u-boot/drivers/mtd/nand/raw/arasan_nfc.c
Simon Glass 1e94b46f73 common: Drop linux/printk.h from common header
This old patch was marked as deferred. Bring it back to life, to continue
towards the removal of common.h

Move this out of the common header and include it only where needed.

Signed-off-by: Simon Glass <sjg@chromium.org>
2023-09-24 09:54:57 -04:00

1329 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Arasan NAND Flash Controller Driver
*
* Copyright (C) 2014 - 2015 Xilinx, Inc.
*/
#include <common.h>
#include <malloc.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <dm.h>
#include <nand.h>
#include <linux/printk.h>
struct nand_config {
u32 page;
bool on_die_ecc_enabled;
};
struct nand_drv {
struct nand_regs *reg;
struct nand_config config;
};
struct arasan_nand_info {
struct udevice *dev;
struct nand_drv nand_ctrl;
struct nand_chip nand_chip;
};
struct nand_regs {
u32 pkt_reg;
u32 memadr_reg1;
u32 memadr_reg2;
u32 cmd_reg;
u32 pgm_reg;
u32 intsts_enr;
u32 intsig_enr;
u32 intsts_reg;
u32 rdy_busy;
u32 cms_sysadr_reg;
u32 flash_sts_reg;
u32 tmg_reg;
u32 buf_dataport;
u32 ecc_reg;
u32 ecc_errcnt_reg;
u32 ecc_sprcmd_reg;
u32 errcnt_1bitreg;
u32 errcnt_2bitreg;
u32 errcnt_3bitreg;
u32 errcnt_4bitreg;
u32 dma_sysadr0_reg;
u32 dma_bufbdry_reg;
u32 cpu_rls_reg;
u32 errcnt_5bitreg;
u32 errcnt_6bitreg;
u32 errcnt_7bitreg;
u32 errcnt_8bitreg;
u32 data_if_reg;
};
struct arasan_nand_command_format {
u8 cmd1;
u8 cmd2;
u8 addr_cycles;
u32 pgm;
};
#define ONDIE_ECC_FEATURE_ADDR 0x90
#define ENABLE_ONDIE_ECC 0x08
#define ARASAN_PROG_RD_MASK 0x00000001
#define ARASAN_PROG_BLK_ERS_MASK 0x00000004
#define ARASAN_PROG_RD_ID_MASK 0x00000040
#define ARASAN_PROG_RD_STS_MASK 0x00000008
#define ARASAN_PROG_PG_PROG_MASK 0x00000010
#define ARASAN_PROG_RD_PARAM_PG_MASK 0x00000080
#define ARASAN_PROG_RST_MASK 0x00000100
#define ARASAN_PROG_GET_FTRS_MASK 0x00000200
#define ARASAN_PROG_SET_FTRS_MASK 0x00000400
#define ARASAN_PROG_CHNG_ROWADR_END_MASK 0x00400000
#define ARASAN_NAND_CMD_ECC_ON_MASK 0x80000000
#define ARASAN_NAND_CMD_CMD12_MASK 0xFFFF
#define ARASAN_NAND_CMD_PG_SIZE_MASK 0x3800000
#define ARASAN_NAND_CMD_PG_SIZE_SHIFT 23
#define ARASAN_NAND_CMD_CMD2_SHIFT 8
#define ARASAN_NAND_CMD_ADDR_CYCL_MASK 0x70000000
#define ARASAN_NAND_CMD_ADDR_CYCL_SHIFT 28
#define ARASAN_NAND_MEM_ADDR1_PAGE_MASK 0xFFFF0000
#define ARASAN_NAND_MEM_ADDR1_COL_MASK 0xFFFF
#define ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT 16
#define ARASAN_NAND_MEM_ADDR2_PAGE_MASK 0xFF
#define ARASAN_NAND_MEM_ADDR2_CS_MASK 0xC0000000
#define ARASAN_NAND_MEM_ADDR2_CS0_MASK (0x3 << 30)
#define ARASAN_NAND_MEM_ADDR2_CS1_MASK (0x1 << 30)
#define ARASAN_NAND_MEM_ADDR2_BCH_MASK 0xE000000
#define ARASAN_NAND_MEM_ADDR2_BCH_SHIFT 25
#define ARASAN_NAND_INT_STS_ERR_EN_MASK 0x10
#define ARASAN_NAND_INT_STS_MUL_BIT_ERR_MASK 0x08
#define ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK 0x02
