mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-05 20:54:31 +00:00
95ae700044
Change mxs_set_lcdclk prototype to add a new parameter base_addr. There are two LCD interfaces for i.MX6SX, we may support LCDIF1 or LCDIF2. Signed-off-by: Peng Fan <Peng.Fan@freescale.com> Cc: Stefano Babic <sbabic@denx.de> Cc: Anatolij Gustschin <agust@denx.de> Acked-by: Anatolij Gustschin <agust@denx.de>
436 lines
10 KiB
C
436 lines
10 KiB
C
/*
|
|
* Freescale i.MX23/i.MX28 clock setup code
|
|
*
|
|
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
|
|
* on behalf of DENX Software Engineering GmbH
|
|
*
|
|
* Based on code from LTIB:
|
|
* Copyright (C) 2010 Freescale Semiconductor, Inc.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/imx-regs.h>
|
|
|
|
/*
|
|
* The PLL frequency is 480MHz and XTAL frequency is 24MHz
|
|
* iMX23: datasheet section 4.2
|
|
* iMX28: datasheet section 10.2
|
|
*/
|
|
#define PLL_FREQ_KHZ 480000
|
|
#define PLL_FREQ_COEF 18
|
|
#define XTAL_FREQ_KHZ 24000
|
|
|
|
#define PLL_FREQ_MHZ (PLL_FREQ_KHZ / 1000)
|
|
#define XTAL_FREQ_MHZ (XTAL_FREQ_KHZ / 1000)
|
|
|
|
#if defined(CONFIG_MX23)
|
|
#define MXC_SSPCLK_MAX MXC_SSPCLK0
|
|
#elif defined(CONFIG_MX28)
|
|
#define MXC_SSPCLK_MAX MXC_SSPCLK3
|
|
#endif
|
|
|
|
static uint32_t mxs_get_pclk(void)
|
|
{
|
|
struct mxs_clkctrl_regs *clkctrl_regs =
|
|
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
|
|
|
|
uint32_t clkctrl, clkseq, div;
|
|
uint8_t clkfrac, frac;
|
|
|
|
clkctrl = readl(&clkctrl_regs->hw_clkctrl_cpu);
|
|
|
|
/* No support of fractional divider calculation */
|
|
if (clkctrl &
|
|
(CLKCTRL_CPU_DIV_XTAL_FRAC_EN | CLKCTRL_CPU_DIV_CPU_FRAC_EN)) {
|
|
return 0;
|
|
}
|
|
|
|
clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
|
|
|
|
/* XTAL Path */
|
|
if (clkseq & CLKCTRL_CLKSEQ_BYPASS_CPU) {
|
|
div = (clkctrl & CLKCTRL_CPU_DIV_XTAL_MASK) >>
|
|
CLKCTRL_CPU_DIV_XTAL_OFFSET;
|
|
return XTAL_FREQ_MHZ / div;
|
|
}
|
|
|
|
/* REF Path */
|
|
clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]);
|
|
frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
|
|
div = clkctrl & CLKCTRL_CPU_DIV_CPU_MASK;
|
|
return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
|
|
}
|
|
|
|
static uint32_t mxs_get_hclk(void)
|
|
{
|
|
struct mxs_clkctrl_regs *clkctrl_regs =
|
|
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
|
|
|
|
uint32_t div;
|
|
uint32_t clkctrl;
|
|
|
|
clkctrl = readl(&clkctrl_regs->hw_clkctrl_hbus);
|
|
|
|
/* No support of fractional divider calculation */
|
|
if (clkctrl & CLKCTRL_HBUS_DIV_FRAC_EN)
|
|
return 0;
|
|
|
|
div = clkctrl & CLKCTRL_HBUS_DIV_MASK;
|
|
return mxs_get_pclk() / div;
|
|
}
|
|
|
|
static uint32_t mxs_get_emiclk(void)
|
|
{
|
|
struct mxs_clkctrl_regs *clkctrl_regs =
|
|
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
|
|
|
|
uint32_t clkctrl, clkseq, div;
|
|
uint8_t clkfrac, frac;
|
|
|
|
clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
|
|
clkctrl = readl(&clkctrl_regs->hw_clkctrl_emi);
|
|
|
|
/* XTAL Path */
|
|
if (clkseq & CLKCTRL_CLKSEQ_BYPASS_EMI) {
|
|
div = (clkctrl & CLKCTRL_EMI_DIV_XTAL_MASK) >>
