mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-11 13:56:30 +00:00
7c02bc9649
The Jetson Nano Developer Kit is a Tegra X1-based development board. It is similar to Jetson TX1 but it is not pin compatible. It features 4GB of LPDDR4, a SPI NOR flash for early boot firmware and an SD card slot used for storage. HDMI 2.0 or DP 1.2 are available for display, four USB ports (3 USB 2.0 and 1 USB 3.0) can be used to attach a variety of peripherals and a PCI Ethernet controller provides onboard network connectivity. NVMe support has also been added. Env save is at the end of QSPI (4MB-8K). A 40-pin header on the board can be used to extend the capabilities and exposed interfaces of the Jetson Nano. Signed-off-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com> Tested-by: Peter Robinson <pbrobinson@gmail.com>
414 lines
11 KiB
C
414 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2010,2011
|
|
* NVIDIA Corporation <www.nvidia.com>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <env.h>
|
|
#include <errno.h>
|
|
#include <init.h>
|
|
#include <ns16550.h>
|
|
#include <usb.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch-tegra/ap.h>
|
|
#include <asm/arch-tegra/board.h>
|
|
#include <asm/arch-tegra/cboot.h>
|
|
#include <asm/arch-tegra/clk_rst.h>
|
|
#include <asm/arch-tegra/pmc.h>
|
|
#include <asm/arch-tegra/pmu.h>
|
|
#include <asm/arch-tegra/sys_proto.h>
|
|
#include <asm/arch-tegra/uart.h>
|
|
#include <asm/arch-tegra/warmboot.h>
|
|
#include <asm/arch-tegra/gpu.h>
|
|
#include <asm/arch-tegra/usb.h>
|
|
#include <asm/arch-tegra/xusb-padctl.h>
|
|
#if IS_ENABLED(CONFIG_TEGRA_CLKRST)
|
|
#include <asm/arch/clock.h>
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_TEGRA_PINCTRL)
|
|
#include <asm/arch/funcmux.h>
|
|
#include <asm/arch/pinmux.h>
|
|
#endif
|
|
#include <asm/arch/tegra.h>
|
|
#ifdef CONFIG_TEGRA_CLOCK_SCALING
|
|
#include <asm/arch/emc.h>
|
|
#endif
|
|
#include "emc.h"
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
#ifdef CONFIG_SPL_BUILD
|
|
/* TODO(sjg@chromium.org): Remove once SPL supports device tree */
|
|
U_BOOT_DEVICE(tegra_gpios) = {
|
|
"gpio_tegra"
|
|
};
|
|
#endif
|
|
|
|
__weak void pinmux_init(void) {}
|
|
__weak void pin_mux_usb(void) {}
|
|
__weak void pin_mux_spi(void) {}
|
|
__weak void pin_mux_mmc(void) {}
|
|
__weak void gpio_early_init_uart(void) {}
|
|
__weak void pin_mux_display(void) {}
|
|
__weak void start_cpu_fan(void) {}
|
|
__weak void cboot_late_init(void) {}
|
|
|
|
#if defined(CONFIG_TEGRA_NAND)
|
|
__weak void pin_mux_nand(void)
|
|
{
|
|
funcmux_select(PERIPH_ID_NDFLASH, FUNCMUX_DEFAULT);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Routine: power_det_init
|
|
* Description: turn off power detects
|
|
*/
|
|
static void power_det_init(void)
|
|
{
|
|
#if defined(CONFIG_TEGRA20)
|
|
struct pmc_ctlr *const pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
|
|
|
|
/* turn off power detects */
|
|
writel(0, &pmc->pmc_pwr_det_latch);
|
|
writel(0, &pmc->pmc_pwr_det);
|
|
#endif
|
|
}
|
|
|
|
__weak int tegra_board_id(void)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
#ifdef CONFIG_DISPLAY_BOARDINFO
|
|
int checkboard(void)
|
|
{
|
|
int board_id = tegra_board_id();
|
|
|
|
printf("Board: %s", CONFIG_TEGRA_BOARD_STRING);
|
|
if (board_id != -1)
|
|
printf(", ID: %d\n", board_id);
|
|
printf("\n");
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_DISPLAY_BOARDINFO */
|
|
|
|
__weak int tegra_lcd_pmic_init(int board_it)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
__weak int nvidia_board_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Routine: board_init
|
|
* Description: Early hardware init.
