u-boot/drivers/spi/stm32_spi.c
Simon Glass caa4daa2ae dm: treewide: Rename 'platdata' variables to just 'plat'
We use 'priv' for private data but often use 'platdata' for platform data.
We can't really use 'pdata' since that is ambiguous (it could mean private
or platform data).

Rename some of the latter variables to end with 'plat' for consistency.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-13 16:51:08 -07:00

621 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2019, STMicroelectronics - All Rights Reserved
*
* Driver for STMicroelectronics Serial peripheral interface (SPI)
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <reset.h>
#include <spi.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <linux/bitfield.h>
#include <linux/iopoll.h>
/* STM32 SPI registers */
#define STM32_SPI_CR1 0x00
#define STM32_SPI_CR2 0x04
#define STM32_SPI_CFG1 0x08
#define STM32_SPI_CFG2 0x0C
#define STM32_SPI_SR 0x14
#define STM32_SPI_IFCR 0x18
#define STM32_SPI_TXDR 0x20
#define STM32_SPI_RXDR 0x30
#define STM32_SPI_I2SCFGR 0x50
/* STM32_SPI_CR1 bit fields */
#define SPI_CR1_SPE BIT(0)
#define SPI_CR1_MASRX BIT(8)
#define SPI_CR1_CSTART BIT(9)
#define SPI_CR1_CSUSP BIT(10)
#define SPI_CR1_HDDIR BIT(11)
#define SPI_CR1_SSI BIT(12)
/* STM32_SPI_CR2 bit fields */
#define SPI_CR2_TSIZE GENMASK(15, 0)
/* STM32_SPI_CFG1 bit fields */
#define SPI_CFG1_DSIZE GENMASK(4, 0)
#define SPI_CFG1_DSIZE_MIN 3
#define SPI_CFG1_FTHLV_SHIFT 5
#define SPI_CFG1_FTHLV GENMASK(8, 5)
#define SPI_CFG1_MBR_SHIFT 28
#define SPI_CFG1_MBR GENMASK(30, 28)
#define SPI_CFG1_MBR_MIN 0
#define SPI_CFG1_MBR_MAX FIELD_GET(SPI_CFG1_MBR, SPI_CFG1_MBR)
/* STM32_SPI_CFG2 bit fields */
#define SPI_CFG2_COMM_SHIFT 17
#define SPI_CFG2_COMM GENMASK(18, 17)
#define SPI_CFG2_MASTER BIT(22)
#define SPI_CFG2_LSBFRST BIT(23)
#define SPI_CFG2_CPHA BIT(24)
#define SPI_CFG2_CPOL BIT(25)
#define SPI_CFG2_SSM BIT(26)
#define SPI_CFG2_AFCNTR BIT(31)
/* STM32_SPI_SR bit fields */
#define SPI_SR_RXP BIT(0)
#define SPI_SR_TXP BIT(1)
#define SPI_SR_EOT BIT(3)
#define SPI_SR_TXTF BIT(4)
#define SPI_SR_OVR BIT(6)
#define SPI_SR_SUSP BIT(11)
#define SPI_SR_RXPLVL_SHIFT 13
#define SPI_SR_RXPLVL GENMASK(14, 13)
#define SPI_SR_RXWNE BIT(15)
/* STM32_SPI_IFCR bit fields */
#define SPI_IFCR_ALL GENMASK(11, 3)
/* STM32_SPI_I2SCFGR bit fields */
#define SPI_I2SCFGR_I2SMOD BIT(0)
#define MAX_CS_COUNT 4
/* SPI Master Baud Rate min/max divisor */
#define STM32_MBR_DIV_MIN (2 << SPI_CFG1_MBR_MIN)
#define STM32_MBR_DIV_MAX (2 << SPI_CFG1_MBR_MAX)
#define STM32_SPI_TIMEOUT_US 100000
/* SPI Communication mode */
#define SPI_FULL_DUPLEX 0
#define SPI_SIMPLEX_TX 1
#define SPI_SIMPLEX_RX 2
#define SPI_HALF_DUPLEX 3
struct stm32_spi_priv {
void __iomem *base;
struct clk clk;
struct reset_ctl rst_ctl;
struct gpio_desc cs_gpios[MAX_CS_COUNT];
ulong bus_clk_rate;
unsigned int fifo_size;
