mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-12 22:33:18 +00:00
eb41d8a1be
Move this uncommon header out of the common header. Signed-off-by: Simon Glass <sjg@chromium.org>
1766 lines
47 KiB
C
1766 lines
47 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* UBI attaching sub-system.
|
|
*
|
|
* This sub-system is responsible for attaching MTD devices and it also
|
|
* implements flash media scanning.
|
|
*
|
|
* The attaching information is represented by a &struct ubi_attach_info'
|
|
* object. Information about volumes is represented by &struct ubi_ainf_volume
|
|
* objects which are kept in volume RB-tree with root at the @volumes field.
|
|
* The RB-tree is indexed by the volume ID.
|
|
*
|
|
* Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
|
|
* objects are kept in per-volume RB-trees with the root at the corresponding
|
|
* &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
|
|
* per-volume objects and each of these objects is the root of RB-tree of
|
|
* per-LEB objects.
|
|
*
|
|
* Corrupted physical eraseblocks are put to the @corr list, free physical
|
|
* eraseblocks are put to the @free list and the physical eraseblock to be
|
|
* erased are put to the @erase list.
|
|
*
|
|
* About corruptions
|
|
* ~~~~~~~~~~~~~~~~~
|
|
*
|
|
* UBI protects EC and VID headers with CRC-32 checksums, so it can detect
|
|
* whether the headers are corrupted or not. Sometimes UBI also protects the
|
|
* data with CRC-32, e.g., when it executes the atomic LEB change operation, or
|
|
* when it moves the contents of a PEB for wear-leveling purposes.
|
|
*
|
|
* UBI tries to distinguish between 2 types of corruptions.
|
|
*
|
|
* 1. Corruptions caused by power cuts. These are expected corruptions and UBI
|
|
* tries to handle them gracefully, without printing too many warnings and
|
|
* error messages. The idea is that we do not lose important data in these
|
|
* cases - we may lose only the data which were being written to the media just
|
|
* before the power cut happened, and the upper layers (e.g., UBIFS) are
|
|
* supposed to handle such data losses (e.g., by using the FS journal).
|
|
*
|
|
* When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
|
|
* the reason is a power cut, UBI puts this PEB to the @erase list, and all
|
|
* PEBs in the @erase list are scheduled for erasure later.
|
|
*
|
|
* 2. Unexpected corruptions which are not caused by power cuts. During
|
|
* attaching, such PEBs are put to the @corr list and UBI preserves them.
|
|
* Obviously, this lessens the amount of available PEBs, and if at some point
|
|
* UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
|
|
* about such PEBs every time the MTD device is attached.
|
|
*
|
|
* However, it is difficult to reliably distinguish between these types of
|
|
* corruptions and UBI's strategy is as follows (in case of attaching by
|
|
* scanning). UBI assumes corruption type 2 if the VID header is corrupted and
|
|
* the data area does not contain all 0xFFs, and there were no bit-flips or
|
|
* integrity errors (e.g., ECC errors in case of NAND) while reading the data
|
|
* area. Otherwise UBI assumes corruption type 1. So the decision criteria
|
|
* are as follows.
|
|
* o If the data area contains only 0xFFs, there are no data, and it is safe
|
|
* to just erase this PEB - this is corruption type 1.
|
|
* o If the data area has bit-flips or data integrity errors (ECC errors on
|
|
* NAND), it is probably a PEB which was being erased when power cut
|
|
* happened, so this is corruption type 1. However, this is just a guess,
|
|
* which might be wrong.
|
|
* o Otherwise this is corruption type 2.
|
|
*/
|
|
|
|
#ifndef __UBOOT__
|
|
#include <log.h>
|
|
#include <dm/devres.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/random.h>
|
|
#include <u-boot/crc.h>
|
|
#else
|
|
#include <div64.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/err.h>
|
|
#endif
|
|
|
|
#include <linux/math64.h>
|
|
|
|
#include <ubi_uboot.h>
|
|
#include "ubi.h"
|
|
|
|
static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
|
|
|
|
/* Temporary variables used during scanning */
|
|
static struct ubi_ec_hdr *ech;
|
|
static struct ubi_vid_hdr *vidh;
|
|
|
|
/**
|
|
* add_to_list - add physical eraseblock to a list.
|
|
* @ai: attaching information
|
|
* @pnum: physical eraseblock number to add
|
|
* @vol_id: the last used volume id for the PEB
|
|
* @lnum: the last used LEB number for the PEB
|
|
* @ec: erase counter of the physical eraseblock
|
|
* @to_head: if not zero, add to the head of the list
|
|
* @list: the list to add to
|
|
*
|
|
* This function allocates a 'struct ubi_ainf_peb' object for physical
|
|
* eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
|
|
* It stores the @lnum and @vol_id alongside, which can both be
|
|
* %UBI_UNKNOWN if they are not available, not readable, or not assigned.
|
|
* If @to_head is not zero, PEB will be added to the head of the list, which
|
|
* basically means it will be processed first later. E.g., we add corrupted
|
|
* PEBs (corrupted due to power cuts) to the head of the erase list to make
|
|
* sure we erase them first and get rid of corruptions ASAP. This function
|
|
* returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
|
|
int lnum, int ec, int to_head, struct list_head *list)
|
|
{
|
|
struct ubi_ainf_peb *aeb;
|
|
|
|
if (list == &ai->free) {
|
|
dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
|
|
} else if (list == &ai->erase) {
|
|
dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
|
|
} else if (list == &ai->alien) {
|
|
dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
|
|
ai->alien_peb_count += 1;
|
|
} else
|
|
BUG();
|
|
|
|
aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
|
|
if (!aeb)
|
|
return -ENOMEM;
|
|
|
|
aeb->pnum = pnum;
|
|
aeb->vol_id = vol_id;
|
|
aeb->lnum = lnum;
|
|
aeb->ec = ec;
|
|
if (to_head)
|
|
list_add(&aeb->u.list, list);
|
|
else
|
|
list_add_tail(&aeb->u.list, list);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* add_corrupted - add a corrupted physical eraseblock.
|
|
* @ai: attaching information
|
|
* @pnum: physical eraseblock number to add
|
|
* @ec: erase counter of the physical eraseblock
|
|
*
|
|
* This function allocates a 'struct ubi_ainf_peb' object for a corrupted
|
|
* physical eraseblock @pnum and adds it to the 'corr' list. The corruption
|
|
* was presumably not caused by a power cut. Returns zero in case of success
|
|
* and a negative error code in case of failure.
|
|
*/
|
|
static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
|
|
{
|
|
struct ubi_ainf_peb *aeb;
|
|
|
|
dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
|
|
|
|
aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
|
|
if (!aeb)
|
|
return -ENOMEM;
|
|
|
|
ai->corr_peb_count += 1;
|
|
aeb->pnum = pnum;
|
|
aeb->ec = ec;
|
|
list_add(&aeb->u.list, &ai->corr);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* validate_vid_hdr - check volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @vid_hdr: the volume identifier header to check
|
|
* @av: information about the volume this logical eraseblock belongs to
|
|
* @pnum: physical eraseblock number the VID header came from
|
|
*
|
|
* This function checks that data stored in @vid_hdr is consistent. Returns
|
|
* non-zero if an inconsistency was found and zero if not.
