u-boot/arch/sandbox/cpu/os.c
Simon Glass b308d9fd18 sandbox: Avoid using malloc() for system state
This state is not accessible to the running U-Boot but at present it is
allocated in the emulated SDRAM. This doesn't seem very useful. Adjust
it to allocate from the OS instead.

The RAM buffer is currently not freed, but should be, so add that into
state_uninit(). Update the comment for os_free() to indicate that NULL is
a valid parameter value.

Note that the strdup() in spl_board_load_image() is changed as well, since
strdup() allocates memory in the RAM buffer.

Signed-off-by: Simon Glass <sjg@chromium.org>
2021-03-02 15:53:37 -05:00

948 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2011 The Chromium OS Authors.
*/
#define _GNU_SOURCE
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <setjmp.h>
#include <signal.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <termios.h>
#include <time.h>
#include <ucontext.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <linux/compiler_attributes.h>
#include <linux/types.h>
#include <asm/getopt.h>
#include <asm/sections.h>
#include <asm/state.h>
#include <os.h>
#include <rtc_def.h>
/* Environment variable for time offset */
#define ENV_TIME_OFFSET "UBOOT_SB_TIME_OFFSET"
/* Operating System Interface */
struct os_mem_hdr {
size_t length; /* number of bytes in the block */
};
ssize_t os_read(int fd, void *buf, size_t count)
{
return read(fd, buf, count);
}
ssize_t os_write(int fd, const void *buf, size_t count)
{
return write(fd, buf, count);
}
off_t os_lseek(int fd, off_t offset, int whence)
{
if (whence == OS_SEEK_SET)
whence = SEEK_SET;
else if (whence == OS_SEEK_CUR)
whence = SEEK_CUR;
else if (whence == OS_SEEK_END)
whence = SEEK_END;
else
os_exit(1);
return lseek(fd, offset, whence);
}
int os_open(const char *pathname, int os_flags)
{
int flags;
switch (os_flags & OS_O_MASK) {
case OS_O_RDONLY:
default:
flags = O_RDONLY;
break;
case OS_O_WRONLY:
flags = O_WRONLY;
break;
case OS_O_RDWR:
flags = O_RDWR;
break;
}
if (os_flags & OS_O_CREAT)
flags |= O_CREAT;
if (os_flags & OS_O_TRUNC)
flags |= O_TRUNC;
/*
* During a cold reset execv() is used to relaunch the U-Boot binary.
* We must ensure that all files are closed in this case.
*/
flags |= O_CLOEXEC;
return open(pathname, flags, 0777);
}
int os_close(int fd)
{
/* Do not close the console input */
if (fd)
return close(fd);
return -1;
}
int os_unlink(const char *pathname)
{
return unlink(pathname);
}
void os_exit(int exit_code)
{
exit(exit_code);
}
int os_write_file(const char *fname, const void *buf, int size)
{
int fd;
fd = os_open(fname, OS_O_WRONLY | OS_O_CREAT | OS_O_TRUNC);
if (fd < 0) {
printf("Cannot open file '%s'\n", fname);
return -EIO;
}
if (os_write(fd, buf, size) != size) {
printf("Cannot write to file '%s'\n", fname);
os_close(fd);
return -EIO;
}
os_close(fd);
return 0;
}
int os_read_file(const char *fname, void **bufp, int *sizep)
{
off_t size;
int ret = -EIO;
int fd;
fd = os_open(fname, OS_O_RDONLY);
if (fd < 0) {
printf("Cannot open file '%s'\n", fname);
goto err;
}
size = os_lseek(fd, 0, OS_SEEK_END);
if (size < 0) {
printf("Cannot seek to end of file '%s'\n", fname);
goto err;
}
if (os_lseek(fd, 0, OS_SEEK_SET) < 0) {
printf("Cannot seek to start of file '%s'\n", fname);
goto err;
}
*bufp = os_malloc(size);
