u-boot/drivers/mtd/nand/nand_util.c
Stefan Roese 8d2effea23 mtd: Update MTD infrastructure to support 64bit device size
This patch brings the U-Boot MTD infrastructure in sync with the current
Linux MTD version (2.6.30-rc3). Biggest change is the 64bit device size
support and a resync of the mtdpart.c file which has seen multiple fixes
meanwhile.

Signed-off-by: Stefan Roese <sr@denx.de>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Kyungmin Park <kmpark@infradead.org>
2009-06-12 20:45:47 +02:00

607 lines
16 KiB
C

/*
* drivers/mtd/nand/nand_util.c
*
* Copyright (C) 2006 by Weiss-Electronic GmbH.
* All rights reserved.
*
* @author: Guido Classen <clagix@gmail.com>
* @descr: NAND Flash support
* @references: borrowed heavily from Linux mtd-utils code:
* flash_eraseall.c by Arcom Control System Ltd
* nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
* and Thomas Gleixner (tglx@linutronix.de)
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
#include <common.h>
#include <command.h>
#include <watchdog.h>
#include <malloc.h>
#include <div64.h>
#include <asm/errno.h>
#include <linux/mtd/mtd.h>
#include <nand.h>
#include <jffs2/jffs2.h>
#if !defined(CONFIG_SYS_64BIT_VSPRINTF)
#warning Please define CONFIG_SYS_64BIT_VSPRINTF for correct output!
#endif
typedef struct erase_info erase_info_t;
typedef struct mtd_info mtd_info_t;
/* support only for native endian JFFS2 */
#define cpu_to_je16(x) (x)
#define cpu_to_je32(x) (x)
/*****************************************************************************/
static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
{
return 0;
}
/**
* nand_erase_opts: - erase NAND flash with support for various options
* (jffs2 formating)
*
* @param meminfo NAND device to erase
* @param opts options, @see struct nand_erase_options
* @return 0 in case of success
*
* This code is ported from flash_eraseall.c from Linux mtd utils by
* Arcom Control System Ltd.
*/
int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
{
struct jffs2_unknown_node cleanmarker;
erase_info_t erase;
ulong erase_length;
int bbtest = 1;
int result;
int percent_complete = -1;
int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
const char *mtd_device = meminfo->name;
struct mtd_oob_ops oob_opts;
struct nand_chip *chip = meminfo->priv;
memset(&erase, 0, sizeof(erase));
memset(&oob_opts, 0, sizeof(oob_opts));
erase.mtd = meminfo;
erase.len = meminfo->erasesize;
erase.addr = opts->offset;
erase_length = opts->length;
cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
cleanmarker.totlen = cpu_to_je32(8);
/* scrub option allows to erase badblock. To prevent internal
* check from erase() method, set block check method to dummy
* and disable bad block table while erasing.
*/
if (opts->scrub) {
struct nand_chip *priv_nand = meminfo->priv;
nand_block_bad_old = priv_nand->block_bad;
priv_nand->block_bad = nand_block_bad_scrub;
/* we don't need the bad block table anymore...
* after scrub, there are no bad blocks left!