|
|
CLKCTRL_EMI_DIV_XTAL_OFFSET;
|
|
return XTAL_FREQ_MHZ / div;
|
|
}
|
|
|
|
/* REF Path */
|
|
clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_EMI]);
|
|
frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
|
|
div = clkctrl & CLKCTRL_EMI_DIV_EMI_MASK;
|
|
return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
|
|
}
|
|
|
|
static uint32_t mxs_get_gpmiclk(void)
|
|
{
|
|
struct mxs_clkctrl_regs *clkctrl_regs =
|
|
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
|
|
#if defined(CONFIG_MX23)
|
|
uint8_t *reg =
|
|
&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU];
|
|
#elif defined(CONFIG_MX28)
|
|
uint8_t *reg =
|
|
&clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_GPMI];
|
|
#endif
|
|
uint32_t clkctrl, clkseq, div;
|
|
uint8_t clkfrac, frac;
|
|
|
|
clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
|
|
clkctrl = readl(&clkctrl_regs->hw_clkctrl_gpmi);
|
|
|
|
/* XTAL Path */
|
|
if (clkseq & CLKCTRL_CLKSEQ_BYPASS_GPMI) {
|
|
div = clkctrl & CLKCTRL_GPMI_DIV_MASK;
|
|
return XTAL_FREQ_MHZ / div;
|
|
}
|
|
|
|
/* REF Path */
|
|
clkfrac = readb(reg);
|
|
frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
|
|
div = clkctrl & CLKCTRL_GPMI_DIV_MASK;
|
|
return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
|
|
}
|
|
|
|
/*
|
|
* Set IO clock frequency, in kHz
|
|
*/
|
|
void mxs_set_ioclk(enum mxs_ioclock io, uint32_t freq)
|
|
{
|
|
struct mxs_clkctrl_regs *clkctrl_regs =
|
|
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
|
|
uint32_t div;
|
|
int io_reg;
|
|
|
|
if (freq == 0)
|
|
return;
|
|
|
|
if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1))
|
|
return;
|
|
|
|
div = (PLL_FREQ_KHZ * PLL_FREQ_COEF) / freq;
|
|
|
|
if (div < 18)
|
|
div = 18;
|
|
|
|
if (div > 35)
|
|
div = 35;
|
|
|
|
io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */
|
|
writeb(CLKCTRL_FRAC_CLKGATE,
|
|
&clkctrl_regs->hw_clkctrl_frac0_set[io_reg]);
|
|
writeb(CLKCTRL_FRAC_CLKGATE | (div & CLKCTRL_FRAC_FRAC_MASK),
|
|
&clkctrl_regs->hw_clkctrl_frac0[io_reg]);
|
|
writeb(CLKCTRL_FRAC_CLKGATE,
|
|
&clkctrl_regs->hw_clkctrl_frac0_clr[io_reg]);
|
|
}
|
|
|
|
/*
|
|
* Get IO clock, returns IO clock in kHz
|
|
*/
|
|
static uint32_t mxs_get_ioclk(enum mxs_ioclock io)
|
|
{
|
|
struct mxs_clkctrl_regs *clkctrl_regs =
|
|
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
|
|
uint8_t ret;
|
|
int io_reg;
|
|
|
|
if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1))
|
|
return 0;
|
|
|
|
io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */
|
|
|
|
ret = readb(&clkctrl_regs->hw_clkctrl_frac0[io_reg]) &
|
|
CLKCTRL_FRAC_FRAC_MASK;
|
|
|
|
return (PLL_FREQ_KHZ * PLL_FREQ_COEF) / ret;
|
|
}
|
|
|
|
/*
|
|
* Configure SSP clock frequency, in kHz
|
|
*/
|
|
void mxs_set_sspclk(enum mxs_sspclock ssp, uint32_t freq, int xtal)
|
|
{
|
|
struct mxs_clkctrl_regs *clkctrl_regs =
|
|
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
|
|
uint32_t clk, clkreg;
|
|
|
|
if (ssp > MXC_SSPCLK_MAX)
|
|
return;
|
|
|
|
clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) +
|
|
