u-boot/arch/x86/cpu/queensbay/fsp_support.c
Bin Meng 8e04d4c537 x86: queensbay: Adapt FSP support codes
Use inline assembly codes to call FspNotify() to make sure parameters
are passed on the stack as required by the FSP calling convention.

Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
2014-12-13 22:32:05 -07:00

416 lines
10 KiB
C

/*
* Copyright (C) 2013, Intel Corporation
* Copyright (C) 2014, Bin Meng <bmeng.cn@gmail.com>
*
* SPDX-License-Identifier: Intel
*/
#include <common.h>
#include <asm/arch/fsp/fsp_support.h>
#include <asm/post.h>
/**
* Reads a 64-bit value from memory that may be unaligned.
*
* This function returns the 64-bit value pointed to by buf. The function
* guarantees that the read operation does not produce an alignment fault.
*
* If the buf is NULL, then ASSERT().
*
* @buf: Pointer to a 64-bit value that may be unaligned.
*
* @return: The 64-bit value read from buf.
*/
static u64 read_unaligned64(const u64 *buf)
{
ASSERT(buf != NULL);
return *buf;
}
/**
* Compares two GUIDs
*
* If the GUIDs are identical then TRUE is returned.
* If there are any bit differences in the two GUIDs, then FALSE is returned.
*
* If guid1 is NULL, then ASSERT().
* If guid2 is NULL, then ASSERT().
*
* @guid1: A pointer to a 128 bit GUID.
* @guid2: A pointer to a 128 bit GUID.
*
* @retval TRUE: guid1 and guid2 are identical.
* @retval FALSE: guid1 and guid2 are not identical.
*/
static unsigned char compare_guid(const struct efi_guid_t *guid1,
const struct efi_guid_t *guid2)
{
u64 guid1_low;
u64 guid2_low;
u64 guid1_high;
u64 guid2_high;
guid1_low = read_unaligned64((const u64 *)guid1);
guid2_low = read_unaligned64((const u64 *)guid2);
guid1_high = read_unaligned64((const u64 *)guid1 + 1);
guid2_high = read_unaligned64((const u64 *)guid2 + 1);
return (unsigned char)(guid1_low == guid2_low && guid1_high == guid2_high);
}
u32 __attribute__((optimize("O0"))) find_fsp_header(void)
{
volatile register u8 *fsp asm("eax");
/* Initalize the FSP base */
fsp = (u8 *)CONFIG_FSP_LOCATION;
/* Check the FV signature, _FVH */
if (((struct fv_header_t *)fsp)->sign == 0x4856465F) {
/* Go to the end of the FV header and align the address */
fsp += ((struct fv_header_t *)fsp)->ext_hdr_off;
fsp += ((struct fv_ext_header_t *)fsp)->ext_hdr_size;
fsp = (u8 *)(((u32)fsp + 7) & 0xFFFFFFF8);
} else {
fsp = 0;
}
/* Check the FFS GUID */
if (fsp &&
(((u32 *)&(((struct ffs_file_header_t *)fsp)->name))[0] == 0x912740BE) &&
(((u32 *)&(((struct ffs_file_header_t *)fsp)->name))[1] == 0x47342284) &&
(((u32 *)&(((struct ffs_file_header_t *)fsp)->name))[2] == 0xB08471B9) &&
(((u32 *)&(((struct ffs_file_header_t *)fsp)->name))[3] == 0x0C3F3527)) {
/* Add the FFS header size to find the raw section header */
fsp += sizeof(struct ffs_file_header_t);
} else {
fsp = 0;
}
if (fsp &&
((struct raw_section_t *)fsp)->type == EFI_SECTION_RAW) {
/* Add the raw section header size to find the FSP header */
fsp += sizeof(struct raw_section_t);
} else {
fsp = 0;
}
return (u32)fsp;
}
void fsp_continue(struct shared_data_t *shared_data, u32 status, void *hob_list)
{
u32 stack_len;
u32 stack_base;
u32 stack_top;
post_code(POST_MRC);
ASSERT(status == 0);
/* Get the migrated stack in normal memory */
stack_base = (u32)get_bootloader_tmp_mem(hob_list, &stack_len);
ASSERT(stack_base != 0);
stack_top = stack_base + stack_len - sizeof(u32);
/*
* Old stack base is stored at the very end of the stack top,