*/
if (priv_nand->bbt) {
kfree(priv_nand->bbt);
}
priv_nand->bbt = NULL;
}
if (erase_length < meminfo->erasesize) {
printf("Warning: Erase size 0x%08lx smaller than one " \
"erase block 0x%08x\n",erase_length, meminfo->erasesize);
printf(" Erasing 0x%08x instead\n", meminfo->erasesize);
erase_length = meminfo->erasesize;
}
for (;
erase.addr < opts->offset + erase_length;
erase.addr += meminfo->erasesize) {
WATCHDOG_RESET ();
if (!opts->scrub && bbtest) {
int ret = meminfo->block_isbad(meminfo, erase.addr);
if (ret > 0) {
if (!opts->quiet)
printf("\rSkipping bad block at "
"0x%08llx "
" \n",
erase.addr);
continue;
} else if (ret < 0) {
printf("\n%s: MTD get bad block failed: %d\n",
mtd_device,
ret);
return -1;
}
}
result = meminfo->erase(meminfo, &erase);
if (result != 0) {
printf("\n%s: MTD Erase failure: %d\n",
mtd_device, result);
continue;
}
/* format for JFFS2 ? */
if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
chip->ops.ooblen = 8;
chip->ops.datbuf = NULL;
chip->ops.oobbuf = (uint8_t *)&cleanmarker;
chip->ops.ooboffs = 0;
chip->ops.mode = MTD_OOB_AUTO;
result = meminfo->write_oob(meminfo,
erase.addr,
&chip->ops);
if (result != 0) {
printf("\n%s: MTD writeoob failure: %d\n",
mtd_device, result);
continue;
}
}
if (!opts->quiet) {
unsigned long long n =(unsigned long long)
(erase.addr + meminfo->erasesize - opts->offset)
* 100;
int percent;
do_div(n, erase_length);
percent = (int)n;
/* output progress message only at whole percent
* steps to reduce the number of messages printed
* on (slow) serial consoles
*/
if (percent != percent_complete) {
percent_complete = percent;
printf("\rErasing at 0x%llx -- %3d%% complete.",
erase.addr, percent);
if (opts->jffs2 && result == 0)
printf(" Cleanmarker written at 0x%llx.",
erase.addr);
}
}
}
if (!opts->quiet)
printf("\n");
if (nand_block_bad_old) {
struct nand_chip *priv_nand = meminfo->priv;
priv_nand->block_bad = nand_block_bad_old;
priv_nand->scan_bbt(meminfo);
}
return 0;
}
/* XXX U-BOOT XXX */
#if 0
#define MAX_PAGE_SIZE 2048
#define MAX_OOB_SIZE 64
/*
* buffer array used for writing data
*/
static unsigned char data_buf[MAX_PAGE_SIZE];
static unsigned char oob_buf[MAX_OOB_SIZE];
/* OOB layouts to pass into the kernel as default */
static struct nand_ecclayout none_ecclayout = {
.useecc = MTD_NANDECC_OFF,
};
static struct nand_ecclayout jffs2_ecclayout = {
.useecc = MTD_NANDECC_PLACE,
.eccbytes = 6,
.eccpos = { 0, 1, 2, 3, 6, 7 }
};
static struct nand_ecclayout yaffs_ecclayout = {
.useecc = MTD_NANDECC_PLACE,
.eccbytes = 6,
.eccpos = { 8, 9, 10, 13, 14, 15}
};
static struct nand_ecclayout autoplace_ecclayout = {
.useecc = MTD_NANDECC_AUTOPLACE
};
#endif
/* XXX U-BOOT XXX */
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
/******************************************************************************
* Support for locking / unlocking operations of some NAND devices
*****************************************************************************/
#define NAND_CMD_LOCK 0x2a
#define NAND_CMD_LOCK_TIGHT 0x2c
#define NAND_CMD_UNLOCK1 0x23
#define NAND_CMD_UNLOCK2 0x24
#define NAND_CMD_LOCK_STATUS 0x7a
/**
* nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
* state
*
* @param mtd nand mtd instance
* @param tight bring device in lock tight mode
*
* @return 0 on success, -1 in case of error
*
* The lock / lock-tight command only applies to the whole chip. To get some
* parts of the chip lock and others unlocked use the following sequence:
*
* - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
* - Call nand_unlock() once for each consecutive area to be unlocked
* - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
*
* If the device is in lock-tight state software can't change the
* current active lock/unlock state of all pages. nand_lock() / nand_unlock()
* calls will fail. It is only posible to leave lock-tight state by
* an hardware signal (low pulse on _WP pin) or by power down.