|
|
*
|
|
* Note, UBI does sanity check of everything it reads from the flash media.
|
|
* Most of the checks are done in the I/O sub-system. Here we check that the
|
|
* information in the VID header is consistent to the information in other VID
|
|
* headers of the same volume.
|
|
*/
|
|
static int validate_vid_hdr(const struct ubi_device *ubi,
|
|
const struct ubi_vid_hdr *vid_hdr,
|
|
const struct ubi_ainf_volume *av, int pnum)
|
|
{
|
|
int vol_type = vid_hdr->vol_type;
|
|
int vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
|
|
int data_pad = be32_to_cpu(vid_hdr->data_pad);
|
|
|
|
if (av->leb_count != 0) {
|
|
int av_vol_type;
|
|
|
|
/*
|
|
* This is not the first logical eraseblock belonging to this
|
|
* volume. Ensure that the data in its VID header is consistent
|
|
* to the data in previous logical eraseblock headers.
|
|
*/
|
|
|
|
if (vol_id != av->vol_id) {
|
|
ubi_err(ubi, "inconsistent vol_id");
|
|
goto bad;
|
|
}
|
|
|
|
if (av->vol_type == UBI_STATIC_VOLUME)
|
|
av_vol_type = UBI_VID_STATIC;
|
|
else
|
|
av_vol_type = UBI_VID_DYNAMIC;
|
|
|
|
if (vol_type != av_vol_type) {
|
|
ubi_err(ubi, "inconsistent vol_type");
|
|
goto bad;
|
|
}
|
|
|
|
if (used_ebs != av->used_ebs) {
|
|
ubi_err(ubi, "inconsistent used_ebs");
|
|
goto bad;
|
|
}
|
|
|
|
if (data_pad != av->data_pad) {
|
|
ubi_err(ubi, "inconsistent data_pad");
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
|
|
ubi_dump_vid_hdr(vid_hdr);
|
|
ubi_dump_av(av);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* add_volume - add volume to the attaching information.
|
|
* @ai: attaching information
|
|
* @vol_id: ID of the volume to add
|
|
* @pnum: physical eraseblock number
|
|
* @vid_hdr: volume identifier header
|
|
*
|
|
* If the volume corresponding to the @vid_hdr logical eraseblock is already
|
|
* present in the attaching information, this function does nothing. Otherwise
|
|
* it adds corresponding volume to the attaching information. Returns a pointer
|
|
* to the allocated "av" object in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
|
|
int vol_id, int pnum,
|
|
const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
struct ubi_ainf_volume *av;
|
|
struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
|
|
|
|
ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
|
|
|
|
/* Walk the volume RB-tree to look if this volume is already present */
|
|
while (*p) {
|
|
parent = *p;
|
|
av = rb_entry(parent, struct ubi_ainf_volume, rb);
|
|
|
|
if (vol_id == av->vol_id)
|
|
return av;
|
|
|
|
if (vol_id > av->vol_id)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
}
|
|
|
|
/* The volume is absent - add it */
|
|
av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
|
|
if (!av)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
av->highest_lnum = av->leb_count = 0;
|
|
av->vol_id = vol_id;
|
|
av->root = RB_ROOT;
|
|
av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
|
|
av->data_pad = be32_to_cpu(vid_hdr->data_pad);
|
|
av->compat = vid_hdr->compat;
|
|
av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
|
|
: UBI_STATIC_VOLUME;
|
|
if (vol_id > ai->highest_vol_id)
|
|
ai->highest_vol_id = vol_id;
|
|
|
|
rb_link_node(&av->rb, parent, p);
|
|
rb_insert_color(&av->rb, &ai->volumes);
|
|
ai->vols_found += 1;
|
|
dbg_bld("added volume %d", vol_id);
|
|
return av;
|
|
}
|
|
|
|
/**
|
|
* ubi_compare_lebs - find out which logical eraseblock is newer.
|
|
* @ubi: UBI device description object
|
|
* @aeb: first logical eraseblock to compare
|
|
* @pnum: physical eraseblock number of the second logical eraseblock to
|
|
* compare
|
|
* @vid_hdr: volume identifier header of the second logical eraseblock
|
|
*
|
|
* This function compares 2 copies of a LEB and informs which one is newer. In
|
|
* case of success this function returns a positive value, in case of failure, a
|
|
* negative error code is returned. The success return codes use the following
|
|
* bits:
|
|
* o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
|
|
* second PEB (described by @pnum and @vid_hdr);
|
|
* o bit 0 is set: the second PEB is newer;
|
|
* o bit 1 is cleared: no bit-flips were detected in the newer LEB;
|
|
* o bit 1 is set: bit-flips were detected in the newer LEB;
|
|
* o bit 2 is cleared: the older LEB is not corrupted;
|
|
* o bit 2 is set: the older LEB is corrupted.
|
|
*/
|
|
int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
|
|
int pnum, const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int len, err, second_is_newer, bitflips = 0, corrupted = 0;
|
|
uint32_t data_crc, crc;
|
|
struct ubi_vid_hdr *vh = NULL;
|
|
unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
|
|
|
|
if (sqnum2 == aeb->sqnum) {
|
|
/*
|
|
* This must be a really ancient UBI image which has been
|
|
* created before sequence numbers support has been added. At
|
|
* that times we used 32-bit LEB versions stored in logical
|
|
* eraseblocks. That was before UBI got into mainline. We do not
|
|
* support these images anymore. Well, those images still work,
|
|
* but only if no unclean reboots happened.
|
|
*/
|
|
ubi_err(ubi, "unsupported on-flash UBI format");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Obviously the LEB with lower sequence counter is older */
|
|
second_is_newer = (sqnum2 > aeb->sqnum);
|
|
|
|
/*
|
|
* Now we know which copy is newer. If the copy flag of the PEB with
|
|
* newer version is not set, then we just return, otherwise we have to
|
|
* check data CRC. For the second PEB we already have the VID header,
|
|
* for the first one - we'll need to re-read it from flash.
|
|
*
|
|
* Note: this may be optimized so that we wouldn't read twice.
