mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-05 12:45:42 +00:00
b75d8dc564
The Linux coding style guide (Documentation/process/coding-style.rst) clearly says: It's a **mistake** to use typedef for structures and pointers. Besides, using typedef for structures is annoying when you try to make headers self-contained. Let's say you have the following function declaration in a header: void foo(bd_t *bd); This is not self-contained since bd_t is not defined. To tell the compiler what 'bd_t' is, you need to include <asm/u-boot.h> #include <asm/u-boot.h> void foo(bd_t *bd); Then, the include direcective pulls in more bloat needlessly. If you use 'struct bd_info' instead, it is enough to put a forward declaration as follows: struct bd_info; void foo(struct bd_info *bd); Right, typedef'ing bd_t is a mistake. I used coccinelle to generate this commit. The semantic patch that makes this change is as follows: <smpl> @@ typedef bd_t; @@ -bd_t +struct bd_info </smpl> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> |
||
---|---|---|
.. | ||
da850evm.c | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
omapl138_lcdk.c | ||
README.da850 | ||
u-boot-spl-da850evm.lds |
Summary ======= The README is for the boot procedure used for various DA850 (or compatible parts such as the AM1808) based boards. In the context of U-Boot, the board is booted in three stages. The initial bootloader which executes upon reset is the ROM Boot Loader (RBL) and sits in the internal ROM. The RBL initializes the internal memory and then depending on the exact board and pin configurations will initialize another controller (such as SPI or NAND) to continue the boot process by loading the secondary program loader (SPL). The SPL will initialize the system further (some clocks, SDRAM) and then load the full u-boot from a predefined location in persistent storage to DDR and jumps to the u-boot entry point. AIS is an image format defined by TI for the images that are to be loaded to memory by the RBL. The image is divided into a series of sections and the image's entry point is specified. Each section comes with meta data like the target address the section is to be copied to and the size of the section, which is used by the RBL to load the image. At the end of the image the RBL jumps to the image entry point. The AIS format allows for other things such as programming the clocks and SDRAM if the header is programmed for it. We do not take advantage of this and instead use SPL as it allows for additional flexibility (run-time detect of board revision, loading the next image from a different media, etc). Compilation =========== The exact build target you need will depend on the board you have. For Logic PD boards, or other boards which store the ethernet MAC address at the end of SPI flash, run 'make da850evm'. Once this build completes you will have a u-boot.ais file that needs to be written to the correct persistent storage. Flashing the images to SPI ========================== The AIS image can be written to SPI flash using the following commands. Assuming that the network is configured and enabled and the u-boot.ais file is tftp'able. U-Boot > sf probe 0 U-Boot > sf erase 0 +320000 U-Boot > tftp u-boot.ais U-Boot > sf write c0700000 0 $filesize Flashing the images to NAND =========================== The AIS image can be written to NAND using the u-boot "nand" commands. Example: OMAPL138_LCDK requires the AIS image to be written to the second block of the NAND flash. From the "nand info" command we see that the second block would start at offset 0x20000: U-Boot > nand info sector size 128 KiB (0x20000) Page size 2048 b From the tftp command we see that we need to copy 0x74908 bytes from memory address 0xc0700000 (0x75000 if we align a page of 2048): U-Boot > tftp u-boot.ais Load address: 0xc0700000 Bytes transferred = 477448 (74908 hex) The commands to write the image from memory to NAND would be: U-Boot > nand erase 0x20000 0x75000 U-Boot > nand write 0xc0700000 0x20000 0x75000 Alternatively, MTD partitions may be defined. Using "mtdparts" to conveniently have a bootloader partition starting at the second block (offset 0x20000): setenv mtdids nand0=davinci_nand.0 setenv mtdparts mtdparts=davinci_nand.0:128k(bootenv),2m(bootloader) In this case the commands would be simplified to: U-Boot > tftp u-boot.ais U-Boot > nand erase.part bootloader U-Boot > nand write 0xc0700000 bootloader On the DA850-EVM, NAND can also be written with SW7:7-8 ON and sudo mono sfh_OMAP-L138.exe -targetType AM1808 -p /dev/ttyUSB0 \ -flash_noubl -flashType NAND ~/src/u-boot/u-boot.ais To boot the DA850-EVM from NAND, SW7:5 should be switched on and all others off. Flashing the images to MMC ========================== If the boot pins are set to boot from mmc, the RBL will try to load the next boot stage form the first couple of sectors of an external mmc card. As sector 0 is usually used for storing the partition information, the AIS image should be written at least after the first sector, but before the first partition begins. (e.g: make sure to leave at least 500KB of unallocated space at the start of the mmc when creating the partitions) CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR is used by SPL, and should point to the sector were the u-boot image is located. (eg. After SPL) There are 2 ways to copy the AIS image to the mmc card: 1 - Using the TI tool "uflash" $ uflash -d /dev/mmcblk0 -b ./u-boot.ais -p OMAPL138 -vv 2 - using the "dd" command $ dd if=u-boot.ais of=/dev/mmcblk0 seek=117 bs=512 conv=fsync uflash writes the AIS image at offset 117. For compatibility with uflash, CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR is set to take into account this offset, and the dd command is adjusted accordingly. Flashing the images to NOR ========================== NOR Flash is XIP (execute-in-place), so no AIS (or SPL) is needed. The u-boot.bin is directy flashed, but CONFIT_DA850_LOWLEVEL must be set to initialize hardware that's normally done by SPL. For this case, CONFIG_SYS_TEXT_BASE=0x60000000 which is the address to which the bootloader jumps when powered on. Example: For the da850evm, there is a defconfig setup to use the NOR flash on the UI expander board called da850evm_direct_nor_defconfig. Flash to NOR directly using sudo mono ./sfh_OMAP-L138.exe -p /dev/ttyUSB0 -flash_noubl -flashType NOR u-boot.bin SW7:5 through SW7:7 should be switched on and all others off. Recovery ======== In the case of a "bricked" board, you need to use the TI tools found here[1] to write the u-boot.ais file. An example of recovering to the SPI flash of an AM1808 would be: $ mono sfh_OMAP-L138.exe -targetType AM1808 -p /dev/ttyUSB0 \ -flash_noubl /path/to/u-boot.ais For other target types and flash locations: $ mono sfh_OMAP-L138.exe -h Links ===== [1] http://processors.wiki.ti.com/index.php/Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L138