*/
int nand_lock(struct mtd_info *mtd, int tight)
{
int ret = 0;
int status;
struct nand_chip *chip = mtd->priv;
/* select the NAND device */
chip->select_chip(mtd, 0);
chip->cmdfunc(mtd,
(tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
-1, -1);
/* call wait ready function */
status = chip->waitfunc(mtd, chip);
/* see if device thinks it succeeded */
if (status & 0x01) {
ret = -1;
}
/* de-select the NAND device */
chip->select_chip(mtd, -1);
return ret;
}
/**
* nand_get_lock_status: - query current lock state from one page of NAND
* flash
*
* @param mtd nand mtd instance
* @param offset page address to query (muss be page aligned!)
*
* @return -1 in case of error
* >0 lock status:
* bitfield with the following combinations:
* NAND_LOCK_STATUS_TIGHT: page in tight state
* NAND_LOCK_STATUS_LOCK: page locked
* NAND_LOCK_STATUS_UNLOCK: page unlocked
*
*/
int nand_get_lock_status(struct mtd_info *mtd, ulong offset)
{
int ret = 0;
int chipnr;
int page;
struct nand_chip *chip = mtd->priv;
/* select the NAND device */
chipnr = (int)(offset >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
if ((offset & (mtd->writesize - 1)) != 0) {
printf ("nand_get_lock_status: "
"Start address must be beginning of "
"nand page!\n");
ret = -1;
goto out;
}
/* check the Lock Status */
page = (int)(offset >> chip->page_shift);
chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
| NAND_LOCK_STATUS_LOCK
| NAND_LOCK_STATUS_UNLOCK);
out:
/* de-select the NAND device */
chip->select_chip(mtd, -1);
return ret;
}
/**
* nand_unlock: - Unlock area of NAND pages
* only one consecutive area can be unlocked at one time!
*
* @param mtd nand mtd instance
* @param start start byte address
* @param length number of bytes to unlock (must be a multiple of
* page size nand->writesize)
*
* @return 0 on success, -1 in case of error
*/
int nand_unlock(struct mtd_info *mtd, ulong start, ulong length)
{
int ret = 0;
int chipnr;
int status;
int page;
struct nand_chip *chip = mtd->priv;
printf ("nand_unlock: start: %08x, length: %d!\n",
(int)start, (int)length);
/* select the NAND device */
chipnr = (int)(start >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
/* check the WP bit */
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
printf ("nand_unlock: Device is write protected!\n");
ret = -1;
goto out;
}
if ((start & (mtd->erasesize - 1)) != 0) {
printf ("nand_unlock: Start address must be beginning of "
"nand block!\n");
ret = -1;
goto out;
}
if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
printf ("nand_unlock: Length must be a multiple of nand block "
"size %08x!\n", mtd->erasesize);
ret = -1;
goto out;
}
/*
* Set length so that the last address is set to the
* starting address of the last block
*/
length -= mtd->erasesize;
/* submit address of first page to unlock */
page = (int)(start >> chip->page_shift);
chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
/* submit ADDRESS of LAST page to unlock */
page += (int)(length >> chip->page_shift);
chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
/* call wait ready function */
status = chip->waitfunc(mtd, chip);
/* see if device thinks it succeeded */
if (status & 0x01) {
/* there was an error */
ret = -1;
goto out;
}
out:
/* de-select the NAND device */
chip->select_chip(mtd, -1);
return ret;
}
#endif
/**
* get_len_incl_bad
*
* Check if length including bad blocks fits into device.
*
* @param nand NAND device
* @param offset offset in flash
* @param length image length
* @return image length including bad blocks
*/
static size_t get_len_incl_bad (nand_info_t *nand, size_t offset,
const size_t length)
{
size_t len_incl_bad = 0;
size_t len_excl_bad = 0;
size_t block_len;
while (len_excl_bad < length) {
block_len = nand->erasesize - (offset & (nand->erasesize - 1));
if (!nand_block_isbad (nand, offset & ~(nand->erasesize - 1)))
len_excl_bad += block_len;
len_incl_bad += block_len;
offset += block_len;
if ((offset + len_incl_bad) >= nand->size)
break;
}
return len_incl_bad;
}
/**
* nand_write_skip_bad:
*
* Write image to NAND flash.