#define ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK 0x01
#define ARASAN_NAND_INT_STS_XFR_CMPLT_MASK 0x04
#define ARASAN_NAND_PKT_REG_PKT_CNT_MASK 0xFFF000
#define ARASAN_NAND_PKT_REG_PKT_SIZE_MASK 0x7FF
#define ARASAN_NAND_PKT_REG_PKT_CNT_SHFT 12
#define ARASAN_NAND_ROW_ADDR_CYCL_MASK 0x0F
#define ARASAN_NAND_COL_ADDR_CYCL_MASK 0xF0
#define ARASAN_NAND_COL_ADDR_CYCL_SHIFT 4
#define ARASAN_NAND_ECC_SIZE_SHIFT 16
#define ARASAN_NAND_ECC_BCH_SHIFT 27
#define ARASAN_NAND_PKTSIZE_1K 1024
#define ARASAN_NAND_PKTSIZE_512 512
#define ARASAN_NAND_POLL_TIMEOUT 1000000
#define ARASAN_NAND_INVALID_ADDR_CYCL 0xFF
#define ERR_ADDR_CYCLE -1
#define READ_BUFF_SIZE 0x4000
static struct arasan_nand_command_format *curr_cmd;
enum addr_cycles {
NAND_ADDR_CYCL_NONE,
NAND_ADDR_CYCL_ONE,
NAND_ADDR_CYCL_ROW,
NAND_ADDR_CYCL_COL,
NAND_ADDR_CYCL_BOTH,
};
static struct arasan_nand_command_format arasan_nand_commands[] = {
{NAND_CMD_READ0, NAND_CMD_READSTART, NAND_ADDR_CYCL_BOTH,
ARASAN_PROG_RD_MASK},
{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, NAND_ADDR_CYCL_COL,
ARASAN_PROG_RD_MASK},
{NAND_CMD_READID, NAND_CMD_NONE, NAND_ADDR_CYCL_ONE,
ARASAN_PROG_RD_ID_MASK},
{NAND_CMD_STATUS, NAND_CMD_NONE, NAND_ADDR_CYCL_NONE,
ARASAN_PROG_RD_STS_MASK},
{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, NAND_ADDR_CYCL_BOTH,
ARASAN_PROG_PG_PROG_MASK},
{NAND_CMD_RNDIN, NAND_CMD_NONE, NAND_ADDR_CYCL_COL,
ARASAN_PROG_CHNG_ROWADR_END_MASK},
{NAND_CMD_ERASE1, NAND_CMD_ERASE2, NAND_ADDR_CYCL_ROW,
ARASAN_PROG_BLK_ERS_MASK},
{NAND_CMD_RESET, NAND_CMD_NONE, NAND_ADDR_CYCL_NONE,
ARASAN_PROG_RST_MASK},
{NAND_CMD_PARAM, NAND_CMD_NONE, NAND_ADDR_CYCL_ONE,
ARASAN_PROG_RD_PARAM_PG_MASK},
{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, NAND_ADDR_CYCL_ONE,
ARASAN_PROG_GET_FTRS_MASK},
{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, NAND_ADDR_CYCL_ONE,
ARASAN_PROG_SET_FTRS_MASK},
{NAND_CMD_NONE, NAND_CMD_NONE, NAND_ADDR_CYCL_NONE, 0},
};
struct arasan_ecc_matrix {
u32 pagesize;
u32 ecc_codeword_size;
u8 eccbits;
u8 bch;
u8 bchval;
u16 eccaddr;
u16 eccsize;
};
static const struct arasan_ecc_matrix ecc_matrix[] = {
{512, 512, 1, 0, 0, 0x20D, 0x3},
{512, 512, 4, 1, 3, 0x209, 0x7},
{512, 512, 8, 1, 2, 0x203, 0xD},
/*
* 2K byte page
*/
{2048, 512, 1, 0, 0, 0x834, 0xC},
{2048, 512, 4, 1, 3, 0x826, 0x1A},
{2048, 512, 8, 1, 2, 0x80c, 0x34},
{2048, 512, 12, 1, 1, 0x822, 0x4E},
{2048, 512, 16, 1, 0, 0x808, 0x68},
{2048, 1024, 24, 1, 4, 0x81c, 0x54},
/*
* 4K byte page
*/
{4096, 512, 1, 0, 0, 0x1068, 0x18},
{4096, 512, 4, 1, 3, 0x104c, 0x34},
{4096, 512, 8, 1, 2, 0x1018, 0x68},
{4096, 512, 12, 1, 1, 0x1044, 0x9C},
{4096, 512, 16, 1, 0, 0x1010, 0xD0},
{4096, 1024, 24, 1, 4, 0x1038, 0xA8},
/*
* 8K byte page
*/
{8192, 512, 1, 0, 0, 0x20d0, 0x30},
{8192, 512, 4, 1, 3, 0x2098, 0x68},
{8192, 512, 8, 1, 2, 0x2030, 0xD0},
{8192, 512, 12, 1, 1, 0x2088, 0x138},
{8192, 512, 16, 1, 0, 0x2020, 0x1A0},