(ssp * sizeof(struct mxs_register_32));
|
|
|
|
clrbits_le32(clkreg, CLKCTRL_SSP_CLKGATE);
|
|
while (readl(clkreg) & CLKCTRL_SSP_CLKGATE)
|
|
;
|
|
|
|
if (xtal)
|
|
clk = XTAL_FREQ_KHZ;
|
|
else
|
|
clk = mxs_get_ioclk(ssp >> 1);
|
|
|
|
if (freq > clk)
|
|
return;
|
|
|
|
/* Calculate the divider and cap it if necessary */
|
|
clk /= freq;
|
|
if (clk > CLKCTRL_SSP_DIV_MASK)
|
|
clk = CLKCTRL_SSP_DIV_MASK;
|
|
|
|
clrsetbits_le32(clkreg, CLKCTRL_SSP_DIV_MASK, clk);
|
|
while (readl(clkreg) & CLKCTRL_SSP_BUSY)
|
|
;
|
|
|
|
if (xtal)
|
|
writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp,
|
|
&clkctrl_regs->hw_clkctrl_clkseq_set);
|
|
else
|
|
writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp,
|
|
&clkctrl_regs->hw_clkctrl_clkseq_clr);
|
|
}
|
|
|
|
/*
|
|
* Return SSP frequency, in kHz
|
|
*/
|
|
static uint32_t mxs_get_sspclk(enum mxs_sspclock ssp)
|
|
{
|
|
struct mxs_clkctrl_regs *clkctrl_regs =
|
|
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
|
|
uint32_t clkreg;
|
|
uint32_t clk, tmp;
|
|
|
|
if (ssp > MXC_SSPCLK_MAX)
|
|
return 0;
|
|
|
|
tmp = readl(&clkctrl_regs->hw_clkctrl_clkseq);
|
|
if (tmp & (CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp))
|
|
return XTAL_FREQ_KHZ;
|
|
|
|
clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) +
|
|
(ssp * sizeof(struct mxs_register_32));
|
|
|
|
tmp = readl(clkreg) & CLKCTRL_SSP_DIV_MASK;
|
|
|
|
if (tmp == 0)
|
|
return 0;
|
|
|
|
clk = mxs_get_ioclk(ssp >> 1);
|
|
|
|
return clk / tmp;
|
|
}
|
|
|
|
/*
|
|
* Set SSP/MMC bus frequency, in kHz)
|
|
*/
|
|
void mxs_set_ssp_busclock(unsigned int bus, uint32_t freq)
|
|
{
|
|
struct mxs_ssp_regs *ssp_regs;
|
|
const enum mxs_sspclock clk = mxs_ssp_clock_by_bus(bus);
|
|
const uint32_t sspclk = mxs_get_sspclk(clk);
|
|
uint32_t reg;
|
|
uint32_t divide, rate, tgtclk;
|
|
|
|
ssp_regs = mxs_ssp_regs_by_bus(bus);
|
|
|
|
/*
|
|
* SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)),
|
|
* CLOCK_DIVIDE has to be an even value from 2 to 254, and
|
|
* CLOCK_RATE could be any integer from 0 to 255.
|
|
*/
|
|
for (divide = 2; divide < 254; divide += 2) {
|
|
rate = sspclk / freq / divide;
|
|
if (rate <= 256)
|
|
break;
|
|
}
|
|
|
|
tgtclk = sspclk / divide / rate;
|
|
while (tgtclk > freq) {
|
|
rate++;
|
|
tgtclk = sspclk / divide / rate;
|
|
}
|
|
if (rate > 256)
|
|
rate = 256;
|
|
|
|
/* Always set timeout the maximum */
|
|
reg = SSP_TIMING_TIMEOUT_MASK |
|
|
(divide << SSP_TIMING_CLOCK_DIVIDE_OFFSET) |
|
|
((rate - 1) << SSP_TIMING_CLOCK_RATE_OFFSET);
|
|
writel(reg, &ssp_regs->hw_ssp_timing);
|
|
|
|
debug("SPI%d: Set freq rate to %d KHz (requested %d KHz)\n",
|
|
bus, tgtclk, freq);
|
|
}
|
|
|
|
void mxs_set_lcdclk(uint32_t __maybe_unused lcd_base, uint32_t freq)
|
|
{
|
|
struct mxs_clkctrl_regs *clkctrl_regs =
|
|
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
|
|
uint32_t fp, x, k_rest, k_best, x_best, tk;
|
|
int32_t k_best_l = 999, k_best_t = 0, x_best_l = 0xff, x_best_t = 0xff;
|
|
|
|
if (freq == 0)
|
|
return;
|
|
|
|
#if defined(CONFIG_MX23)
|
|
writel(CLKCTRL_CLKSEQ_BYPASS_PIX, &clkctrl_regs->hw_clkctrl_clkseq_clr);