* Blocks that are marked bad are skipped and the is written to the next
* block instead as long as the image is short enough to fit even after
* skipping the bad blocks.
*
* @param nand NAND device
* @param offset offset in flash
* @param length buffer length
* @param buf buffer to read from
* @return 0 in case of success
*/
int nand_write_skip_bad(nand_info_t *nand, size_t offset, size_t *length,
u_char *buffer)
{
int rval;
size_t left_to_write = *length;
size_t len_incl_bad;
u_char *p_buffer = buffer;
/* Reject writes, which are not page aligned */
if ((offset & (nand->writesize - 1)) != 0 ||
(*length & (nand->writesize - 1)) != 0) {
printf ("Attempt to write non page aligned data\n");
return -EINVAL;
}
len_incl_bad = get_len_incl_bad (nand, offset, *length);
if ((offset + len_incl_bad) >= nand->size) {
printf ("Attempt to write outside the flash area\n");
return -EINVAL;
}
if (len_incl_bad == *length) {
rval = nand_write (nand, offset, length, buffer);
if (rval != 0)
printf ("NAND write to offset %zx failed %d\n",
offset, rval);
return rval;
}
while (left_to_write > 0) {
size_t block_offset = offset & (nand->erasesize - 1);
size_t write_size;
if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
printf ("Skip bad block 0x%08zx\n",
offset & ~(nand->erasesize - 1));
offset += nand->erasesize - block_offset;
continue;
}
if (left_to_write < (nand->erasesize - block_offset))
write_size = left_to_write;
else
write_size = nand->erasesize - block_offset;
rval = nand_write (nand, offset, &write_size, p_buffer);
if (rval != 0) {
printf ("NAND write to offset %zx failed %d\n",
offset, rval);
*length -= left_to_write;
return rval;
}
left_to_write -= write_size;
offset += write_size;
p_buffer += write_size;
}
return 0;
}
/**
* nand_read_skip_bad:
*
* Read image from NAND flash.
* Blocks that are marked bad are skipped and the next block is readen
* instead as long as the image is short enough to fit even after skipping the
* bad blocks.
*
* @param nand NAND device
* @param offset offset in flash
* @param length buffer length, on return holds remaining bytes to read
* @param buffer buffer to write to
* @return 0 in case of success
*/
int nand_read_skip_bad(nand_info_t *nand, size_t offset, size_t *length,
u_char *buffer)
{
int rval;
size_t left_to_read = *length;
size_t len_incl_bad;
u_char *p_buffer = buffer;
len_incl_bad = get_len_incl_bad (nand, offset, *length);
if ((offset + len_incl_bad) >= nand->size) {
printf ("Attempt to read outside the flash area\n");
return -EINVAL;
}
if (len_incl_bad == *length) {
rval = nand_read (nand, offset, length, buffer);
if (rval != 0)
printf ("NAND read from offset %zx failed %d\n",
offset, rval);
return rval;
}
while (left_to_read > 0) {
size_t block_offset = offset & (nand->erasesize - 1);
size_t read_length;
if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
printf ("Skipping bad block 0x%08zx\n",
offset & ~(nand->erasesize - 1));
offset += nand->erasesize - block_offset;
continue;
}
if (left_to_read < (nand->erasesize - block_offset))
read_length = left_to_read;
else
read_length = nand->erasesize - block_offset;
rval = nand_read (nand, offset, &read_length, p_buffer);
if (rval != 0) {
printf ("NAND read from offset %zx failed %d\n",
offset, rval);
*length -= left_to_read;
return rval;
}
left_to_read -= read_length;
offset += read_length;
p_buffer += read_length;
}
return 0;
}