{8192, 1024, 24, 1, 4, 0x2070, 0x150},
/*
* 16K byte page
*/
{16384, 512, 1, 0, 0, 0x4460, 0x60},
{16384, 512, 4, 1, 3, 0x43f0, 0xD0},
{16384, 512, 8, 1, 2, 0x4320, 0x1A0},
{16384, 512, 12, 1, 1, 0x4250, 0x270},
{16384, 512, 16, 1, 0, 0x4180, 0x340},
{16384, 1024, 24, 1, 4, 0x4220, 0x2A0}
};
static struct nand_ecclayout ondie_nand_oob_64 = {
.eccbytes = 32,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
24, 25, 26, 27, 28, 29, 30, 31,
40, 41, 42, 43, 44, 45, 46, 47,
56, 57, 58, 59, 60, 61, 62, 63
},
.oobfree = {
{ .offset = 4, .length = 4 },
{ .offset = 20, .length = 4 },
{ .offset = 36, .length = 4 },
{ .offset = 52, .length = 4 }
}
};
/*
* bbt decriptors for chips with on-die ECC and
* chips with 64-byte OOB
*/
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = mirror_pattern
};
static u8 buf_data[READ_BUFF_SIZE];
static u32 buf_index;
static struct nand_ecclayout nand_oob;
static void arasan_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(nand_chip);
u32 reg_val;
reg_val = readl(&info->reg->memadr_reg2);
if (chip == 0) {
reg_val &= ~ARASAN_NAND_MEM_ADDR2_CS0_MASK;
writel(reg_val, &info->reg->memadr_reg2);
} else if (chip == 1) {
reg_val |= ARASAN_NAND_MEM_ADDR2_CS1_MASK;
writel(reg_val, &info->reg->memadr_reg2);
}
}
static void arasan_nand_enable_ecc(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 reg_val;
reg_val = readl(&info->reg->cmd_reg);
reg_val |= ARASAN_NAND_CMD_ECC_ON_MASK;
writel(reg_val, &info->reg->cmd_reg);
}
static u8 arasan_nand_get_addrcycle(struct mtd_info *mtd)
{
u8 addrcycles;
struct nand_chip *chip = mtd_to_nand(mtd);
switch (curr_cmd->addr_cycles) {
case NAND_ADDR_CYCL_NONE:
addrcycles = 0;
break;
case NAND_ADDR_CYCL_ONE:
addrcycles = 1;
break;
case NAND_ADDR_CYCL_ROW:
addrcycles = chip->onfi_params.addr_cycles &
ARASAN_NAND_ROW_ADDR_CYCL_MASK;
break;
case NAND_ADDR_CYCL_COL:
addrcycles = (chip->onfi_params.addr_cycles &
ARASAN_NAND_COL_ADDR_CYCL_MASK) >>
ARASAN_NAND_COL_ADDR_CYCL_SHIFT;
break;
case NAND_ADDR_CYCL_BOTH:
addrcycles = chip->onfi_params.addr_cycles &
ARASAN_NAND_ROW_ADDR_CYCL_MASK;
addrcycles += (chip->onfi_params.addr_cycles &
ARASAN_NAND_COL_ADDR_CYCL_MASK) >>
ARASAN_NAND_COL_ADDR_CYCL_SHIFT;
break;
default:
addrcycles = ARASAN_NAND_INVALID_ADDR_CYCL;
break;
}
return addrcycles;
}
static int arasan_nand_read_page(struct mtd_info *mtd, u8 *buf, u32 size)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
struct nand_config *nand = &info->config;
u32 reg_val, i, pktsize, pktnum;
u32 *bufptr = (u32 *)buf;
u32 timeout;
u32 rdcount = 0;
u8 addr_cycles;
if (chip->ecc_step_ds >= ARASAN_NAND_PKTSIZE_1K)
pktsize = ARASAN_NAND_PKTSIZE_1K;
else
pktsize = ARASAN_NAND_PKTSIZE_512;
if (size % pktsize)
pktnum = size/pktsize + 1;
else
pktnum = size/pktsize;
reg_val = readl(&info->reg->intsts_enr);
reg_val |= ARASAN_NAND_INT_STS_ERR_EN_MASK |
ARASAN_NAND_INT_STS_MUL_BIT_ERR_MASK;