if (!*bufp) {
printf("Not enough memory to read file '%s'\n", fname);
ret = -ENOMEM;
goto err;
}
if (os_read(fd, *bufp, size) != size) {
printf("Cannot read from file '%s'\n", fname);
goto err;
}
os_close(fd);
*sizep = size;
return 0;
err:
os_close(fd);
return ret;
}
/* Restore tty state when we exit */
static struct termios orig_term;
static bool term_setup;
static bool term_nonblock;
void os_fd_restore(void)
{
if (term_setup) {
int flags;
tcsetattr(0, TCSANOW, &orig_term);
if (term_nonblock) {
flags = fcntl(0, F_GETFL, 0);
fcntl(0, F_SETFL, flags & ~O_NONBLOCK);
}
term_setup = false;
}
}
static void os_sigint_handler(int sig)
{
os_fd_restore();
signal(SIGINT, SIG_DFL);
raise(SIGINT);
}
static void os_signal_handler(int sig, siginfo_t *info, void *con)
{
ucontext_t __maybe_unused *context = con;
unsigned long pc;
#if defined(__x86_64__)
pc = context->uc_mcontext.gregs[REG_RIP];
#elif defined(__aarch64__)
pc = context->uc_mcontext.pc;
#elif defined(__riscv)
pc = context->uc_mcontext.__gregs[REG_PC];
#else
const char msg[] =
"\nUnsupported architecture, cannot read program counter\n";
os_write(1, msg, sizeof(msg));
pc = 0;
#endif
os_signal_action(sig, pc);
}
int os_setup_signal_handlers(void)
{
struct sigaction act;
act.sa_sigaction = os_signal_handler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO | SA_NODEFER;
if (sigaction(SIGILL, &act, NULL) ||
sigaction(SIGBUS, &act, NULL) ||
sigaction(SIGSEGV, &act, NULL))
return -1;
return 0;
}
/* Put tty into raw mode so <tab> and <ctrl+c> work */
void os_tty_raw(int fd, bool allow_sigs)
{
struct termios term;
int flags;
if (term_setup)
return;
/* If not a tty, don't complain */
if (tcgetattr(fd, &orig_term))
return;
term = orig_term;
term.c_iflag = IGNBRK | IGNPAR;
term.c_oflag = OPOST | ONLCR;
term.c_cflag = CS8 | CREAD | CLOCAL;
term.c_lflag = allow_sigs ? ISIG : 0;
if (tcsetattr(fd, TCSANOW, &term))
return;
flags = fcntl(fd, F_GETFL, 0);
if (!(flags & O_NONBLOCK)) {
if (fcntl(fd, F_SETFL, flags | O_NONBLOCK))
return;
term_nonblock = true;
}
term_setup = true;
atexit(os_fd_restore);
signal(SIGINT, os_sigint_handler);
}
/*
* Provide our own malloc so we don't use space in the sandbox ram_buf for
* allocations that are internal to sandbox, or need to be done before U-Boot's
* malloc() is ready.
*/
void *os_malloc(size_t length)
{
int page_size = getpagesize();
struct os_mem_hdr *hdr;
if (!length)
return NULL;
/*
* Use an address that is hopefully available to us so that pointers
* to this memory are fairly obvious. If we end up with a different
* address, that's fine too.
*/
hdr = mmap((void *)0x10000000, length + page_size,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (hdr == MAP_FAILED)
return NULL;
hdr->length = length;
return (void *)hdr + page_size;
}
void os_free(void *ptr)
{
int page_size = getpagesize();
struct os_mem_hdr *hdr;
if (ptr) {
hdr = ptr - page_size;
munmap(hdr, hdr->length + page_size);
}
}
/* These macros are from kernel.h but not accessible in this file */
#define ALIGN(x, a) __ALIGN_MASK((x), (typeof(x))(a) - 1)
#define __ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
/*
* Provide our own malloc so we don't use space in the sandbox ram_buf for
* allocations that are internal to sandbox, or need to be done before U-Boot's
* malloc() is ready.