|
|
*/
|
|
|
|
if (second_is_newer) {
|
|
if (!vid_hdr->copy_flag) {
|
|
/* It is not a copy, so it is newer */
|
|
dbg_bld("second PEB %d is newer, copy_flag is unset",
|
|
pnum);
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (!aeb->copy_flag) {
|
|
/* It is not a copy, so it is newer */
|
|
dbg_bld("first PEB %d is newer, copy_flag is unset",
|
|
pnum);
|
|
return bitflips << 1;
|
|
}
|
|
|
|
vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
|
|
if (!vh)
|
|
return -ENOMEM;
|
|
|
|
pnum = aeb->pnum;
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
|
|
if (err) {
|
|
if (err == UBI_IO_BITFLIPS)
|
|
bitflips = 1;
|
|
else {
|
|
ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
|
|
pnum, err);
|
|
if (err > 0)
|
|
err = -EIO;
|
|
|
|
goto out_free_vidh;
|
|
}
|
|
}
|
|
|
|
vid_hdr = vh;
|
|
}
|
|
|
|
/* Read the data of the copy and check the CRC */
|
|
|
|
len = be32_to_cpu(vid_hdr->data_size);
|
|
|
|
mutex_lock(&ubi->buf_mutex);
|
|
err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
|
|
if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
|
|
goto out_unlock;
|
|
|
|
data_crc = be32_to_cpu(vid_hdr->data_crc);
|
|
crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
|
|
if (crc != data_crc) {
|
|
dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
|
|
pnum, crc, data_crc);
|
|
corrupted = 1;
|
|
bitflips = 0;
|
|
second_is_newer = !second_is_newer;
|
|
} else {
|
|
dbg_bld("PEB %d CRC is OK", pnum);
|
|
bitflips |= !!err;
|
|
}
|
|
mutex_unlock(&ubi->buf_mutex);
|
|
|
|
ubi_free_vid_hdr(ubi, vh);
|
|
|
|
if (second_is_newer)
|
|
dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
|
|
else
|
|
dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
|
|
|
|
return second_is_newer | (bitflips << 1) | (corrupted << 2);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&ubi->buf_mutex);
|
|
out_free_vidh:
|
|
ubi_free_vid_hdr(ubi, vh);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_add_to_av - add used physical eraseblock to the attaching information.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
* @pnum: the physical eraseblock number
|
|
* @ec: erase counter
|
|
* @vid_hdr: the volume identifier header
|
|
* @bitflips: if bit-flips were detected when this physical eraseblock was read
|
|
*
|
|
* This function adds information about a used physical eraseblock to the
|
|
* 'used' tree of the corresponding volume. The function is rather complex
|
|
* because it has to handle cases when this is not the first physical
|
|
* eraseblock belonging to the same logical eraseblock, and the newer one has
|
|
* to be picked, while the older one has to be dropped. This function returns
|
|
* zero in case of success and a negative error code in case of failure.
|
|
*/
|
|
int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
|
|
int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
|
|
{
|
|
int err, vol_id, lnum;
|
|
unsigned long long sqnum;
|
|
struct ubi_ainf_volume *av;
|
|
struct ubi_ainf_peb *aeb;
|
|
struct rb_node **p, *parent = NULL;
|
|
|
|
vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
lnum = be32_to_cpu(vid_hdr->lnum);
|
|
sqnum = be64_to_cpu(vid_hdr->sqnum);
|
|
|
|
dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
|
|
pnum, vol_id, lnum, ec, sqnum, bitflips);
|
|
|
|
av = add_volume(ai, vol_id, pnum, vid_hdr);
|
|
if (IS_ERR(av))
|
|
return PTR_ERR(av);
|
|
|
|
if (ai->max_sqnum < sqnum)
|
|
ai->max_sqnum = sqnum;
|
|
|
|
/*
|
|
* Walk the RB-tree of logical eraseblocks of volume @vol_id to look
|
|
* if this is the first instance of this logical eraseblock or not.
|
|
*/
|
|
p = &av->root.rb_node;
|
|
while (*p) {
|
|
int cmp_res;
|
|
|
|
parent = *p;
|
|
aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
|
|
if (lnum != aeb->lnum) {
|
|
if (lnum < aeb->lnum)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* There is already a physical eraseblock describing the same
|
|
* logical eraseblock present.
|
|
*/
|
|
|
|
dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
|
|
aeb->pnum, aeb->sqnum, aeb->ec);
|
|
|
|
/*
|
|
* Make sure that the logical eraseblocks have different
|
|
* sequence numbers. Otherwise the image is bad.
|
|
*
|
|
* However, if the sequence number is zero, we assume it must
|
|
* be an ancient UBI image from the era when UBI did not have
|
|
* sequence numbers. We still can attach these images, unless
|
|
* there is a need to distinguish between old and new
|
|
* eraseblocks, in which case we'll refuse the image in
|
|
* 'ubi_compare_lebs()'. In other words, we attach old clean
|
|
* images, but refuse attaching old images with duplicated
|
|
* logical eraseblocks because there was an unclean reboot.
|
|
*/
|
|
if (aeb->sqnum == sqnum && sqnum != 0) {
|
|
ubi_err(ubi, "two LEBs with same sequence number %llu",
|
|
sqnum);
|
|
ubi_dump_aeb(aeb, 0);
|
|
ubi_dump_vid_hdr(vid_hdr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now we have to drop the older one and preserve the newer
|
|
* one.
|
|
*/
|
|
cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
|
|
if (cmp_res < 0)
|
|
return cmp_res;
|
|
|
|
if (cmp_res & 1) {
|
|
/*
|
|
* This logical eraseblock is newer than the one
|
|
* found earlier.
|
|
*/
|
|
err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
err = add_to_list(ai, aeb->pnum, aeb->vol_id,
|
|
aeb->lnum, aeb->ec, cmp_res & 4,
|
|
&ai->erase);
|
|
if (err)
|
|
return err;
|
|
|
|
aeb->ec = ec;
|
|
aeb->pnum = pnum;
|
|
aeb->vol_id = vol_id;
|
|
aeb->lnum = lnum;
|
|
aeb->scrub = ((cmp_res & 2) || bitflips);
|
|
aeb->copy_flag = vid_hdr->copy_flag;
|
|
aeb->sqnum = sqnum;
|
|
|
|
if (av->highest_lnum == lnum)
|
|
av->last_data_size =
|
|
be32_to_cpu(vid_hdr->data_size);
|
|
|
|
return 0;
|
|
} else {
|
|
/*
|
|
* This logical eraseblock is older than the one found
|
|
* previously.
|
|
*/
|
|
return add_to_list(ai, pnum, vol_id, lnum, ec,
|
|
cmp_res & 4, &ai->erase);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We've met this logical eraseblock for the first time, add it to the
|
|
* attaching information.
|
|
*/
|
|
|
|
err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
|
|
if (!aeb)
|
|
return -ENOMEM;
|
|
|
|
aeb->ec = ec;
|
|
aeb->pnum = pnum;
|
|
aeb->vol_id = vol_id;
|
|
aeb->lnum = lnum;
|
|
aeb->scrub = bitflips;
|
|
aeb->copy_flag = vid_hdr->copy_flag;
|
|
aeb->sqnum = sqnum;
|
|
|
|
if (av->highest_lnum <= lnum) {
|
|
av->highest_lnum = lnum;
|
|
av->last_data_size = be32_to_cpu(vid_hdr->data_size);
|
|
}
|
|
|
|
av->leb_count += 1;
|
|
rb_link_node(&aeb->u.rb, parent, p);
|
|
rb_insert_color(&aeb->u.rb, &av->root);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_find_av - find volume in the attaching information.
|
|
* @ai: attaching information
|
|
* @vol_id: the requested volume ID
|
|
*
|
|
* This function returns a pointer to the volume description or %NULL if there
|
|
* are no data about this volume in the attaching information.
|
|
*/
|
|
struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
|
|
int vol_id)
|
|
{
|
|
struct ubi_ainf_volume *av;
|
|
struct rb_node *p = ai->volumes.rb_node;
|
|
|
|
while (p) {
|
|
av = rb_entry(p, struct ubi_ainf_volume, rb);
|
|
|
|
if (vol_id == av->vol_id)
|
|
return av;
|
|
|
|
if (vol_id > av->vol_id)
|
|
p = p->rb_left;
|
|
else
|
|
p = p->rb_right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ubi_remove_av - delete attaching information about a volume.