writel(reg_val, &info->reg->intsts_enr);
reg_val = readl(&info->reg->pkt_reg);
reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
reg_val |= (pktnum << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) |
pktsize;
writel(reg_val, &info->reg->pkt_reg);
if (!nand->on_die_ecc_enabled) {
arasan_nand_enable_ecc(mtd);
addr_cycles = arasan_nand_get_addrcycle(mtd);
if (addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
return ERR_ADDR_CYCLE;
writel((NAND_CMD_RNDOUTSTART << ARASAN_NAND_CMD_CMD2_SHIFT) |
NAND_CMD_RNDOUT | (addr_cycles <<
ARASAN_NAND_CMD_ADDR_CYCL_SHIFT),
&info->reg->ecc_sprcmd_reg);
}
writel(curr_cmd->pgm, &info->reg->pgm_reg);
while (rdcount < pktnum) {
timeout = ARASAN_NAND_POLL_TIMEOUT;
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout) {
puts("arasan_read_page: timedout:Buff RDY\n");
return -ETIMEDOUT;
}
rdcount++;
if (pktnum == rdcount) {
reg_val = readl(&info->reg->intsts_enr);
reg_val |= ARASAN_NAND_INT_STS_XFR_CMPLT_MASK;
writel(reg_val, &info->reg->intsts_enr);
} else {
reg_val = readl(&info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
&info->reg->intsts_enr);
}
reg_val = readl(&info->reg->intsts_reg);
writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
&info->reg->intsts_reg);
for (i = 0; i < pktsize/4; i++)
bufptr[i] = readl(&info->reg->buf_dataport);
bufptr += pktsize/4;
if (rdcount >= pktnum)
break;
writel(ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
&info->reg->intsts_enr);
}
timeout = ARASAN_NAND_POLL_TIMEOUT;
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout) {
puts("arasan rd_page timedout:Xfer CMPLT\n");
return -ETIMEDOUT;
}
reg_val = readl(&info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->intsts_reg);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_reg);
if (!nand->on_die_ecc_enabled) {
if (readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_MUL_BIT_ERR_MASK) {
printf("arasan rd_page:sbiterror\n");
return -1;
}
if (readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_ERR_EN_MASK) {
mtd->ecc_stats.failed++;
printf("arasan rd_page:multibiterror\n");
return -1;
}
}
return 0;
}
static int arasan_nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf, int oob_required, int page)
{
int status;
status = arasan_nand_read_page(mtd, buf, (mtd->writesize));
if (oob_required)
chip->ecc.read_oob(mtd, chip, page);
return status;
}
static void arasan_nand_fill_tx(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 __iomem *nand = &info->reg->buf_dataport;
if (((unsigned long)buf & 0x3) != 0) {
if (((unsigned long)buf & 0x1) != 0) {
if (len) {
writeb(*buf, nand);
buf += 1;
len--;
}
}
if (((unsigned long)buf & 0x3) != 0) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
}
}
while (len >= 4) {
writel(*(u32 *)buf, nand);
buf += 4;
len -= 4;
}
if (len) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
if (len)
writeb(*buf, nand);
}
}