*/
void *os_realloc(void *ptr, size_t length)
{
int page_size = getpagesize();
struct os_mem_hdr *hdr;
void *new_ptr;
/* Reallocating a NULL pointer is just an alloc */
if (!ptr)
return os_malloc(length);
/* Changing a length to 0 is just a free */
if (length) {
os_free(ptr);
return NULL;
}
/*
* If the new size is the same number of pages as the old, nothing to
* do. There isn't much point in shrinking things
*/
hdr = ptr - page_size;
if (ALIGN(length, page_size) <= ALIGN(hdr->length, page_size))
return ptr;
/* We have to grow it, so allocate something new */
new_ptr = os_malloc(length);
memcpy(new_ptr, ptr, hdr->length);
os_free(ptr);
return new_ptr;
}
void os_usleep(unsigned long usec)
{
usleep(usec);
}
uint64_t __attribute__((no_instrument_function)) os_get_nsec(void)
{
#if defined(CLOCK_MONOTONIC) && defined(_POSIX_MONOTONIC_CLOCK)
struct timespec tp;
if (EINVAL == clock_gettime(CLOCK_MONOTONIC, &tp)) {
struct timeval tv;
gettimeofday(&tv, NULL);
tp.tv_sec = tv.tv_sec;
tp.tv_nsec = tv.tv_usec * 1000;
}
return tp.tv_sec * 1000000000ULL + tp.tv_nsec;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000000ULL + tv.tv_usec * 1000;
#endif
}
static char *short_opts;
static struct option *long_opts;
int os_parse_args(struct sandbox_state *state, int argc, char *argv[])
{
struct sandbox_cmdline_option **sb_opt = __u_boot_sandbox_option_start;
size_t num_options = __u_boot_sandbox_option_count();
size_t i;
int hidden_short_opt;
size_t si;
int c;
if (short_opts || long_opts)
return 1;
state->argc = argc;
state->argv = argv;
/* dynamically construct the arguments to the system getopt_long */
short_opts = os_malloc(sizeof(*short_opts) * num_options * 2 + 1);
long_opts = os_malloc(sizeof(*long_opts) * (num_options + 1));
if (!short_opts || !long_opts)
return 1;
/*
* getopt_long requires "val" to be unique (since that is what the
* func returns), so generate unique values automatically for flags
* that don't have a short option. pick 0x100 as that is above the
* single byte range (where ASCII/ISO-XXXX-X charsets live).
*/
hidden_short_opt = 0x100;
si = 0;
for (i = 0; i < num_options; ++i) {
long_opts[i].name = sb_opt[i]->flag;
long_opts[i].has_arg = sb_opt[i]->has_arg ?
required_argument : no_argument;
long_opts[i].flag = NULL;
if (sb_opt[i]->flag_short) {
short_opts[si++] = long_opts[i].val = sb_opt[i]->flag_short;
if (long_opts[i].has_arg == required_argument)
short_opts[si++] = ':';
} else
long_opts[i].val = sb_opt[i]->flag_short = hidden_short_opt++;
}
short_opts[si] = '\0';
/* we need to handle output ourselves since u-boot provides printf */
opterr = 0;
memset(&long_opts[num_options], '\0', sizeof(*long_opts));
/*
* walk all of the options the user gave us on the command line,
* figure out what u-boot option structure they belong to (via
* the unique short val key), and call the appropriate callback.