|
|
* @ai: attaching information
|
|
* @av: the volume attaching information to delete
|
|
*/
|
|
void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
|
|
{
|
|
struct rb_node *rb;
|
|
struct ubi_ainf_peb *aeb;
|
|
|
|
dbg_bld("remove attaching information about volume %d", av->vol_id);
|
|
|
|
while ((rb = rb_first(&av->root))) {
|
|
aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
|
|
rb_erase(&aeb->u.rb, &av->root);
|
|
list_add_tail(&aeb->u.list, &ai->erase);
|
|
}
|
|
|
|
rb_erase(&av->rb, &ai->volumes);
|
|
kfree(av);
|
|
ai->vols_found -= 1;
|
|
}
|
|
|
|
/**
|
|
* early_erase_peb - erase a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
* @pnum: physical eraseblock number to erase;
|
|
* @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
|
|
*
|
|
* This function erases physical eraseblock 'pnum', and writes the erase
|
|
* counter header to it. This function should only be used on UBI device
|
|
* initialization stages, when the EBA sub-system had not been yet initialized.
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int early_erase_peb(struct ubi_device *ubi,
|
|
const struct ubi_attach_info *ai, int pnum, int ec)
|
|
{
|
|
int err;
|
|
struct ubi_ec_hdr *ec_hdr;
|
|
|
|
if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
|
|
/*
|
|
* Erase counter overflow. Upgrade UBI and use 64-bit
|
|
* erase counters internally.
|
|
*/
|
|
ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
|
|
pnum, ec);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
|
|
if (!ec_hdr)
|
|
return -ENOMEM;
|
|
|
|
ec_hdr->ec = cpu_to_be64(ec);
|
|
|
|
err = ubi_io_sync_erase(ubi, pnum, 0);
|
|
if (err < 0)
|
|
goto out_free;
|
|
|
|
err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
|
|
|
|
out_free:
|
|
kfree(ec_hdr);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_early_get_peb - get a free physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
*
|
|
* This function returns a free physical eraseblock. It is supposed to be
|
|
* called on the UBI initialization stages when the wear-leveling sub-system is
|
|
* not initialized yet. This function picks a physical eraseblocks from one of
|
|
* the lists, writes the EC header if it is needed, and removes it from the
|
|
* list.
|
|
*
|
|
* This function returns a pointer to the "aeb" of the found free PEB in case
|
|
* of success and an error code in case of failure.
|
|
*/
|
|
struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
|
|
struct ubi_attach_info *ai)
|
|
{
|
|
int err = 0;
|
|
struct ubi_ainf_peb *aeb, *tmp_aeb;
|
|
|
|
if (!list_empty(&ai->free)) {
|
|
aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
|
|
list_del(&aeb->u.list);
|
|
dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
|
|
return aeb;
|
|
}
|
|
|
|
/*
|
|
* We try to erase the first physical eraseblock from the erase list
|
|
* and pick it if we succeed, or try to erase the next one if not. And
|
|
* so forth. We don't want to take care about bad eraseblocks here -
|
|
* they'll be handled later.
|
|
*/
|
|
list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
|
|
if (aeb->ec == UBI_UNKNOWN)
|
|
aeb->ec = ai->mean_ec;
|
|
|
|
err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
|
|
if (err)
|
|
continue;
|
|
|
|
aeb->ec += 1;
|
|
list_del(&aeb->u.list);
|
|
dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
|
|
return aeb;
|
|
}
|
|
|
|
ubi_err(ubi, "no free eraseblocks");
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
/**
|
|
* check_corruption - check the data area of PEB.
|
|
* @ubi: UBI device description object
|
|
* @vid_hdr: the (corrupted) VID header of this PEB
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This is a helper function which is used to distinguish between VID header
|
|
* corruptions caused by power cuts and other reasons. If the PEB contains only
|
|
* 0xFF bytes in the data area, the VID header is most probably corrupted
|
|
* because of a power cut (%0 is returned in this case). Otherwise, it was
|
|
* probably corrupted for some other reasons (%1 is returned in this case). A
|
|
* negative error code is returned if a read error occurred.
|
|
*
|
|
* If the corruption reason was a power cut, UBI can safely erase this PEB.
|
|
* Otherwise, it should preserve it to avoid possibly destroying important
|
|
* information.
|
|
*/
|
|
static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
|
|
int pnum)
|
|
{
|
|
int err;
|
|
|
|
mutex_lock(&ubi->buf_mutex);
|
|
memset(ubi->peb_buf, 0x00, ubi->leb_size);
|
|
|
|
err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
|
|
ubi->leb_size);
|
|
if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
|
|
/*
|
|
* Bit-flips or integrity errors while reading the data area.
|
|
* It is difficult to say for sure what type of corruption is
|
|
* this, but presumably a power cut happened while this PEB was
|
|
* erased, so it became unstable and corrupted, and should be
|
|
* erased.
|
|
*/
|
|
err = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
|
|
goto out_unlock;
|
|
|
|
ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
|
|
pnum);
|
|
ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
|
|
ubi_dump_vid_hdr(vid_hdr);
|
|
pr_err("hexdump of PEB %d offset %d, length %d",
|
|
pnum, ubi->leb_start, ubi->leb_size);
|
|
ubi_dbg_print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
|
|
ubi->peb_buf, ubi->leb_size, 1);
|
|
err = 1;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&ubi->buf_mutex);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* scan_peb - scan and process UBI headers of a PEB.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
* @pnum: the physical eraseblock number
|
|
* @vid: The volume ID of the found volume will be stored in this pointer
|
|
* @sqnum: The sqnum of the found volume will be stored in this pointer
|
|
*
|
|
* This function reads UBI headers of PEB @pnum, checks them, and adds
|
|
* information about this PEB to the corresponding list or RB-tree in the
|
|
* "attaching info" structure. Returns zero if the physical eraseblock was
|
|
* successfully handled and a negative error code in case of failure.
|
|
*/
|
|
static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
|
|
int pnum, int *vid, unsigned long long *sqnum)
|
|
{
|
|
long long uninitialized_var(ec);
|
|
int err, bitflips = 0, vol_id = -1, ec_err = 0;
|
|
|
|
dbg_bld("scan PEB %d", pnum);
|
|
|
|
/* Skip bad physical eraseblocks */
|
|
err = ubi_io_is_bad(ubi, pnum);
|
|
if (err < 0)
|
|
return err;
|
|
else if (err) {
|
|
ai->bad_peb_count += 1;
|
|
return 0;
|
|
}
|
|
|
|
err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
|
|
if (err < 0)
|
|
return err;
|
|
switch (err) {
|
|
case 0:
|
|
break;
|
|
case UBI_IO_BITFLIPS:
|
|
bitflips = 1;
|
|
break;
|
|
case UBI_IO_FF:
|
|
ai->empty_peb_count += 1;
|
|
return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
|
|
UBI_UNKNOWN, 0, &ai->erase);
|
|
case UBI_IO_FF_BITFLIPS:
|
|
ai->empty_peb_count += 1;
|
|
return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
|
|
UBI_UNKNOWN, 1, &ai->erase);
|
|
case UBI_IO_BAD_HDR_EBADMSG:
|
|
case UBI_IO_BAD_HDR:
|
|
/*
|
|
* We have to also look at the VID header, possibly it is not
|
|
* corrupted. Set %bitflips flag in order to make this PEB be
|
|
* moved and EC be re-created.