unsigned int cur_bpw;
unsigned int cur_hz;
unsigned int cur_xferlen; /* current transfer length in bytes */
unsigned int tx_len; /* number of data to be written in bytes */
unsigned int rx_len; /* number of data to be read in bytes */
const void *tx_buf; /* data to be written, or NULL */
void *rx_buf; /* data to be read, or NULL */
u32 cur_mode;
bool cs_high;
};
static void stm32_spi_write_txfifo(struct stm32_spi_priv *priv)
{
while ((priv->tx_len > 0) &&
(readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)) {
u32 offs = priv->cur_xferlen - priv->tx_len;
if (priv->tx_len >= sizeof(u32) &&
IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u32))) {
const u32 *tx_buf32 = (const u32 *)(priv->tx_buf + offs);
writel(*tx_buf32, priv->base + STM32_SPI_TXDR);
priv->tx_len -= sizeof(u32);
} else if (priv->tx_len >= sizeof(u16) &&
IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u16))) {
const u16 *tx_buf16 = (const u16 *)(priv->tx_buf + offs);
writew(*tx_buf16, priv->base + STM32_SPI_TXDR);
priv->tx_len -= sizeof(u16);
} else {
const u8 *tx_buf8 = (const u8 *)(priv->tx_buf + offs);
writeb(*tx_buf8, priv->base + STM32_SPI_TXDR);
priv->tx_len -= sizeof(u8);
}
}
debug("%s: %d bytes left\n", __func__, priv->tx_len);
}
static void stm32_spi_read_rxfifo(struct stm32_spi_priv *priv)
{
u32 sr = readl(priv->base + STM32_SPI_SR);
u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
while ((priv->rx_len > 0) &&
((sr & SPI_SR_RXP) ||
((sr & SPI_SR_EOT) && ((sr & SPI_SR_RXWNE) || (rxplvl > 0))))) {
u32 offs = priv->cur_xferlen - priv->rx_len;
if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u32)) &&
(priv->rx_len >= sizeof(u32) || (sr & SPI_SR_RXWNE))) {
u32 *rx_buf32 = (u32 *)(priv->rx_buf + offs);
*rx_buf32 = readl(priv->base + STM32_SPI_RXDR);
priv->rx_len -= sizeof(u32);
} else if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u16)) &&
(priv->rx_len >= sizeof(u16) ||
(!(sr & SPI_SR_RXWNE) &&
(rxplvl >= 2 || priv->cur_bpw > 8)))) {
u16 *rx_buf16 = (u16 *)(priv->rx_buf + offs);
*rx_buf16 = readw(priv->base + STM32_SPI_RXDR);
priv->rx_len -= sizeof(u16);
} else {
u8 *rx_buf8 = (u8 *)(priv->rx_buf + offs);
*rx_buf8 = readb(priv->base + STM32_SPI_RXDR);
priv->rx_len -= sizeof(u8);
}
sr = readl(priv->base + STM32_SPI_SR);
rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
}
debug("%s: %d bytes left\n", __func__, priv->rx_len);
}
static int stm32_spi_enable(struct stm32_spi_priv *priv)
{
debug("%s\n", __func__);
/* Enable the SPI hardware */
setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
return 0;
}
static int stm32_spi_disable(struct stm32_spi_priv *priv)
{
debug("%s\n", __func__);
/* Disable the SPI hardware */
clrbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
return 0;
}
static int stm32_spi_claim_bus(struct udevice *slave)
{
struct udevice *bus = dev_get_parent(slave);
