const char *dev_part_str, int fs_type,
|
|
const char *path)
|
|
{
|
|
struct key_program *result = NULL;
|
|
struct key_program header;
|
|
uint32_t crc;
|
|
uint8_t buf[12];
|
|
loff_t i;
|
|
|
|
if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
|
|
goto failure;
|
|
if (fs_read(path, (ulong)buf, 0, 12, &i) < 0)
|
|
goto failure;
|
|
if (i < 12)
|
|
goto failure;
|
|
header.magic = get_unaligned_be32(buf);
|
|
header.code_crc = get_unaligned_be32(buf + 4);
|
|
header.code_size = get_unaligned_be32(buf + 8);
|
|
|
|
if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
|
|
goto failure;
|
|
|
|
result = malloc(sizeof(struct key_program) + header.code_size);
|
|
if (!result)
|
|
goto failure;
|
|
if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
|
|
goto failure;
|
|
if (fs_read(path, (ulong)result, 0,
|
|
sizeof(struct key_program) + header.code_size, &i) < 0)
|
|
goto failure;
|
|
if (i <= 0)
|
|
goto failure;
|
|
*result = header;
|
|
|
|
crc = crc32(0, result->code, result->code_size);
|
|
|
|
if (crc != result->code_crc) {
|
|
printf("%s: HRC crc mismatch: %08x != %08x\n",
|
|
path, crc, result->code_crc);
|
|
goto failure;
|
|
}
|
|
goto end;
|
|
failure:
|
|
if (result) {
|
|
free(result);
|
|
result = NULL;
|
|
}
|
|
end:
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
|
|
static const uint8_t prg_stage1_prepare[] = {
|
|
0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
|
|
0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
|
|
0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
|
|
0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
|
|
0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
|
|
0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
|
|
0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
|
|
0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
|
|
0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
|
|
0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
|
|
};
|
|
|
|
static int first_stage_actions(struct udevice *tpm)
|
|
{
|
|
int result = 0;
|
|
struct key_program *sd_prg = NULL;
|
|
|
|
puts("CCDM S1: start actions\n");
|
|
#ifndef CCDM_SECOND_STAGE
|
|
if (tpm_continue_self_test(tpm))
|
|
goto failure;
|
|
#else
|
|
tpm_continue_self_test(tpm);
|
|
#endif
|
|
mdelay(37);
|
|
|
|
if (hre_run_program(tpm, prg_stage1_prepare,
|
|
sizeof(prg_stage1_prepare)))
|
|
goto failure;
|
|
|
|
sd_prg = load_sd_key_program();
|
|
if (sd_prg) {
|
|
if (hre_run_program(tpm, sd_prg->code, sd_prg->code_size))
|
|
goto failure;
|
|
puts("SD code run successfully\n");
|
|
} else {
|
|
puts("no key program found on SD\n");
|
|
goto failure;
|
|
}
|
|
goto end;
|
|
failure:
|
|
result = 1;
|
|
end:
|
|
if (sd_prg)
|
|
free(sd_prg);
|
|
printf("CCDM S1: actions done (%d)\n", result);
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CCDM_FIRST_STAGE
|
|
static int first_stage_init(void)
|
|
{
|
|
struct udevice *tpm;
|
|
int ret;
|
|
|
|
puts("CCDM S1\n");
|
|
ret = get_tpm(&tpm);
|
|
if (ret || tpm_init(tpm) || tpm_startup(tpm, TPM_ST_CLEAR))
|
|
return 1;
|
|
ret = first_stage_actions(tpm);
|
|
#ifndef CCDM_SECOND_STAGE
|
|
if (!ret) {
|
|
if (bl2_entry)
|
|
(*bl2_entry)();
|
|
ret = 1;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CCDM_SECOND_STAGE
|
|
static const uint8_t prg_stage2_prepare[] = {
|
|
0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
|
|
0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
|
|
0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
|
|
0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
|
|
0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
|
|
};
|
|
|
|
static const uint8_t prg_stage2_success[] = {
|
|
0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
|
|
0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
|
|
0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
|
|
0xe4, 0xd2, 0x81, 0xe0, /* data */
|
|
};
|
|
|
|
static const uint8_t prg_stage_fail[] = {
|
|
0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
|
|
0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
|
|
0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
|
|
0xea, 0xdf, 0x14, 0x4b, /* data */
|
|
0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
|
|
0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
|
|
};
|
|
|
|
static int second_stage_init(void)
|
|
{
|
|
static const char mac_suffix[] = ".mac";
|
|
bool did_first_stage_run = true;
|
|
int result = 0;
|
|
char *cptr, *mmcdev = NULL;
|
|
struct key_program *hmac_blob = NULL;
|
|
const char *image_path = "/ccdm.itb";
|
|
char *mac_path = NULL;
|
|
ulong image_addr;
|
|
loff_t image_size;