|
|
*/
|
|
ec_err = err;
|
|
ec = UBI_UNKNOWN;
|
|
bitflips = 1;
|
|
break;
|
|
default:
|
|
ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
|
|
err);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ec_err) {
|
|
int image_seq;
|
|
|
|
/* Make sure UBI version is OK */
|
|
if (ech->version != UBI_VERSION) {
|
|
ubi_err(ubi, "this UBI version is %d, image version is %d",
|
|
UBI_VERSION, (int)ech->version);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ec = be64_to_cpu(ech->ec);
|
|
if (ec > UBI_MAX_ERASECOUNTER) {
|
|
/*
|
|
* Erase counter overflow. The EC headers have 64 bits
|
|
* reserved, but we anyway make use of only 31 bit
|
|
* values, as this seems to be enough for any existing
|
|
* flash. Upgrade UBI and use 64-bit erase counters
|
|
* internally.
|
|
*/
|
|
ubi_err(ubi, "erase counter overflow, max is %d",
|
|
UBI_MAX_ERASECOUNTER);
|
|
ubi_dump_ec_hdr(ech);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Make sure that all PEBs have the same image sequence number.
|
|
* This allows us to detect situations when users flash UBI
|
|
* images incorrectly, so that the flash has the new UBI image
|
|
* and leftovers from the old one. This feature was added
|
|
* relatively recently, and the sequence number was always
|
|
* zero, because old UBI implementations always set it to zero.
|
|
* For this reasons, we do not panic if some PEBs have zero
|
|
* sequence number, while other PEBs have non-zero sequence
|
|
* number.
|
|
*/
|
|
image_seq = be32_to_cpu(ech->image_seq);
|
|
if (!ubi->image_seq)
|
|
ubi->image_seq = image_seq;
|
|
if (image_seq && ubi->image_seq != image_seq) {
|
|
ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
|
|
image_seq, pnum, ubi->image_seq);
|
|
ubi_dump_ec_hdr(ech);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* OK, we've done with the EC header, let's look at the VID header */
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
|
|
if (err < 0)
|
|
return err;
|
|
switch (err) {
|
|
case 0:
|
|
break;
|
|
case UBI_IO_BITFLIPS:
|
|
bitflips = 1;
|
|
break;
|
|
case UBI_IO_BAD_HDR_EBADMSG:
|
|
if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
|
|
/*
|
|
* Both EC and VID headers are corrupted and were read
|
|
* with data integrity error, probably this is a bad
|
|
* PEB, bit it is not marked as bad yet. This may also
|
|
* be a result of power cut during erasure.
|
|
*/
|
|
ai->maybe_bad_peb_count += 1;
|
|
case UBI_IO_BAD_HDR:
|
|
if (ec_err)
|
|
/*
|
|
* Both headers are corrupted. There is a possibility
|
|
* that this a valid UBI PEB which has corresponding
|
|
* LEB, but the headers are corrupted. However, it is
|
|
* impossible to distinguish it from a PEB which just
|
|
* contains garbage because of a power cut during erase
|
|
* operation. So we just schedule this PEB for erasure.
|
|
*
|
|
* Besides, in case of NOR flash, we deliberately
|
|
* corrupt both headers because NOR flash erasure is
|
|
* slow and can start from the end.
|
|
*/
|
|
err = 0;
|
|
else
|
|
/*
|
|
* The EC was OK, but the VID header is corrupted. We
|
|
* have to check what is in the data area.
|
|
*/
|
|
err = check_corruption(ubi, vidh, pnum);
|
|
|
|
if (err < 0)
|
|
return err;
|
|
else if (!err)
|
|
/* This corruption is caused by a power cut */
|
|
err = add_to_list(ai, pnum, UBI_UNKNOWN,
|
|
UBI_UNKNOWN, ec, 1, &ai->erase);
|
|
else
|
|
/* This is an unexpected corruption */
|
|
err = add_corrupted(ai, pnum, ec);
|
|
if (err)
|
|
return err;
|
|
goto adjust_mean_ec;
|
|
case UBI_IO_FF_BITFLIPS:
|
|
err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
|
|
ec, 1, &ai->erase);
|
|
if (err)
|
|
return err;
|
|
goto adjust_mean_ec;
|
|
case UBI_IO_FF:
|
|
if (ec_err || bitflips)
|
|
err = add_to_list(ai, pnum, UBI_UNKNOWN,
|
|
UBI_UNKNOWN, ec, 1, &ai->erase);
|
|
else
|
|
err = add_to_list(ai, pnum, UBI_UNKNOWN,
|
|
UBI_UNKNOWN, ec, 0, &ai->free);
|
|
if (err)
|
|
return err;
|
|
goto adjust_mean_ec;
|
|
default:
|
|
ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
|
|
err);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vol_id = be32_to_cpu(vidh->vol_id);
|
|
if (vid)
|
|
*vid = vol_id;
|
|
if (sqnum)
|
|
*sqnum = be64_to_cpu(vidh->sqnum);
|
|
if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
|
|
int lnum = be32_to_cpu(vidh->lnum);
|
|
|
|
/* Unsupported internal volume */
|
|
switch (vidh->compat) {
|
|
case UBI_COMPAT_DELETE:
|
|
if (vol_id != UBI_FM_SB_VOLUME_ID
|
|
&& vol_id != UBI_FM_DATA_VOLUME_ID) {
|
|
ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
|
|
vol_id, lnum);
|
|
}
|
|
err = add_to_list(ai, pnum, vol_id, lnum,
|
|
ec, 1, &ai->erase);
|
|
if (err)
|
|
return err;
|
|
return 0;
|
|
|
|
case UBI_COMPAT_RO:
|
|
ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
|
|
vol_id, lnum);
|
|
ubi->ro_mode = 1;
|
|
break;
|
|
|
|
case UBI_COMPAT_PRESERVE:
|
|
ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
|
|
vol_id, lnum);
|
|
err = add_to_list(ai, pnum, vol_id, lnum,
|
|
ec, 0, &ai->alien);
|
|
if (err)
|
|
return err;
|
|
return 0;
|
|
|
|
case UBI_COMPAT_REJECT:
|
|
ubi_err(ubi, "incompatible internal volume %d:%d found",
|
|
vol_id, lnum);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (ec_err)
|
|
ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
|
|
pnum);
|
|
err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
|
|
if (err)
|
|
return err;
|
|
|
|
adjust_mean_ec:
|
|
if (!ec_err) {
|
|
ai->ec_sum += ec;
|
|
ai->ec_count += 1;
|
|
if (ec > ai->max_ec)
|
|
ai->max_ec = ec;
|
|
if (ec < ai->min_ec)
|
|
ai->min_ec = ec;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* late_analysis - analyze the overall situation with PEB.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
*
|
|
* This is a helper function which takes a look what PEBs we have after we
|
|
* gather information about all of them ("ai" is compete). It decides whether
|
|
* the flash is empty and should be formatted of whether there are too many
|
|
* corrupted PEBs and we should not attach this MTD device. Returns zero if we
|
|
* should proceed with attaching the MTD device, and %-EINVAL if we should not.
