u-boot/arch/arm/lib/cache-cp15.c
Thierry Reding 25026fa9f1 ARM: cache-cp15: Use more accurate types
size_t is the canonical type to represent variables that contain a size.
Use it instead of signed integer. Physical addresses can be larger than
32-bit, so use a more appropriate type for them as well. phys_addr_t is
a type that is 32-bit on systems that use 32-bit addresses and 64-bit if
the system is 64-bit or uses a form of physical address extension to use
a larger address space on 32-bit systems. Using these types the same API
can be implemented on a wider range of systems.

Signed-off-by: Thierry Reding <treding@nvidia.com>
2014-11-12 07:25:42 +01:00

217 lines
4.1 KiB
C

/*
* (C) Copyright 2002
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/system.h>
#include <asm/cache.h>
#include <linux/compiler.h>
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF))
DECLARE_GLOBAL_DATA_PTR;
__weak void arm_init_before_mmu(void)
{
}
__weak void arm_init_domains(void)
{
}
static void cp_delay (void)
{
volatile int i;
/* copro seems to need some delay between reading and writing */
for (i = 0; i < 100; i++)
nop();
asm volatile("" : : : "memory");
}
void set_section_dcache(int section, enum dcache_option option)
{
u32 *page_table = (u32 *)gd->arch.tlb_addr;
u32 value;
value = (section << MMU_SECTION_SHIFT) | (3 << 10);
value |= option;
page_table[section] = value;
}
__weak void mmu_page_table_flush(unsigned long start, unsigned long stop)
{
debug("%s: Warning: not implemented\n", __func__);
}
void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
enum dcache_option option)
{
u32 *page_table = (u32 *)gd->arch.tlb_addr;
unsigned long upto, end;
end = ALIGN(start + size, MMU_SECTION_SIZE) >> MMU_SECTION_SHIFT;
start = start >> MMU_SECTION_SHIFT;
debug("%s: start=%pa, size=%zu, option=%d\n", __func__, &start, size,
option);
for (upto = start; upto < end; upto++)
set_section_dcache(upto, option);
mmu_page_table_flush((u32)&page_table[start], (u32)&page_table[end]);
}
__weak void dram_bank_mmu_setup(int bank)
{
bd_t *bd = gd->bd;
int i;
debug("%s: bank: %d\n", __func__, bank);
for (i = bd->bi_dram[bank].start >> 20;
i < (bd->bi_dram[bank].start >> 20) + (bd->bi_dram[bank].size >> 20);
i++) {
#if defined(CONFIG_SYS_ARM_CACHE_WRITETHROUGH)
set_section_dcache(i, DCACHE_WRITETHROUGH);
#elif defined(CONFIG_SYS_ARM_CACHE_WRITEALLOC)
set_section_dcache(i, DCACHE_WRITEALLOC);
#else
set_section_dcache(i, DCACHE_WRITEBACK);
#endif
}
}
/* to activate the MMU we need to set up virtual memory: use 1M areas */
static inline void mmu_setup(void)
{
int i;
u32 reg;
arm_init_before_mmu();
/* Set up an identity-mapping for all 4GB, rw for everyone */
for (i = 0; i < 4096; i++)
set_section_dcache(i, DCACHE_OFF);
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
dram_bank_mmu_setup(i);
}
/* Copy the page table address to cp15 */
asm volatile("mcr p15, 0, %0, c2, c0, 0"
: : "r" (gd->arch.tlb_addr) : "memory");
/* Set the access control to all-supervisor */
asm volatile("mcr p15, 0, %0, c3, c0, 0"
: : "r" (~0));
arm_init_domains();
/* and enable the mmu */
reg = get_cr(); /* get control reg. */
cp_delay();
set_cr(reg | CR_M);
}
static int mmu_enabled(void)
{
return get_cr() & CR_M;
}
/* cache_bit must be either CR_I or CR_C */
static void cache_enable(uint32_t cache_bit)
{
uint32_t reg;
/* The data cache is not active unless the mmu is enabled too */
if ((cache_bit == CR_C) && !mmu_enabled())
mmu_setup();
reg = get_cr(); /* get control reg. */
cp_delay();
set_cr(reg | cache_bit);
}
/* cache_bit must be either CR_I or CR_C */
static void cache_disable(uint32_t cache_bit)
{
uint32_t reg;
reg = get_cr();
cp_delay();
if (cache_bit == CR_C) {
/* if cache isn;t enabled no need to disable */
if ((reg & CR_C) != CR_C)
return;
/* if disabling data cache, disable mmu too */
cache_bit |= CR_M;
}
reg = get_cr();
cp_delay();
if (cache_bit == (CR_C | CR_M))
flush_dcache_all();
set_cr(reg & ~cache_bit);
}
#endif
#ifdef CONFIG_SYS_ICACHE_OFF
void icache_enable (void)
{
return;
}
void icache_disable (void)
{
return;
}
int icache_status (void)
{
return 0; /* always off */
}
#else
void icache_enable(void)
{
cache_enable(CR_I);
}
void icache_disable(void)
{
cache_disable(CR_I);
}
int icache_status(void)
{
return (get_cr() & CR_I) != 0;
}
#endif
#ifdef CONFIG_SYS_DCACHE_OFF
void dcache_enable (void)
{
return;
}
void dcache_disable (void)
{
return;
}
int dcache_status (void)
{
return 0; /* always off */
}
#else
void dcache_enable(void)
{
cache_enable(CR_C);
}
void dcache_disable(void)
{
cache_disable(CR_C);
}
int dcache_status(void)
{
return (get_cr() & CR_C) != 0;
}
#endif