|
|
*/
|
|
int board_init(void)
|
|
{
|
|
__maybe_unused int err;
|
|
__maybe_unused int board_id;
|
|
|
|
/* Do clocks and UART first so that printf() works */
|
|
#if IS_ENABLED(CONFIG_TEGRA_CLKRST)
|
|
clock_init();
|
|
clock_verify();
|
|
#endif
|
|
|
|
tegra_gpu_config();
|
|
|
|
#ifdef CONFIG_TEGRA_SPI
|
|
pin_mux_spi();
|
|
#endif
|
|
|
|
#ifdef CONFIG_MMC_SDHCI_TEGRA
|
|
pin_mux_mmc();
|
|
#endif
|
|
|
|
/* Init is handled automatically in the driver-model case */
|
|
#if defined(CONFIG_DM_VIDEO)
|
|
pin_mux_display();
|
|
#endif
|
|
/* boot param addr */
|
|
gd->bd->bi_boot_params = (NV_PA_SDRAM_BASE + 0x100);
|
|
|
|
power_det_init();
|
|
|
|
#ifdef CONFIG_SYS_I2C_TEGRA
|
|
# ifdef CONFIG_TEGRA_PMU
|
|
if (pmu_set_nominal())
|
|
debug("Failed to select nominal voltages\n");
|
|
# ifdef CONFIG_TEGRA_CLOCK_SCALING
|
|
err = board_emc_init();
|
|
if (err)
|
|
debug("Memory controller init failed: %d\n", err);
|
|
# endif
|
|
# endif /* CONFIG_TEGRA_PMU */
|
|
#endif /* CONFIG_SYS_I2C_TEGRA */
|
|
|
|
#ifdef CONFIG_USB_EHCI_TEGRA
|
|
pin_mux_usb();
|
|
#endif
|
|
|
|
#if defined(CONFIG_DM_VIDEO)
|
|
board_id = tegra_board_id();
|
|
err = tegra_lcd_pmic_init(board_id);
|
|
if (err) {
|
|
debug("Failed to set up LCD PMIC\n");
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_TEGRA_NAND
|
|
pin_mux_nand();
|
|
#endif
|
|
|
|
tegra_xusb_padctl_init();
|
|
|
|
#ifdef CONFIG_TEGRA_LP0
|
|
/* save Sdram params to PMC 2, 4, and 24 for WB0 */
|
|
warmboot_save_sdram_params();
|
|
|
|
/* prepare the WB code to LP0 location */
|
|
warmboot_prepare_code(TEGRA_LP0_ADDR, TEGRA_LP0_SIZE);
|
|
#endif
|
|
return nvidia_board_init();
|
|
}
|
|
|
|
void board_cleanup_before_linux(void)
|
|
{
|
|
/* power down UPHY PLL */
|
|
tegra_xusb_padctl_exit();
|
|
}
|
|
|
|
#ifdef CONFIG_BOARD_EARLY_INIT_F
|
|
static void __gpio_early_init(void)
|
|
{
|
|
}
|
|
|
|
void gpio_early_init(void) __attribute__((weak, alias("__gpio_early_init")));
|
|
|
|
int board_early_init_f(void)
|
|
{
|
|
#if IS_ENABLED(CONFIG_TEGRA_CLKRST)
|
|
if (!clock_early_init_done())
|
|
clock_early_init();
|
|
#endif
|
|
|
|
#if defined(CONFIG_TEGRA_DISCONNECT_UDC_ON_BOOT)
|
|
#define USBCMD_FS2 (1 << 15)
|
|
{
|
|
struct usb_ctlr *usbctlr = (struct usb_ctlr *)0x7d000000;
|
|
writel(USBCMD_FS2, &usbctlr->usb_cmd);
|
|
}
|
|
#endif
|
|
|
|
/* Do any special system timer/TSC setup */
|
|
#if IS_ENABLED(CONFIG_TEGRA_CLKRST)
|
|
# if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE)
|
|
if (!tegra_cpu_is_non_secure())
|
|
# endif
|
|
arch_timer_init();
|
|
#endif
|
|
|
|
#if defined(CONFIG_DISABLE_SDMMC1_EARLY)
|
|
/*
|
|
* Turn off (reset/disable) SDMMC1 on Nano here, before GPIO INIT.