struct stm32_spi_priv *priv = dev_get_priv(bus);
debug("%s\n", __func__);
/* Enable the SPI hardware */
return stm32_spi_enable(priv);
}
static int stm32_spi_release_bus(struct udevice *slave)
{
struct udevice *bus = dev_get_parent(slave);
struct stm32_spi_priv *priv = dev_get_priv(bus);
debug("%s\n", __func__);
/* Disable the SPI hardware */
return stm32_spi_disable(priv);
}
static void stm32_spi_stopxfer(struct udevice *dev)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
u32 cr1, sr;
int ret;
debug("%s\n", __func__);
cr1 = readl(priv->base + STM32_SPI_CR1);
if (!(cr1 & SPI_CR1_SPE))
return;
/* Wait on EOT or suspend the flow */
ret = readl_poll_timeout(priv->base + STM32_SPI_SR, sr,
!(sr & SPI_SR_EOT), 100000);
if (ret < 0) {
if (cr1 & SPI_CR1_CSTART) {
writel(cr1 | SPI_CR1_CSUSP, priv->base + STM32_SPI_CR1);
if (readl_poll_timeout(priv->base + STM32_SPI_SR,
sr, !(sr & SPI_SR_SUSP),
100000) < 0)
dev_err(dev, "Suspend request timeout\n");
}
}
/* clear status flags */
setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
}
static int stm32_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
debug("%s: cs=%d enable=%d\n", __func__, cs, enable);
if (cs >= MAX_CS_COUNT)
return -ENODEV;
if (!dm_gpio_is_valid(&priv->cs_gpios[cs]))
return -EINVAL;
if (priv->cs_high)
enable = !enable;
return dm_gpio_set_value(&priv->cs_gpios[cs], enable ? 1 : 0);
}
static int stm32_spi_set_mode(struct udevice *bus, uint mode)
{
struct stm32_spi_priv *priv = dev_get_priv(bus);
u32 cfg2_clrb = 0, cfg2_setb = 0;
debug("%s: mode=%d\n", __func__, mode);
if (mode & SPI_CPOL)
cfg2_setb |= SPI_CFG2_CPOL;
else
cfg2_clrb |= SPI_CFG2_CPOL;
if (mode & SPI_CPHA)
cfg2_setb |= SPI_CFG2_CPHA;
else
cfg2_clrb |= SPI_CFG2_CPHA;
if (mode & SPI_LSB_FIRST)
cfg2_setb |= SPI_CFG2_LSBFRST;
else
cfg2_clrb |= SPI_CFG2_LSBFRST;
if (cfg2_clrb || cfg2_setb)
clrsetbits_le32(priv->base + STM32_SPI_CFG2,
cfg2_clrb, cfg2_setb);
if (mode & SPI_CS_HIGH)
priv->cs_high = true;
else
priv->cs_high = false;
return 0;
}
static int stm32_spi_set_fthlv(struct udevice *dev, u32 xfer_len)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
u32 fthlv, half_fifo;
/* data packet should not exceed 1/2 of fifo space */
half_fifo = (priv->fifo_size / 2);
/* data_packet should not exceed transfer length */
fthlv = (half_fifo > xfer_len) ? xfer_len : half_fifo;
/* align packet size with data registers access */
fthlv -= (fthlv % 4);
if (!fthlv)
fthlv = 1;
clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_FTHLV,
(fthlv - 1) << SPI_CFG1_FTHLV_SHIFT);
return 0;
}
static int stm32_spi_set_speed(struct udevice *bus, uint hz)
{
struct stm32_spi_priv *priv = dev_get_priv(bus);
u32 mbrdiv;
long div;
debug("%s: hz=%d\n", __func__, hz);
if (priv->cur_hz == hz)
return 0;
div = DIV_ROUND_UP(priv->bus_clk_rate, hz);
if (div < STM32_MBR_DIV_MIN ||
div > STM32_MBR_DIV_MAX)
return -EINVAL;