*/
while ((c = getopt_long(argc, argv, short_opts, long_opts, NULL)) != -1) {
for (i = 0; i < num_options; ++i) {
if (sb_opt[i]->flag_short == c) {
if (sb_opt[i]->callback(state, optarg)) {
state->parse_err = sb_opt[i]->flag;
return 0;
}
break;
}
}
if (i == num_options) {
/*
* store the faulting flag for later display. we have to
* store the flag itself as the getopt parsing itself is
* tricky: need to handle the following flags (assume all
* of the below are unknown):
* -a optopt='a' optind=<next>
* -abbbb optopt='a' optind=<this>
* -aaaaa optopt='a' optind=<this>
* --a optopt=0 optind=<this>
* as you can see, it is impossible to determine the exact
* faulting flag without doing the parsing ourselves, so
* we just report the specific flag that failed.
*/
if (optopt) {
static char parse_err[3] = { '-', 0, '\0', };
parse_err[1] = optopt;
state->parse_err = parse_err;
} else
state->parse_err = argv[optind - 1];
break;
}
}
return 0;
}
void os_dirent_free(struct os_dirent_node *node)
{
struct os_dirent_node *next;
while (node) {
next = node->next;
os_free(node);
node = next;
}
}
int os_dirent_ls(const char *dirname, struct os_dirent_node **headp)
{
struct dirent *entry;
struct os_dirent_node *head, *node, *next;
struct stat buf;
DIR *dir;
int ret;
char *fname;
char *old_fname;
int len;
int dirlen;
*headp = NULL;
dir = opendir(dirname);
if (!dir)
return -1;
/* Create a buffer upfront, with typically sufficient size */
dirlen = strlen(dirname) + 2;
len = dirlen + 256;
fname = os_malloc(len);
if (!fname) {
ret = -ENOMEM;
goto done;
}
for (node = head = NULL;; node = next) {
errno = 0;
entry = readdir(dir);
if (!entry) {
ret = errno;
break;
}
next = os_malloc(sizeof(*node) + strlen(entry->d_name) + 1);
if (!next) {
os_dirent_free(head);
ret = -ENOMEM;
goto done;
}
if (dirlen + strlen(entry->d_name) > len) {
len = dirlen + strlen(entry->d_name);
old_fname = fname;
fname = os_realloc(fname, len);
if (!fname) {
os_free(old_fname);
os_free(next);
os_dirent_free(head);
ret = -ENOMEM;
goto done;
}
}
next->next = NULL;
strcpy(next->name, entry->d_name);
switch (entry->d_type) {
case DT_REG:
next->type = OS_FILET_REG;
break;
case DT_DIR:
next->type = OS_FILET_DIR;
break;
case DT_LNK:
next->type = OS_FILET_LNK;
break;
default:
next->type = OS_FILET_UNKNOWN;
}
next->size = 0;
snprintf(fname, len, "%s/%s", dirname, next->name);
if (!stat(fname, &buf))
next->size = buf.st_size;
if (node)
node->next = next;
else
head = next;
}
*headp = head;
done:
closedir(dir);
os_free(fname);
return ret;
}
const char *os_dirent_typename[OS_FILET_COUNT] = {
" ",
"SYM",
"DIR",
"???",
};
const char *os_dirent_get_typename(enum os_dirent_t type)
{
if (type >= OS_FILET_REG && type < OS_FILET_COUNT)
return os_dirent_typename[type];
return os_dirent_typename[OS_FILET_UNKNOWN];
}
int os_get_filesize(const char *fname, loff_t *size)
{
struct stat buf;
int ret;
ret = stat(fname, &buf);
if (ret)
return ret;
*size = buf.st_size;
return 0;
}
void os_putc(int ch)
{
putchar(ch);
}
void os_puts(const char *str)
{
while (*str)
os_putc(*str++);
}
int os_write_ram_buf(const char *fname)
{
struct sandbox_state *state = state_get_current();