|
|
* We do this because earlier bootloaders have enabled power to
|
|
* SDMMC1 on Nano, and toggling power-gpio (PZ3) in pinmux_init()
|
|
* results in power being back-driven into the SD-card and SDMMC1
|
|
* HW, which is 'bad' as per the HW team.
|
|
*
|
|
* From the HW team: "LDO2 from the PMIC has already been set to 3.3v in
|
|
* nvtboot/CBoot on Nano (for SD-card boot). So when U-Boot's GPIO_INIT
|
|
* table sets PZ3 to OUT0 as per the pinmux spreadsheet, it turns off
|
|
* the loadswitch. When PZ3 is 0 and not driving, essentially the SDCard
|
|
* voltage turns off. Since the SDCard voltage is no longer there, the
|
|
* SDMMC CLK/DAT lines are backdriving into what essentially is a
|
|
* powered-off SDCard, that's why the voltage drops from 3.3V to ~1.6V"
|
|
*
|
|
* Note that this can probably be removed when we change over to storing
|
|
* all BL components on QSPI on Nano, and U-Boot then becomes the first
|
|
* one to turn on SDMMC1 power. Another fix would be to have CBoot
|
|
* disable power/gate SDMMC1 off before handing off to U-Boot/kernel.
|
|
*/
|
|
reset_set_enable(PERIPH_ID_SDMMC1, 1);
|
|
clock_set_enable(PERIPH_ID_SDMMC1, 0);
|
|
#endif /* CONFIG_DISABLE_SDMMC1_EARLY */
|
|
|
|
pinmux_init();
|
|
board_init_uart_f();
|
|
|
|
/* Initialize periph GPIOs */
|
|
gpio_early_init();
|
|
gpio_early_init_uart();
|
|
|
|
return 0;
|
|
}
|
|
#endif /* EARLY_INIT */
|
|
|
|
int board_late_init(void)
|
|
{
|
|
#if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE)
|
|
if (tegra_cpu_is_non_secure()) {
|
|
printf("CPU is in NS mode\n");
|
|
env_set("cpu_ns_mode", "1");
|
|
} else {
|
|
env_set("cpu_ns_mode", "");
|
|
}
|
|
#endif
|
|
start_cpu_fan();
|
|
cboot_late_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* In some SW environments, a memory carve-out exists to house a secure
|
|
* monitor, a trusted OS, and/or various statically allocated media buffers.
|
|
*
|
|
* This carveout exists at the highest possible address that is within a
|
|
* 32-bit physical address space.
|
|
*
|
|
* This function returns the total size of this carve-out. At present, the
|
|
* returned value is hard-coded for simplicity. In the future, it may be
|
|
* possible to determine the carve-out size:
|
|
* - By querying some run-time information source, such as:
|
|
* - A structure passed to U-Boot by earlier boot software.
|
|
* - SoC registers.
|
|
* - A call into the secure monitor.
|
|
* - In the per-board U-Boot configuration header, based on knowledge of the
|
|
* SW environment that U-Boot is being built for.
|
|
*
|
|
* For now, we support two configurations in U-Boot:
|
|
* - 32-bit ports without any form of carve-out.
|
|
* - 64 bit ports which are assumed to use a carve-out of a conservatively
|
|
* hard-coded size.
|
|
*/
|
|
static ulong carveout_size(void)
|
|
{
|
|
#ifdef CONFIG_ARM64
|
|
return SZ_512M;
|
|
#elif defined(CONFIG_ARMV7_SECURE_RESERVE_SIZE)
|
|
// BASE+SIZE might not == 4GB. If so, we want the carveout to cover
|
|
// from BASE to 4GB, not BASE to BASE+SIZE.
|
|
return (0 - CONFIG_ARMV7_SECURE_BASE) & ~(SZ_2M - 1);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Determine the amount of usable RAM below 4GiB, taking into account any
|
|
* carve-out that may be assigned.
|
|
*/
|
|
static ulong usable_ram_size_below_4g(void)
|
|
{
|
|
ulong total_size_below_4g;
|
|
ulong usable_size_below_4g;
|
|
|
|
/*
|
|
* The total size of RAM below 4GiB is the lesser address of:
|
|
* (a) 2GiB itself (RAM starts at 2GiB, and 4GiB - 2GiB == 2GiB).