|
|
#elif defined(CONFIG_MX28)
|
|
writel(CLKCTRL_CLKSEQ_BYPASS_DIS_LCDIF, &clkctrl_regs->hw_clkctrl_clkseq_clr);
|
|
#endif
|
|
|
|
/*
|
|
* / 18 \ 1 1
|
|
* freq kHz = | 480000000 Hz * -- | * --- * ------
|
|
* \ x / k 1000
|
|
*
|
|
* 480000000 Hz 18
|
|
* ------------ * --
|
|
* freq kHz x
|
|
* k = -------------------
|
|
* 1000
|
|
*/
|
|
|
|
fp = ((PLL_FREQ_KHZ * 1000) / freq) * 18;
|
|
|
|
for (x = 18; x <= 35; x++) {
|
|
tk = fp / x;
|
|
if ((tk / 1000 == 0) || (tk / 1000 > 255))
|
|
continue;
|
|
|
|
k_rest = tk % 1000;
|
|
|
|
if (k_rest < (k_best_l % 1000)) {
|
|
k_best_l = tk;
|
|
x_best_l = x;
|
|
}
|
|
|
|
if (k_rest > (k_best_t % 1000)) {
|
|
k_best_t = tk;
|
|
x_best_t = x;
|
|
}
|
|
}
|
|
|
|
if (1000 - (k_best_t % 1000) > (k_best_l % 1000)) {
|
|
k_best = k_best_l;
|
|
x_best = x_best_l;
|
|
} else {
|
|
k_best = k_best_t;
|
|
x_best = x_best_t;
|
|
}
|
|
|
|
k_best /= 1000;
|
|
|
|
#if defined(CONFIG_MX23)
|
|
writeb(CLKCTRL_FRAC_CLKGATE,
|
|
&clkctrl_regs->hw_clkctrl_frac0_set[CLKCTRL_FRAC0_PIX]);
|
|
writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK),
|
|
&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_PIX]);
|
|
writeb(CLKCTRL_FRAC_CLKGATE,
|
|
&clkctrl_regs->hw_clkctrl_frac0_clr[CLKCTRL_FRAC0_PIX]);
|
|
|
|
writel(CLKCTRL_PIX_CLKGATE,
|
|
&clkctrl_regs->hw_clkctrl_pix_set);
|
|
clrsetbits_le32(&clkctrl_regs->hw_clkctrl_pix,
|
|
CLKCTRL_PIX_DIV_MASK | CLKCTRL_PIX_CLKGATE,
|
|
k_best << CLKCTRL_PIX_DIV_OFFSET);
|
|
|
|
while (readl(&clkctrl_regs->hw_clkctrl_pix) & CLKCTRL_PIX_BUSY)
|
|
;
|
|
#elif defined(CONFIG_MX28)
|
|
writeb(CLKCTRL_FRAC_CLKGATE,
|
|
&clkctrl_regs->hw_clkctrl_frac1_set[CLKCTRL_FRAC1_PIX]);
|
|
writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK),
|
|
&clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_PIX]);
|
|
writeb(CLKCTRL_FRAC_CLKGATE,
|
|
&clkctrl_regs->hw_clkctrl_frac1_clr[CLKCTRL_FRAC1_PIX]);
|
|
|
|
writel(CLKCTRL_DIS_LCDIF_CLKGATE,
|
|
&clkctrl_regs->hw_clkctrl_lcdif_set);
|
|
clrsetbits_le32(&clkctrl_regs->hw_clkctrl_lcdif,
|
|
CLKCTRL_DIS_LCDIF_DIV_MASK | CLKCTRL_DIS_LCDIF_CLKGATE,
|
|
k_best << CLKCTRL_DIS_LCDIF_DIV_OFFSET);
|
|
|
|
while (readl(&clkctrl_regs->hw_clkctrl_lcdif) & CLKCTRL_DIS_LCDIF_BUSY)
|
|
;
|
|
#endif
|
|
}
|
|
|
|
uint32_t mxc_get_clock(enum mxc_clock clk)
|
|
{
|
|
switch (clk) {
|
|
case MXC_ARM_CLK:
|
|
return mxs_get_pclk() * 1000000;
|
|
case MXC_GPMI_CLK:
|
|
return mxs_get_gpmiclk() * 1000000;
|
|
case MXC_AHB_CLK:
|
|
case MXC_IPG_CLK:
|
|
return mxs_get_hclk() * 1000000;
|
|
case MXC_EMI_CLK:
|
|
return mxs_get_emiclk();
|
|
case MXC_IO0_CLK:
|
|
return mxs_get_ioclk(MXC_IOCLK0);
|
|
case MXC_IO1_CLK:
|
|
return mxs_get_ioclk(MXC_IOCLK1);
|
|
case MXC_XTAL_CLK:
|
|
return XTAL_FREQ_KHZ * 1000;
|
|
case MXC_SSP0_CLK:
|
|
return mxs_get_sspclk(MXC_SSPCLK0);
|
|
#ifdef CONFIG_MX28
|
|
case MXC_SSP1_CLK:
|
|
return mxs_get_sspclk(MXC_SSPCLK1);
|
|
case MXC_SSP2_CLK:
|
|
return mxs_get_sspclk(MXC_SSPCLK2);
|
|
case MXC_SSP3_CLK:
|
|
return mxs_get_sspclk(MXC_SSPCLK3);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|