int fd, ret;
fd = open(fname, O_CREAT | O_WRONLY, 0777);
if (fd < 0)
return -ENOENT;
ret = write(fd, state->ram_buf, state->ram_size);
close(fd);
if (ret != state->ram_size)
return -EIO;
return 0;
}
int os_read_ram_buf(const char *fname)
{
struct sandbox_state *state = state_get_current();
int fd, ret;
loff_t size;
ret = os_get_filesize(fname, &size);
if (ret < 0)
return ret;
if (size != state->ram_size)
return -ENOSPC;
fd = open(fname, O_RDONLY);
if (fd < 0)
return -ENOENT;
ret = read(fd, state->ram_buf, state->ram_size);
close(fd);
if (ret != state->ram_size)
return -EIO;
return 0;
}
static int make_exec(char *fname, const void *data, int size)
{
int fd;
strcpy(fname, "/tmp/u-boot.jump.XXXXXX");
fd = mkstemp(fname);
if (fd < 0)
return -ENOENT;
if (write(fd, data, size) < 0)
return -EIO;
close(fd);
if (chmod(fname, 0777))
return -ENOEXEC;
return 0;
}
/**
* add_args() - Allocate a new argv with the given args
*
* This is used to create a new argv array with all the old arguments and some
* new ones that are passed in
*
* @argvp: Returns newly allocated args list
* @add_args: Arguments to add, each a string
* @count: Number of arguments in @add_args
* @return 0 if OK, -ENOMEM if out of memory
*/
static int add_args(char ***argvp, char *add_args[], int count)
{
char **argv, **ap;
int argc;
for (argc = 0; (*argvp)[argc]; argc++)
;
argv = os_malloc((argc + count + 1) * sizeof(char *));
if (!argv) {
printf("Out of memory for %d argv\n", count);
return -ENOMEM;
}
for (ap = *argvp, argc = 0; *ap; ap++) {
char *arg = *ap;
/* Drop args that we don't want to propagate */
if (*arg == '-' && strlen(arg) == 2) {
switch (arg[1]) {
case 'j':
case 'm':
ap++;
continue;
}
} else if (!strcmp(arg, "--rm_memory")) {
ap++;
continue;
}
argv[argc++] = arg;
}
memcpy(argv + argc, add_args, count * sizeof(char *));
argv[argc + count] = NULL;
*argvp = argv;
return 0;
}
/**
* os_jump_to_file() - Jump to a new program
*
* This saves the memory buffer, sets up arguments to the new process, then
* execs it.
*
* @fname: Filename to exec
* @return does not return on success, any return value is an error
*/
static int os_jump_to_file(const char *fname)
{
struct sandbox_state *state = state_get_current();
char mem_fname[30];
int fd, err;
char *extra_args[5];
char **argv = state->argv;
int argc;
#ifdef DEBUG
int i;
#endif
strcpy(mem_fname, "/tmp/u-boot.mem.XXXXXX");
fd = mkstemp(mem_fname);
if (fd < 0)
return -ENOENT;
close(fd);
err = os_write_ram_buf(mem_fname);
if (err)
return err;
os_fd_restore();
extra_args[0] = "-j";
extra_args[1] = (char *)fname;
extra_args[2] = "-m";
extra_args[3] = mem_fname;
argc = 4;
if (state->ram_buf_rm)
extra_args[argc++] = "--rm_memory";
err = add_args(&argv, extra_args, argc);
if (err)
return err;
argv[0] = (char *)fname;
#ifdef DEBUG
for (i = 0; argv[i]; i++)
printf("%d %s\n", i, argv[i]);
#endif
if (state_uninit())
os_exit(2);
err = execv(fname, argv);
os_free(argv);
if (err) {
perror("Unable to run image");
printf("Image filename '%s'\n", fname);
return err;
}
return unlink(fname);
}
int os_jump_to_image(const void *dest, int size)
{
char fname[30];
int err;
err = make_exec(fname, dest, size);