|
|
* (b) The size RAM physically present in the system.
|
|
*/
|
|
if (gd->ram_size < SZ_2G)
|
|
total_size_below_4g = gd->ram_size;
|
|
else
|
|
total_size_below_4g = SZ_2G;
|
|
|
|
/* Calculate usable RAM by subtracting out any carve-out size */
|
|
usable_size_below_4g = total_size_below_4g - carveout_size();
|
|
|
|
return usable_size_below_4g;
|
|
}
|
|
|
|
/*
|
|
* Represent all available RAM in either one or two banks.
|
|
*
|
|
* The first bank describes any usable RAM below 4GiB.
|
|
* The second bank describes any RAM above 4GiB.
|
|
*
|
|
* This split is driven by the following requirements:
|
|
* - The NVIDIA L4T kernel requires separate entries in the DT /memory/reg
|
|
* property for memory below and above the 4GiB boundary. The layout of that
|
|
* DT property is directly driven by the entries in the U-Boot bank array.
|
|
* - The potential existence of a carve-out at the end of RAM below 4GiB can
|
|
* only be represented using multiple banks.
|
|
*
|
|
* Explicitly removing the carve-out RAM from the bank entries makes the RAM
|
|
* layout a bit more obvious, e.g. when running "bdinfo" at the U-Boot
|
|
* command-line.
|
|
*
|
|
* This does mean that the DT U-Boot passes to the Linux kernel will not
|
|
* include this RAM in /memory/reg at all. An alternative would be to include
|
|
* all RAM in the U-Boot banks (and hence DT), and add a /memreserve/ node
|
|
* into DT to stop the kernel from using the RAM. IIUC, I don't /think/ the
|
|
* Linux kernel will ever need to access any RAM in* the carve-out via a CPU
|
|
* mapping, so either way is acceptable.
|
|
*
|
|
* On 32-bit systems, we never define a bank for RAM above 4GiB, since the
|
|
* start address of that bank cannot be represented in the 32-bit .size
|
|
* field.
|
|
*/
|
|
int dram_init_banksize(void)
|
|
{
|
|
int err;
|
|
|
|
/* try to compute DRAM bank size based on cboot DTB first */
|
|
err = cboot_dram_init_banksize();
|
|
if (err == 0)
|
|
return err;
|
|
|
|
/* fall back to default DRAM bank size computation */
|
|
|
|
gd->bd->bi_dram[0].start = CONFIG_SYS_SDRAM_BASE;
|
|
gd->bd->bi_dram[0].size = usable_ram_size_below_4g();
|
|
|
|
#ifdef CONFIG_PCI
|
|
gd->pci_ram_top = gd->bd->bi_dram[0].start + gd->bd->bi_dram[0].size;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
if (gd->ram_size > SZ_2G) {
|
|
gd->bd->bi_dram[1].start = 0x100000000;
|
|
gd->bd->bi_dram[1].size = gd->ram_size - SZ_2G;
|
|
} else
|
|
#endif
|
|
{
|
|
gd->bd->bi_dram[1].start = 0;
|
|
gd->bd->bi_dram[1].size = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Most hardware on 64-bit Tegra is still restricted to DMA to the lower
|
|
* 32-bits of the physical address space. Cap the maximum usable RAM area
|
|
* at 4 GiB to avoid DMA buffers from being allocated beyond the 32-bit
|
|
* boundary that most devices can address. Also, don't let U-Boot use any
|
|
* carve-out, as mentioned above.
|
|
*
|
|
* This function is called before dram_init_banksize(), so we can't simply
|
|
* return gd->bd->bi_dram[1].start + gd->bd->bi_dram[1].size.
|
|
*/
|
|
ulong board_get_usable_ram_top(ulong total_size)
|
|
{
|
|
ulong ram_top;
|
|
|
|
/* try to get top of usable RAM based on cboot DTB first */
|
|
ram_top = cboot_get_usable_ram_top(total_size);
|
|
if (ram_top > 0)
|
|
return ram_top;
|
|
|
|
/* fall back to default usable RAM computation */
|
|
|
|
return CONFIG_SYS_SDRAM_BASE + usable_ram_size_below_4g();
|
|
}
|