* use it to calculate the migrated shared data base
*/
shared_data = (struct shared_data_t *)(stack_base +
((u32)shared_data - *(u32 *)stack_top));
/* The boot loader main function entry */
fsp_init_done(hob_list);
}
void fsp_init(u32 stack_top, u32 boot_mode, void *nvs_buf)
{
struct shared_data_t shared_data;
fsp_init_f init;
struct fsp_init_params_t params;
struct fspinit_rtbuf_t rt_buf;
struct vpd_region_t *fsp_vpd;
struct fsp_header_t *fsp_hdr;
struct fsp_init_params_t *params_ptr;
struct upd_region_t *fsp_upd;
fsp_hdr = (struct fsp_header_t *)find_fsp_header();
if (fsp_hdr == NULL) {
/* No valid FSP info header was found */
ASSERT(FALSE);
}
fsp_upd = (struct upd_region_t *)&shared_data.fsp_upd;
memset((void *)&rt_buf, 0, sizeof(struct fspinit_rtbuf_t));
/* Reserve a gap in stack top */
rt_buf.common.stack_top = (u32 *)stack_top - 32;
rt_buf.common.boot_mode = boot_mode;
rt_buf.common.upd_data = (struct upd_region_t *)fsp_upd;
/* Get VPD region start */
fsp_vpd = (struct vpd_region_t *)(fsp_hdr->img_base +
fsp_hdr->cfg_region_off);
/* Verifify the VPD data region is valid */
ASSERT((fsp_vpd->img_rev == VPD_IMAGE_REV) &&
(fsp_vpd->sign == VPD_IMAGE_ID));
/* Copy default data from Flash */
memcpy(fsp_upd, (void *)(fsp_hdr->img_base + fsp_vpd->upd_offset),
sizeof(struct upd_region_t));
/* Verifify the UPD data region is valid */
ASSERT(fsp_upd->terminator == 0x55AA);
/* Override any UPD setting if required */
update_fsp_upd(fsp_upd);
memset((void *)&params, 0, sizeof(struct fsp_init_params_t));
params.nvs_buf = nvs_buf;
params.rt_buf = (struct fspinit_rtbuf_t *)&rt_buf;
params.continuation = (fsp_continuation_f)asm_continuation;
init = (fsp_init_f)(fsp_hdr->img_base + fsp_hdr->fsp_init);
params_ptr = &params;
shared_data.fsp_hdr = fsp_hdr;
shared_data.stack_top = (u32 *)stack_top;
post_code(POST_PRE_MRC);
/*
* Use ASM code to ensure the register value in EAX & ECX
* will be passed into BlContinuationFunc
*/
asm volatile (
"pushl %0;"
"call *%%eax;"
".global asm_continuation;"
"asm_continuation:;"
"movl %%ebx, %%eax;" /* shared_data */
"movl 4(%%esp), %%edx;" /* status */
"movl 8(%%esp), %%ecx;" /* hob_list */
"jmp fsp_continue;"
: : "m"(params_ptr), "a"(init), "b"(&shared_data)
);
/*
* Should never get here.
* Control will continue from romstage_main_continue_asm.
* This line below is to prevent the compiler from optimizing
* structure intialization.
*/
init(&params);
/*
* Should never return.
* Control will continue from ContinuationFunc
*/
ASSERT(FALSE);
}
u32 fsp_notify(struct fsp_header_t *fsp_hdr, u32 phase)
{
fsp_notify_f notify;
struct fsp_notify_params_t params;
struct fsp_notify_params_t *params_ptr;
u32 status;
if (!fsp_hdr)
fsp_hdr = (struct fsp_header_t *)find_fsp_header();
if (fsp_hdr == NULL) {
/* No valid FSP info header */
ASSERT(FALSE);
}
notify = (fsp_notify_f)(fsp_hdr->img_base + fsp_hdr->fsp_notify);
params.phase = phase;
params_ptr = &params;
/*
* Use ASM code to ensure correct parameter is on the stack for
* FspNotify as U-Boot is using different ABI from FSP
*/
asm volatile (
"pushl %1;" /* push notify phase */
"call *%%eax;" /* call FspNotify */
"addl $4, %%esp;" /* clean up the stack */
: "=a"(status) : "m"(params_ptr), "a"(notify), "m"(*params_ptr)
);
return status;
}
u32 get_usable_lowmem_top(const void *hob_list)
{
union hob_pointers_t hob;
phys_addr_t phys_start;
u32 top;