/* Determine the first power of 2 greater than or equal to div */
if (div & (div - 1))
mbrdiv = fls(div);
else
mbrdiv = fls(div) - 1;
if (!mbrdiv)
return -EINVAL;
clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_MBR,
(mbrdiv - 1) << SPI_CFG1_MBR_SHIFT);
priv->cur_hz = hz;
return 0;
}
static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev_get_parent(slave);
struct dm_spi_slave_platdata *slave_plat;
struct stm32_spi_priv *priv = dev_get_priv(bus);
u32 sr;
u32 ifcr = 0;
u32 xferlen;
u32 mode;
int xfer_status = 0;
xferlen = bitlen / 8;
if (xferlen <= SPI_CR2_TSIZE)
writel(xferlen, priv->base + STM32_SPI_CR2);
else
return -EMSGSIZE;
priv->tx_buf = dout;
priv->rx_buf = din;
priv->tx_len = priv->tx_buf ? bitlen / 8 : 0;
priv->rx_len = priv->rx_buf ? bitlen / 8 : 0;
mode = SPI_FULL_DUPLEX;
if (!priv->tx_buf)
mode = SPI_SIMPLEX_RX;
else if (!priv->rx_buf)
mode = SPI_SIMPLEX_TX;
if (priv->cur_xferlen != xferlen || priv->cur_mode != mode) {
priv->cur_mode = mode;
priv->cur_xferlen = xferlen;
/* Disable the SPI hardware to unlock CFG1/CFG2 registers */
stm32_spi_disable(priv);
clrsetbits_le32(priv->base + STM32_SPI_CFG2, SPI_CFG2_COMM,
mode << SPI_CFG2_COMM_SHIFT);
stm32_spi_set_fthlv(bus, xferlen);
/* Enable the SPI hardware */
stm32_spi_enable(priv);
}
debug("%s: priv->tx_len=%d priv->rx_len=%d\n", __func__,
priv->tx_len, priv->rx_len);
slave_plat = dev_get_parent_plat(slave);
if (flags & SPI_XFER_BEGIN)
stm32_spi_set_cs(bus, slave_plat->cs, false);
/* Be sure to have data in fifo before starting data transfer */
if (priv->tx_buf)
stm32_spi_write_txfifo(priv);
setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_CSTART);
while (1) {
sr = readl(priv->base + STM32_SPI_SR);
if (sr & SPI_SR_OVR) {
dev_err(bus, "Overrun: RX data lost\n");
xfer_status = -EIO;
break;
}
if (sr & SPI_SR_SUSP) {
dev_warn(bus, "System too slow is limiting data throughput\n");
if (priv->rx_buf && priv->rx_len > 0)
stm32_spi_read_rxfifo(priv);
ifcr |= SPI_SR_SUSP;
}
if (sr & SPI_SR_TXTF)
ifcr |= SPI_SR_TXTF;
if (sr & SPI_SR_TXP)
if (priv->tx_buf && priv->tx_len > 0)
stm32_spi_write_txfifo(priv);
if (sr & SPI_SR_RXP)
if (priv->rx_buf && priv->rx_len > 0)
stm32_spi_read_rxfifo(priv);
if (sr & SPI_SR_EOT) {
if (priv->rx_buf && priv->rx_len > 0)
stm32_spi_read_rxfifo(priv);
break;
}
writel(ifcr, priv->base + STM32_SPI_IFCR);
}
/* clear status flags */
setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
stm32_spi_stopxfer(bus);
if (flags & SPI_XFER_END)
stm32_spi_set_cs(bus, slave_plat->cs, true);
return xfer_status;
}
static int stm32_spi_get_fifo_size(struct udevice *dev)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
u32 count = 0;
stm32_spi_enable(priv);
while (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)
writeb(++count, priv->base + STM32_SPI_TXDR);
stm32_spi_disable(priv);
debug("%s %d x 8-bit fifo size\n", __func__, count);
return count;