|
|
*/
|
|
static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
|
|
{
|
|
struct ubi_ainf_peb *aeb;
|
|
int max_corr, peb_count;
|
|
|
|
peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
|
|
max_corr = peb_count / 20 ?: 8;
|
|
|
|
/*
|
|
* Few corrupted PEBs is not a problem and may be just a result of
|
|
* unclean reboots. However, many of them may indicate some problems
|
|
* with the flash HW or driver.
|
|
*/
|
|
if (ai->corr_peb_count) {
|
|
ubi_err(ubi, "%d PEBs are corrupted and preserved",
|
|
ai->corr_peb_count);
|
|
pr_err("Corrupted PEBs are:");
|
|
list_for_each_entry(aeb, &ai->corr, u.list)
|
|
pr_cont(" %d", aeb->pnum);
|
|
pr_cont("\n");
|
|
|
|
/*
|
|
* If too many PEBs are corrupted, we refuse attaching,
|
|
* otherwise, only print a warning.
|
|
*/
|
|
if (ai->corr_peb_count >= max_corr) {
|
|
ubi_err(ubi, "too many corrupted PEBs, refusing");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
|
|
/*
|
|
* All PEBs are empty, or almost all - a couple PEBs look like
|
|
* they may be bad PEBs which were not marked as bad yet.
|
|
*
|
|
* This piece of code basically tries to distinguish between
|
|
* the following situations:
|
|
*
|
|
* 1. Flash is empty, but there are few bad PEBs, which are not
|
|
* marked as bad so far, and which were read with error. We
|
|
* want to go ahead and format this flash. While formatting,
|
|
* the faulty PEBs will probably be marked as bad.
|
|
*
|
|
* 2. Flash contains non-UBI data and we do not want to format
|
|
* it and destroy possibly important information.
|
|
*/
|
|
if (ai->maybe_bad_peb_count <= 2) {
|
|
ai->is_empty = 1;
|
|
ubi_msg(ubi, "empty MTD device detected");
|
|
get_random_bytes(&ubi->image_seq,
|
|
sizeof(ubi->image_seq));
|
|
} else {
|
|
ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
|
|
return -EINVAL;
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* destroy_av - free volume attaching information.
|
|
* @av: volume attaching information
|
|
* @ai: attaching information
|
|
*
|
|
* This function destroys the volume attaching information.
|
|
*/
|
|
static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
|
|
{
|
|
struct ubi_ainf_peb *aeb;
|
|
struct rb_node *this = av->root.rb_node;
|
|
|
|
while (this) {
|
|
if (this->rb_left)
|
|
this = this->rb_left;
|
|
else if (this->rb_right)
|
|
this = this->rb_right;
|
|
else {
|
|
aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
|
|
this = rb_parent(this);
|
|
if (this) {
|
|
if (this->rb_left == &aeb->u.rb)
|
|
this->rb_left = NULL;
|
|
else
|
|
this->rb_right = NULL;
|
|
}
|
|
|
|
kmem_cache_free(ai->aeb_slab_cache, aeb);
|
|
}
|
|
}
|
|
kfree(av);
|
|
}
|
|
|
|
/**
|
|
* destroy_ai - destroy attaching information.
|
|
* @ai: attaching information
|
|
*/
|
|
static void destroy_ai(struct ubi_attach_info *ai)
|
|
{
|
|
struct ubi_ainf_peb *aeb, *aeb_tmp;
|
|
struct ubi_ainf_volume *av;
|
|
struct rb_node *rb;
|
|
|
|
list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
|
|
list_del(&aeb->u.list);
|
|
kmem_cache_free(ai->aeb_slab_cache, aeb);
|
|
}
|
|
list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
|
|
list_del(&aeb->u.list);
|
|
kmem_cache_free(ai->aeb_slab_cache, aeb);
|
|
}
|
|
list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
|
|
list_del(&aeb->u.list);
|
|
kmem_cache_free(ai->aeb_slab_cache, aeb);
|
|
}
|
|
list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
|
|
list_del(&aeb->u.list);
|
|
kmem_cache_free(ai->aeb_slab_cache, aeb);
|
|
}
|
|
|
|
/* Destroy the volume RB-tree */
|
|
rb = ai->volumes.rb_node;
|
|
while (rb) {
|
|
if (rb->rb_left)
|
|
rb = rb->rb_left;
|
|
else if (rb->rb_right)
|
|
rb = rb->rb_right;
|
|
else {
|
|
av = rb_entry(rb, struct ubi_ainf_volume, rb);
|
|
|
|
rb = rb_parent(rb);
|
|
if (rb) {
|
|
if (rb->rb_left == &av->rb)
|
|
rb->rb_left = NULL;
|
|
else
|
|
rb->rb_right = NULL;
|
|
}
|
|
|
|
destroy_av(ai, av);
|
|
}
|
|
}
|
|
|
|
kmem_cache_destroy(ai->aeb_slab_cache);
|
|
|
|
kfree(ai);
|
|
}
|
|
|
|
/**
|
|
* scan_all - scan entire MTD device.
|
|
* @ubi: UBI device description object
|
|
* @ai: attach info object
|
|
* @start: start scanning at this PEB
|
|
*
|
|
* This function does full scanning of an MTD device and returns complete
|
|
* information about it in form of a "struct ubi_attach_info" object. In case
|
|
* of failure, an error code is returned.
|
|
*/
|
|
static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
|
|
int start)
|
|
{
|
|
int err, pnum;
|
|
struct rb_node *rb1, *rb2;
|
|
struct ubi_ainf_volume *av;
|
|
struct ubi_ainf_peb *aeb;
|
|
|
|
err = -ENOMEM;
|
|
|
|
ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
|
|
if (!ech)
|
|
return err;
|
|
|
|
vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
|
|
if (!vidh)
|
|
goto out_ech;
|
|
|
|
for (pnum = start; pnum < ubi->peb_count; pnum++) {
|
|
cond_resched();
|
|
|
|
dbg_gen("process PEB %d", pnum);
|
|
err = scan_peb(ubi, ai, pnum, NULL, NULL);
|
|
if (err < 0)
|
|
goto out_vidh;
|
|
}
|
|
|
|
ubi_msg(ubi, "scanning is finished");
|
|
|
|
/* Calculate mean erase counter */
|
|
if (ai->ec_count)
|
|
ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
|
|
|
|
err = late_analysis(ubi, ai);
|
|
if (err)
|
|
goto out_vidh;
|
|
|
|
/*
|
|
* In case of unknown erase counter we use the mean erase counter
|
|
* value.