static int arasan_nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const u8 *buf, int oob_required,
int page)
{
struct nand_drv *info = nand_get_controller_data(chip);
struct nand_config *nand = &info->config;
u32 reg_val, i, pktsize, pktnum;
const u32 *bufptr = (const u32 *)buf;
u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
u32 size = mtd->writesize;
u32 rdcount = 0;
u8 column_addr_cycles;
if (chip->ecc_step_ds >= ARASAN_NAND_PKTSIZE_1K)
pktsize = ARASAN_NAND_PKTSIZE_1K;
else
pktsize = ARASAN_NAND_PKTSIZE_512;
if (size % pktsize)
pktnum = size/pktsize + 1;
else
pktnum = size/pktsize;
reg_val = readl(&info->reg->pkt_reg);
reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
reg_val |= (pktnum << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) | pktsize;
writel(reg_val, &info->reg->pkt_reg);
if (!nand->on_die_ecc_enabled) {
arasan_nand_enable_ecc(mtd);
column_addr_cycles = (chip->onfi_params.addr_cycles &
ARASAN_NAND_COL_ADDR_CYCL_MASK) >>
ARASAN_NAND_COL_ADDR_CYCL_SHIFT;
writel((NAND_CMD_RNDIN | (column_addr_cycles << 28)),
&info->reg->ecc_sprcmd_reg);
}
writel(curr_cmd->pgm, &info->reg->pgm_reg);
while (rdcount < pktnum) {
timeout = ARASAN_NAND_POLL_TIMEOUT;
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout) {
puts("arasan_write_page: timedout:Buff RDY\n");
return -ETIMEDOUT;
}
rdcount++;
if (pktnum == rdcount) {
reg_val = readl(&info->reg->intsts_enr);
reg_val |= ARASAN_NAND_INT_STS_XFR_CMPLT_MASK;
writel(reg_val, &info->reg->intsts_enr);
} else {
reg_val = readl(&info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
&info->reg->intsts_enr);
}
reg_val = readl(&info->reg->intsts_reg);
writel(reg_val | ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
&info->reg->intsts_reg);
for (i = 0; i < pktsize/4; i++)
writel(bufptr[i], &info->reg->buf_dataport);
bufptr += pktsize/4;
if (rdcount >= pktnum)
break;
writel(ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
&info->reg->intsts_enr);
}
timeout = ARASAN_NAND_POLL_TIMEOUT;
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout) {
puts("arasan write_page timedout:Xfer CMPLT\n");
return -ETIMEDOUT;
}
reg_val = readl(&info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->intsts_reg);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_reg);
if (oob_required)
chip->ecc.write_oob(mtd, chip, nand->page);
return 0;
}
static int arasan_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, (mtd->oobsize));
return 0;
}
static int arasan_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int status = 0;
const u8 *buf = chip->oob_poi;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
chip->write_buf(mtd, buf, mtd->oobsize);
return status;
}
static int arasan_nand_reset(struct mtd_info *mtd,
struct arasan_nand_command_format *curr_cmd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
u32 cmd_reg = 0;
writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
cmd_reg = readl(&info->reg->cmd_reg);