if (err)
return err;
return os_jump_to_file(fname);
}
int os_find_u_boot(char *fname, int maxlen)
{
struct sandbox_state *state = state_get_current();
const char *progname = state->argv[0];
int len = strlen(progname);
const char *suffix;
char *p;
int fd;
if (len >= maxlen || len < 4)
return -ENOSPC;
strcpy(fname, progname);
suffix = fname + len - 4;
/* If we are TPL, boot to SPL */
if (!strcmp(suffix, "-tpl")) {
fname[len - 3] = 's';
fd = os_open(fname, O_RDONLY);
if (fd >= 0) {
close(fd);
return 0;
}
/* Look for 'u-boot-tpl' in the tpl/ directory */
p = strstr(fname, "/tpl/");
if (p) {
p[1] = 's';
fd = os_open(fname, O_RDONLY);
if (fd >= 0) {
close(fd);
return 0;
}
}
return -ENOENT;
}
/* Look for 'u-boot' in the same directory as 'u-boot-spl' */
if (!strcmp(suffix, "-spl")) {
fname[len - 4] = '\0';
fd = os_open(fname, O_RDONLY);
if (fd >= 0) {
close(fd);
return 0;
}
}
/* Look for 'u-boot' in the parent directory of spl/ */
p = strstr(fname, "spl/");
if (p) {
/* Remove the "spl" characters */
memmove(p, p + 4, strlen(p + 4) + 1);
fd = os_open(fname, O_RDONLY);
if (fd >= 0) {
close(fd);
return 0;
}
}
return -ENOENT;
}
int os_spl_to_uboot(const char *fname)
{
struct sandbox_state *state = state_get_current();
printf("%s\n", __func__);
/* U-Boot will delete ram buffer after read: "--rm_memory"*/
state->ram_buf_rm = true;
return os_jump_to_file(fname);
}
long os_get_time_offset(void)
{
const char *offset;
offset = getenv(ENV_TIME_OFFSET);
if (offset)
return strtol(offset, NULL, 0);
return 0;
}
void os_set_time_offset(long offset)
{
char buf[21];
int ret;
snprintf(buf, sizeof(buf), "%ld", offset);
ret = setenv(ENV_TIME_OFFSET, buf, true);
if (ret)
printf("Could not set environment variable %s\n",
ENV_TIME_OFFSET);
}
void os_localtime(struct rtc_time *rt)
{
time_t t = time(NULL);
struct tm *tm;
tm = localtime(&t);
rt->tm_sec = tm->tm_sec;
rt->tm_min = tm->tm_min;
rt->tm_hour = tm->tm_hour;
rt->tm_mday = tm->tm_mday;
rt->tm_mon = tm->tm_mon + 1;
rt->tm_year = tm->tm_year + 1900;
rt->tm_wday = tm->tm_wday;
rt->tm_yday = tm->tm_yday;
rt->tm_isdst = tm->tm_isdst;
}
void os_abort(void)
{
abort();
}
int os_mprotect_allow(void *start, size_t len)
{
int page_size = getpagesize();
/* Move start to the start of a page, len to the end */
start = (void *)(((ulong)start) & ~(page_size - 1));
len = (len + page_size * 2) & ~(page_size - 1);
return mprotect(start, len, PROT_READ | PROT_WRITE);
}
void *os_find_text_base(void)
{
char line[500];
void *base = NULL;
int len;
int fd;
/*
* This code assumes that the first line of /proc/self/maps holds
* information about the text, for example:
*
* 5622d9907000-5622d9a55000 r-xp 00000000 08:01 15067168 u-boot
*
* The first hex value is assumed to be the address.
*
* This is tested in Linux 4.15.
*/
fd = open("/proc/self/maps", O_RDONLY);
if (fd == -1)
return NULL;
len = read(fd, line, sizeof(line));
if (len > 0) {
char *end = memchr(line, '-', len);
if (end) {
uintptr_t addr;
*end = '\0';
if (sscanf(line, "%zx", &addr) == 1)
base = (void *)addr;
}
}
close(fd);
return base;
}
void os_relaunch(char *argv[])
{
execv(argv[0], argv);
os_exit(1);
}