|
|
*/
|
|
ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
|
|
ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
|
|
if (aeb->ec == UBI_UNKNOWN)
|
|
aeb->ec = ai->mean_ec;
|
|
}
|
|
|
|
list_for_each_entry(aeb, &ai->free, u.list) {
|
|
if (aeb->ec == UBI_UNKNOWN)
|
|
aeb->ec = ai->mean_ec;
|
|
}
|
|
|
|
list_for_each_entry(aeb, &ai->corr, u.list)
|
|
if (aeb->ec == UBI_UNKNOWN)
|
|
aeb->ec = ai->mean_ec;
|
|
|
|
list_for_each_entry(aeb, &ai->erase, u.list)
|
|
if (aeb->ec == UBI_UNKNOWN)
|
|
aeb->ec = ai->mean_ec;
|
|
|
|
err = self_check_ai(ubi, ai);
|
|
if (err)
|
|
goto out_vidh;
|
|
|
|
ubi_free_vid_hdr(ubi, vidh);
|
|
kfree(ech);
|
|
|
|
return 0;
|
|
|
|
out_vidh:
|
|
ubi_free_vid_hdr(ubi, vidh);
|
|
out_ech:
|
|
kfree(ech);
|
|
return err;
|
|
}
|
|
|
|
static struct ubi_attach_info *alloc_ai(void)
|
|
{
|
|
struct ubi_attach_info *ai;
|
|
|
|
ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
|
|
if (!ai)
|
|
return ai;
|
|
|
|
INIT_LIST_HEAD(&ai->corr);
|
|
INIT_LIST_HEAD(&ai->free);
|
|
INIT_LIST_HEAD(&ai->erase);
|
|
INIT_LIST_HEAD(&ai->alien);
|
|
ai->volumes = RB_ROOT;
|
|
ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
|
|
sizeof(struct ubi_ainf_peb),
|
|
0, 0, NULL);
|
|
if (!ai->aeb_slab_cache) {
|
|
kfree(ai);
|
|
ai = NULL;
|
|
}
|
|
|
|
return ai;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_UBI_FASTMAP
|
|
|
|
/**
|
|
* scan_fastmap - try to find a fastmap and attach from it.
|
|
* @ubi: UBI device description object
|
|
* @ai: attach info object
|
|
*
|
|
* Returns 0 on success, negative return values indicate an internal
|
|
* error.
|
|
* UBI_NO_FASTMAP denotes that no fastmap was found.
|
|
* UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
|
|
*/
|
|
static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
|
|
{
|
|
int err, pnum, fm_anchor = -1;
|
|
unsigned long long max_sqnum = 0;
|
|
|
|
err = -ENOMEM;
|
|
|
|
ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
|
|
if (!ech)
|
|
goto out;
|
|
|
|
vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
|
|
if (!vidh)
|
|
goto out_ech;
|
|
|
|
for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
|
|
int vol_id = -1;
|
|
unsigned long long sqnum = -1;
|
|
cond_resched();
|
|
|
|
dbg_gen("process PEB %d", pnum);
|
|
err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
|
|
if (err < 0)
|
|
goto out_vidh;
|
|
|
|
if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
|
|
max_sqnum = sqnum;
|
|
fm_anchor = pnum;
|
|
}
|
|
}
|
|
|
|
ubi_free_vid_hdr(ubi, vidh);
|
|
kfree(ech);
|
|
|
|
if (fm_anchor < 0)
|
|
return UBI_NO_FASTMAP;
|
|
|
|
destroy_ai(*ai);
|
|
*ai = alloc_ai();
|
|
if (!*ai)
|
|
return -ENOMEM;
|
|
|
|
return ubi_scan_fastmap(ubi, *ai, fm_anchor);
|
|
|
|
out_vidh:
|
|
ubi_free_vid_hdr(ubi, vidh);
|
|
out_ech:
|
|
kfree(ech);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* ubi_attach - attach an MTD device.
|
|
* @ubi: UBI device descriptor
|
|
* @force_scan: if set to non-zero attach by scanning
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
int ubi_attach(struct ubi_device *ubi, int force_scan)
|
|
{
|
|
int err;
|
|
struct ubi_attach_info *ai;
|
|
|
|
ai = alloc_ai();
|
|
if (!ai)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_MTD_UBI_FASTMAP
|
|
/* On small flash devices we disable fastmap in any case. */
|
|
if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
|
|
ubi->fm_disabled = 1;
|
|
force_scan = 1;
|
|
}
|
|
|
|
if (force_scan)
|
|
err = scan_all(ubi, ai, 0);
|
|
else {
|
|
err = scan_fast(ubi, &ai);
|
|
if (err > 0 || mtd_is_eccerr(err)) {
|
|
if (err != UBI_NO_FASTMAP) {
|
|
destroy_ai(ai);
|
|
ai = alloc_ai();
|
|
if (!ai)
|
|
return -ENOMEM;
|
|
|
|
err = scan_all(ubi, ai, 0);
|
|
} else {
|
|
err = scan_all(ubi, ai, UBI_FM_MAX_START);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
err = scan_all(ubi, ai, 0);
|
|
#endif
|
|
if (err)
|
|
goto out_ai;
|
|
|
|
ubi->bad_peb_count = ai->bad_peb_count;
|
|
ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
|
|
ubi->corr_peb_count = ai->corr_peb_count;
|
|
ubi->max_ec = ai->max_ec;
|
|
ubi->mean_ec = ai->mean_ec;
|
|
dbg_gen("max. sequence number: %llu", ai->max_sqnum);
|
|
|
|
err = ubi_read_volume_table(ubi, ai);
|
|
if (err)
|
|
goto out_ai;
|
|
|
|
err = ubi_wl_init(ubi, ai);
|
|
if (err)
|
|
goto out_vtbl;
|
|
|
|
err = ubi_eba_init(ubi, ai);
|
|
if (err)
|
|
goto out_wl;
|
|
|
|
#ifdef CONFIG_MTD_UBI_FASTMAP
|
|
if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
|
|
struct ubi_attach_info *scan_ai;
|
|
|
|
scan_ai = alloc_ai();
|
|
if (!scan_ai) {
|
|
err = -ENOMEM;
|
|
goto out_wl;
|
|
}
|
|
|
|
err = scan_all(ubi, scan_ai, 0);
|
|
if (err) {
|
|
destroy_ai(scan_ai);
|
|
goto out_wl;
|
|
}
|
|
|
|
err = self_check_eba(ubi, ai, scan_ai);
|
|
destroy_ai(scan_ai);
|
|
|
|
if (err)
|
|
goto out_wl;
|
|
}
|
|
#endif
|
|
|
|
destroy_ai(ai);
|
|
return 0;
|
|
|
|
out_wl:
|
|
ubi_wl_close(ubi);
|
|
out_vtbl:
|
|
ubi_free_internal_volumes(ubi);
|
|
vfree(ubi->vtbl);
|
|
out_ai:
|
|
destroy_ai(ai);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* self_check_ai - check the attaching information.
|
|
* @ubi: UBI device description object
|
|
* @ai: attaching information
|
|
*
|
|
* This function returns zero if the attaching information is all right, and a
|
|
* negative error code if not or if an error occurred.
|
|
*/
|
|
static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
|
|
{
|
|
int pnum, err, vols_found = 0;
|
|
struct rb_node *rb1, *rb2;
|
|
struct ubi_ainf_volume *av;
|
|
struct ubi_ainf_peb *aeb, *last_aeb;
|
|
uint8_t *buf;
|
|
|
|
if (!ubi_dbg_chk_gen(ubi))
|
|
return 0;
|
|
|
|
/*
|
|
* At first, check that attaching information is OK.