/* Get the HOB list for processing */
hob.raw = (void *)hob_list;
/* * Collect memory ranges */
top = 0x100000;
while (!END_OF_HOB(hob)) {
if (hob.hdr->type == HOB_TYPE_RES_DESC) {
if (hob.res_desc->type == RES_SYS_MEM) {
phys_start = hob.res_desc->phys_start;
/* Need memory above 1MB to be collected here */
if (phys_start >= 0x100000 &&
phys_start < (phys_addr_t)0x100000000)
top += (u32)(hob.res_desc->len);
}
}
hob.raw = GET_NEXT_HOB(hob);
}
return top;
}
u64 get_usable_highmem_top(const void *hob_list)
{
union hob_pointers_t hob;
phys_addr_t phys_start;
u64 top;
/* Get the HOB list for processing */
hob.raw = (void *)hob_list;
/* Collect memory ranges */
top = 0x100000000;
while (!END_OF_HOB(hob)) {
if (hob.hdr->type == HOB_TYPE_RES_DESC) {
if (hob.res_desc->type == RES_SYS_MEM) {
phys_start = hob.res_desc->phys_start;
/* Need memory above 1MB to be collected here */
if (phys_start >= (phys_addr_t)0x100000000)
top += (u32)(hob.res_desc->len);
}
}
hob.raw = GET_NEXT_HOB(hob);
}
return top;
}
u64 get_fsp_reserved_mem_from_guid(const void *hob_list, u64 *len,
struct efi_guid_t *guid)
{
union hob_pointers_t hob;
/* Get the HOB list for processing */
hob.raw = (void *)hob_list;
/* Collect memory ranges */
while (!END_OF_HOB(hob)) {
if (hob.hdr->type == HOB_TYPE_RES_DESC) {
if (hob.res_desc->type == RES_MEM_RESERVED) {
if (compare_guid(&hob.res_desc->owner, guid)) {
if (len)
*len = (u32)(hob.res_desc->len);
return (u64)(hob.res_desc->phys_start);
}
}
}
hob.raw = GET_NEXT_HOB(hob);
}
return 0;
}
u32 get_fsp_reserved_mem(const void *hob_list, u32 *len)
{
const struct efi_guid_t guid = FSP_HOB_RESOURCE_OWNER_FSP_GUID;
u64 length;
u32 base;
base = (u32)get_fsp_reserved_mem_from_guid(hob_list,
&length, (struct efi_guid_t *)&guid);
if ((len != 0) && (base != 0))
*len = (u32)length;
return base;
}
u32 get_tseg_reserved_mem(const void *hob_list, u32 *len)
{
const struct efi_guid_t guid = FSP_HOB_RESOURCE_OWNER_TSEG_GUID;
u64 length;
u32 base;
base = (u32)get_fsp_reserved_mem_from_guid(hob_list,
&length, (struct efi_guid_t *)&guid);
if ((len != 0) && (base != 0))
*len = (u32)length;
return base;
}
void *get_next_hob(u16 type, const void *hob_list)
{
union hob_pointers_t hob;
ASSERT(hob_list != NULL);
hob.raw = (u8 *)hob_list;
/* Parse the HOB list until end of list or matching type is found */
while (!END_OF_HOB(hob)) {
if (hob.hdr->type == type)
return hob.raw;
hob.raw = GET_NEXT_HOB(hob);
}
return NULL;
}
void *get_next_guid_hob(const struct efi_guid_t *guid, const void *hob_list)
{
union hob_pointers_t hob;
hob.raw = (u8 *)hob_list;
while ((hob.raw = get_next_hob(HOB_TYPE_GUID_EXT,
hob.raw)) != NULL) {
if (compare_guid(guid, &hob.guid->name))
break;
hob.raw = GET_NEXT_HOB(hob);
}
return hob.raw;
}
void *get_guid_hob_data(const void *hob_list, u32 *len, struct efi_guid_t *guid)
{
u8 *guid_hob;
guid_hob = get_next_guid_hob(guid, hob_list);
if (guid_hob == NULL) {
return NULL;
} else {
if (len)
*len = GET_GUID_HOB_DATA_SIZE(guid_hob);
return GET_GUID_HOB_DATA(guid_hob);
}
}
void *get_fsp_nvs_data(const void *hob_list, u32 *len)
{
const struct efi_guid_t guid = FSP_NON_VOLATILE_STORAGE_HOB_GUID;
return get_guid_hob_data(hob_list, len, (struct efi_guid_t *)&guid);
}
void *get_bootloader_tmp_mem(const void *hob_list, u32 *len)
{
const struct efi_guid_t guid = FSP_BOOTLOADER_TEMP_MEM_HOB_GUID;
return get_guid_hob_data(hob_list, len, (struct efi_guid_t *)&guid);
}