|
|
struct udevice *tpm;
|
|
uint32_t err;
|
|
int ret;
|
|
|
|
printf("CCDM S2\n");
|
|
ret = get_tpm(&tpm);
|
|
if (ret || tpm_init(tpm))
|
|
return 1;
|
|
err = tpm_startup(tpm, TPM_ST_CLEAR);
|
|
if (err != TPM_INVALID_POSTINIT)
|
|
did_first_stage_run = false;
|
|
|
|
#ifdef CCDM_AUTO_FIRST_STAGE
|
|
if (!did_first_stage_run && first_stage_actions(tpm))
|
|
goto failure;
|
|
#else
|
|
if (!did_first_stage_run)
|
|
goto failure;
|
|
#endif
|
|
|
|
if (hre_run_program(tpm, prg_stage2_prepare,
|
|
sizeof(prg_stage2_prepare)))
|
|
goto failure;
|
|
|
|
/* run "prepboot" from env to get "mmcdev" set */
|
|
cptr = env_get("prepboot");
|
|
if (cptr && !run_command(cptr, 0))
|
|
mmcdev = env_get("mmcdev");
|
|
if (!mmcdev)
|
|
goto failure;
|
|
|
|
cptr = env_get("ramdiskimage");
|
|
if (cptr)
|
|
image_path = cptr;
|
|
|
|
mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
|
|
if (mac_path == NULL)
|
|
goto failure;
|
|
strcpy(mac_path, image_path);
|
|
strcat(mac_path, mac_suffix);
|
|
|
|
/* read image from mmcdev (ccdm.itb) */
|
|
image_addr = (ulong)get_image_location();
|
|
if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
|
|
goto failure;
|
|
if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0)
|
|
goto failure;
|
|
if (image_size <= 0)
|
|
goto failure;
|
|
printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size);
|
|
|
|
hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
|
|
if (!hmac_blob) {
|
|
puts("failed to load mac file\n");
|
|
goto failure;
|
|
}
|
|
if (verify_program(hmac_blob)) {
|
|
puts("corrupted mac file\n");
|
|
goto failure;
|
|
}
|
|
if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
|
|
puts("image integrity could not be verified\n");
|
|
goto failure;
|
|
}
|
|
puts("CCDM image OK\n");
|
|
|
|
hre_run_program(tpm, prg_stage2_success, sizeof(prg_stage2_success));
|
|
|
|
goto end;
|
|
failure:
|
|
result = 1;
|
|
hre_run_program(tpm, prg_stage_fail, sizeof(prg_stage_fail));
|
|
end:
|
|
if (hmac_blob)
|
|
free(hmac_blob);
|
|
if (mac_path)
|
|
free(mac_path);
|
|
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
int show_self_hash(void)
|
|
{
|
|
struct h_reg *hash_ptr;
|
|
#ifdef CCDM_SECOND_STAGE
|
|
struct h_reg hash;
|
|
|
|
hash_ptr = &hash;
|
|
if (compute_self_hash(hash_ptr))
|
|
return 1;
|
|
#else
|
|
hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
|
|
#endif
|
|
puts("self hash: ");
|
|
if (hash_ptr && hash_ptr->valid)
|
|
print_buffer(0, hash_ptr->digest, 1, 20, 20);
|
|
else
|
|
puts("INVALID\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief let the system hang.
|
|
*
|
|
* Called on error.
|
|
* Will stop the boot process; display a message and signal the error condition
|
|
* by blinking the "status" and the "finder" LED of the controller board.
|
|
*
|
|
* @note the develop version runs the blink cycle 2 times and then returns.
|
|
* The release version never returns.
|
|
*/
|
|
static void ccdm_hang(void)
|
|
{
|
|
static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
|
|
static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
|
|
u64 f, s;
|
|
int i;
|
|
#ifdef CCDM_DEVELOP
|
|
int j;
|
|
#endif
|
|
|
|
I2C_SET_BUS(I2C_SOC_0);
|
|
pca9698_direction_output(0x22, 0, 0); /* Finder */
|
|
pca9698_direction_output(0x22, 4, 0); /* Status */
|
|
|
|
puts("### ERROR ### Please RESET the board ###\n");
|
|
bootstage_error(BOOTSTAGE_ID_NEED_RESET);
|
|
#ifdef CCDM_DEVELOP
|
|
puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
|
|
puts("** but we continue since this is a DEVELOP version **\n");
|
|
puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
|
|
for (j = 2; j-- > 0;) {
|
|
putc('#');
|
|
#else
|
|
for (;;) {
|
|
#endif
|
|
f = f0;
|
|
s = s0;
|
|
for (i = 54; i-- > 0;) {
|
|
pca9698_set_value(0x22, 0, !(f & 1));
|
|
pca9698_set_value(0x22, 4, (s & 1));
|
|
f >>= 1;
|
|
s >>= 1;
|
|
mdelay(120);
|
|
}
|
|
}
|
|
puts("\ncontinue...\n");
|
|
}
|
|
|
|
int startup_ccdm_id_module(void)
|
|
{
|
|
int result = 0;
|
|
unsigned int orig_i2c_bus;
|
|
|
|
orig_i2c_bus = i2c_get_bus_num();
|
|
i2c_set_bus_num(I2C_SOC_1);
|
|
|
|
/* goto end; */
|
|
|
|
#ifdef CCDM_DEVELOP
|
|
show_self_hash();
|
|
#endif
|
|
#ifdef CCDM_FIRST_STAGE
|
|
result = first_stage_init();
|
|
if (result) {
|
|
puts("1st stage init failed\n");
|
|
goto failure;
|
|
}
|
|
#endif
|
|
#ifdef CCDM_SECOND_STAGE
|
|
result = second_stage_init();
|
|
if (result) {
|
|
puts("2nd stage init failed\n");
|
|
goto failure;
|
|
}
|
|
#endif
|
|
|
|
goto end;
|
|
failure:
|
|
result = 1;
|
|
end:
|
|
i2c_set_bus_num(orig_i2c_bus);
|
|
if (result)
|
|
ccdm_hang();
|
|
|
|
return result;
|
|
}
|