|
|
*/
|
|
ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
|
|
int leb_count = 0;
|
|
|
|
cond_resched();
|
|
|
|
vols_found += 1;
|
|
|
|
if (ai->is_empty) {
|
|
ubi_err(ubi, "bad is_empty flag");
|
|
goto bad_av;
|
|
}
|
|
|
|
if (av->vol_id < 0 || av->highest_lnum < 0 ||
|
|
av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
|
|
av->data_pad < 0 || av->last_data_size < 0) {
|
|
ubi_err(ubi, "negative values");
|
|
goto bad_av;
|
|
}
|
|
|
|
if (av->vol_id >= UBI_MAX_VOLUMES &&
|
|
av->vol_id < UBI_INTERNAL_VOL_START) {
|
|
ubi_err(ubi, "bad vol_id");
|
|
goto bad_av;
|
|
}
|
|
|
|
if (av->vol_id > ai->highest_vol_id) {
|
|
ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
|
|
ai->highest_vol_id, av->vol_id);
|
|
goto out;
|
|
}
|
|
|
|
if (av->vol_type != UBI_DYNAMIC_VOLUME &&
|
|
av->vol_type != UBI_STATIC_VOLUME) {
|
|
ubi_err(ubi, "bad vol_type");
|
|
goto bad_av;
|
|
}
|
|
|
|
if (av->data_pad > ubi->leb_size / 2) {
|
|
ubi_err(ubi, "bad data_pad");
|
|
goto bad_av;
|
|
}
|
|
|
|
last_aeb = NULL;
|
|
ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
|
|
cond_resched();
|
|
|
|
last_aeb = aeb;
|
|
leb_count += 1;
|
|
|
|
if (aeb->pnum < 0 || aeb->ec < 0) {
|
|
ubi_err(ubi, "negative values");
|
|
goto bad_aeb;
|
|
}
|
|
|
|
if (aeb->ec < ai->min_ec) {
|
|
ubi_err(ubi, "bad ai->min_ec (%d), %d found",
|
|
ai->min_ec, aeb->ec);
|
|
goto bad_aeb;
|
|
}
|
|
|
|
if (aeb->ec > ai->max_ec) {
|
|
ubi_err(ubi, "bad ai->max_ec (%d), %d found",
|
|
ai->max_ec, aeb->ec);
|
|
goto bad_aeb;
|
|
}
|
|
|
|
if (aeb->pnum >= ubi->peb_count) {
|
|
ubi_err(ubi, "too high PEB number %d, total PEBs %d",
|
|
aeb->pnum, ubi->peb_count);
|
|
goto bad_aeb;
|
|
}
|
|
|
|
if (av->vol_type == UBI_STATIC_VOLUME) {
|
|
if (aeb->lnum >= av->used_ebs) {
|
|
ubi_err(ubi, "bad lnum or used_ebs");
|
|
goto bad_aeb;
|
|
}
|
|
} else {
|
|
if (av->used_ebs != 0) {
|
|
ubi_err(ubi, "non-zero used_ebs");
|
|
goto bad_aeb;
|
|
}
|
|
}
|
|
|
|
if (aeb->lnum > av->highest_lnum) {
|
|
ubi_err(ubi, "incorrect highest_lnum or lnum");
|
|
goto bad_aeb;
|
|
}
|
|
}
|
|
|
|
if (av->leb_count != leb_count) {
|
|
ubi_err(ubi, "bad leb_count, %d objects in the tree",
|
|
leb_count);
|
|
goto bad_av;
|
|
}
|
|
|
|
if (!last_aeb)
|
|
continue;
|
|
|
|
aeb = last_aeb;
|
|
|
|
if (aeb->lnum != av->highest_lnum) {
|
|
ubi_err(ubi, "bad highest_lnum");
|
|
goto bad_aeb;
|
|
}
|
|
}
|
|
|
|
if (vols_found != ai->vols_found) {
|
|
ubi_err(ubi, "bad ai->vols_found %d, should be %d",
|
|
ai->vols_found, vols_found);
|
|
goto out;
|
|
}
|
|
|
|
/* Check that attaching information is correct */
|
|
ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
|
|
last_aeb = NULL;
|
|
ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
|
|
int vol_type;
|
|
|
|
cond_resched();
|
|
|
|
last_aeb = aeb;
|
|
|
|
err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
|
|
if (err && err != UBI_IO_BITFLIPS) {
|
|
ubi_err(ubi, "VID header is not OK (%d)",
|
|
err);
|
|
if (err > 0)
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
|
|
vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
|
|
UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
|
|
if (av->vol_type != vol_type) {
|
|
ubi_err(ubi, "bad vol_type");
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
|
|
ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
|
|
ubi_err(ubi, "bad vol_id %d", av->vol_id);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (av->compat != vidh->compat) {
|
|
ubi_err(ubi, "bad compat %d", vidh->compat);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
|
|
ubi_err(ubi, "bad lnum %d", aeb->lnum);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
|
|
ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
|
|
ubi_err(ubi, "bad data_pad %d", av->data_pad);
|
|
goto bad_vid_hdr;
|
|
}
|
|
}
|
|
|
|
if (!last_aeb)
|
|
continue;
|
|
|
|
if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
|
|
ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
|
|
goto bad_vid_hdr;
|
|
}
|
|
|
|
if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
|
|
ubi_err(ubi, "bad last_data_size %d",
|
|
av->last_data_size);
|
|
goto bad_vid_hdr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that all the physical eraseblocks are in one of the lists
|
|
* or trees.
|
|
*/
|
|
buf = kzalloc(ubi->peb_count, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
for (pnum = 0; pnum < ubi->peb_count; pnum++) {
|
|
err = ubi_io_is_bad(ubi, pnum);
|
|
if (err < 0) {
|
|
kfree(buf);
|
|
return err;
|
|
} else if (err)
|
|
buf[pnum] = 1;
|
|
}
|
|
|
|
ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
|
|
ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
|
|
buf[aeb->pnum] = 1;
|
|
|
|
list_for_each_entry(aeb, &ai->free, u.list)
|
|
buf[aeb->pnum] = 1;
|
|
|
|
list_for_each_entry(aeb, &ai->corr, u.list)
|
|
buf[aeb->pnum] = 1;
|
|
|
|
list_for_each_entry(aeb, &ai->erase, u.list)
|
|
buf[aeb->pnum] = 1;
|
|
|
|
list_for_each_entry(aeb, &ai->alien, u.list)
|
|
buf[aeb->pnum] = 1;
|
|
|
|
err = 0;
|
|
for (pnum = 0; pnum < ubi->peb_count; pnum++)
|
|
if (!buf[pnum]) {
|
|
ubi_err(ubi, "PEB %d is not referred", pnum);
|
|
err = 1;
|
|
}
|
|
|
|
kfree(buf);
|
|
if (err)
|
|
goto out;
|
|
return 0;
|
|
|
|
bad_aeb:
|
|
ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
|
|
ubi_dump_aeb(aeb, 0);
|
|
ubi_dump_av(av);
|
|
goto out;
|
|
|
|
bad_av:
|
|
ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
|
|
ubi_dump_av(av);
|
|
goto out;
|
|
|
|
bad_vid_hdr:
|
|
ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
|
|
ubi_dump_av(av);
|
|
ubi_dump_vid_hdr(vidh);
|
|
|
|
out:
|
|
dump_stack();
|
|
return -EINVAL;
|
|
}
|