}
static int stm32_spi_probe(struct udevice *dev)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
unsigned long clk_rate;
int ret;
unsigned int i;
priv->base = dev_remap_addr(dev);
if (!priv->base)
return -EINVAL;
/* enable clock */
ret = clk_get_by_index(dev, 0, &priv->clk);
if (ret < 0)
return ret;
ret = clk_enable(&priv->clk);
if (ret < 0)
return ret;
clk_rate = clk_get_rate(&priv->clk);
if (!clk_rate) {
ret = -EINVAL;
goto clk_err;
}
priv->bus_clk_rate = clk_rate;
/* perform reset */
ret = reset_get_by_index(dev, 0, &priv->rst_ctl);
if (ret < 0)
goto clk_err;
reset_assert(&priv->rst_ctl);
udelay(2);
reset_deassert(&priv->rst_ctl);
ret = gpio_request_list_by_name(dev, "cs-gpios", priv->cs_gpios,
ARRAY_SIZE(priv->cs_gpios), 0);
if (ret < 0) {
pr_err("Can't get %s cs gpios: %d", dev->name, ret);
goto reset_err;
}
priv->fifo_size = stm32_spi_get_fifo_size(dev);
priv->cur_mode = SPI_FULL_DUPLEX;
priv->cur_xferlen = 0;
priv->cur_bpw = SPI_DEFAULT_WORDLEN;
clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_DSIZE,
priv->cur_bpw - 1);
for (i = 0; i < ARRAY_SIZE(priv->cs_gpios); i++) {
if (!dm_gpio_is_valid(&priv->cs_gpios[i]))
continue;
dm_gpio_set_dir_flags(&priv->cs_gpios[i],
GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
}
/* Ensure I2SMOD bit is kept cleared */
clrbits_le32(priv->base + STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
/*
* - SS input value high
* - transmitter half duplex direction
* - automatic communication suspend when RX-Fifo is full
*/
setbits_le32(priv->base + STM32_SPI_CR1,
SPI_CR1_SSI | SPI_CR1_HDDIR | SPI_CR1_MASRX);
/*
* - Set the master mode (default Motorola mode)
* - Consider 1 master/n slaves configuration and
* SS input value is determined by the SSI bit
* - keep control of all associated GPIOs
*/
setbits_le32(priv->base + STM32_SPI_CFG2,
SPI_CFG2_MASTER | SPI_CFG2_SSM | SPI_CFG2_AFCNTR);
return 0;
reset_err:
reset_free(&priv->rst_ctl);
clk_err:
clk_disable(&priv->clk);
clk_free(&priv->clk);
return ret;
};
static int stm32_spi_remove(struct udevice *dev)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
int ret;
stm32_spi_stopxfer(dev);
stm32_spi_disable(priv);
ret = reset_assert(&priv->rst_ctl);
if (ret < 0)
return ret;
reset_free(&priv->rst_ctl);
ret = clk_disable(&priv->clk);
if (ret < 0)
return ret;
clk_free(&priv->clk);
return ret;
};
static const struct dm_spi_ops stm32_spi_ops = {
.claim_bus = stm32_spi_claim_bus,
.release_bus = stm32_spi_release_bus,
.set_mode = stm32_spi_set_mode,
.set_speed = stm32_spi_set_speed,
.xfer = stm32_spi_xfer,
};
static const struct udevice_id stm32_spi_ids[] = {
{ .compatible = "st,stm32h7-spi", },
{ }
};
U_BOOT_DRIVER(stm32_spi) = {
.name = "stm32_spi",
.id = UCLASS_SPI,
.of_match = stm32_spi_ids,
.ops = &stm32_spi_ops,
.priv_auto = sizeof(struct stm32_spi_priv),
.probe = stm32_spi_probe,
.remove = stm32_spi_remove,
};