cmd_reg &= ~ARASAN_NAND_CMD_CMD12_MASK;
cmd_reg |= curr_cmd->cmd1 |
(curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
writel(cmd_reg, &info->reg->cmd_reg);
writel(curr_cmd->pgm, &info->reg->pgm_reg);
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout) {
printf("ERROR:%s timedout\n", __func__);
return -ETIMEDOUT;
}
writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_reg);
return 0;
}
static u8 arasan_nand_page(struct mtd_info *mtd)
{
u8 page_val = 0;
switch (mtd->writesize) {
case 512:
page_val = 0;
break;
case 2048:
page_val = 1;
break;
case 4096:
page_val = 2;
break;
case 8192:
page_val = 3;
break;
case 16384:
page_val = 4;
break;
case 1024:
page_val = 5;
break;
default:
printf("%s:Pagesize>16K\n", __func__);
break;
}
return page_val;
}
static int arasan_nand_send_wrcmd(struct arasan_nand_command_format *curr_cmd,
int column, int page_addr, struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 reg_val, page;
u8 page_val, addr_cycles;
writel(ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->cmd_reg);
reg_val &= ~ARASAN_NAND_CMD_CMD12_MASK;
reg_val |= curr_cmd->cmd1 |
(curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
if (curr_cmd->cmd1 == NAND_CMD_SEQIN) {
reg_val &= ~ARASAN_NAND_CMD_PG_SIZE_MASK;
page_val = arasan_nand_page(mtd);
reg_val |= (page_val << ARASAN_NAND_CMD_PG_SIZE_SHIFT);
}
reg_val &= ~ARASAN_NAND_CMD_ADDR_CYCL_MASK;
addr_cycles = arasan_nand_get_addrcycle(mtd);
if (addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
return ERR_ADDR_CYCLE;
reg_val |= (addr_cycles <<
ARASAN_NAND_CMD_ADDR_CYCL_SHIFT);
writel(reg_val, &info->reg->cmd_reg);
if (page_addr == -1)
page_addr = 0;
page = (page_addr << ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT) &
ARASAN_NAND_MEM_ADDR1_PAGE_MASK;
column &= ARASAN_NAND_MEM_ADDR1_COL_MASK;
writel(page | column, &info->reg->memadr_reg1);
reg_val = readl(&info->reg->memadr_reg2);
reg_val &= ~ARASAN_NAND_MEM_ADDR2_PAGE_MASK;
reg_val |= (page_addr >> ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT);
writel(reg_val, &info->reg->memadr_reg2);
return 0;
}
static void arasan_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 reg_val;
u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
reg_val = readl(&info->reg->pkt_reg);
reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
reg_val |= (1 << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) | len;
writel(reg_val, &info->reg->pkt_reg);
writel(curr_cmd->pgm, &info->reg->pgm_reg);
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout)
puts("ERROR:arasan_nand_write_buf timedout:Buff RDY\n");
reg_val = readl(&info->reg->intsts_enr);
reg_val |= ARASAN_NAND_INT_STS_XFR_CMPLT_MASK;
writel(reg_val, &info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->intsts_reg);
writel(reg_val | ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
&info->reg->intsts_reg);
arasan_nand_fill_tx(mtd, buf, len);
timeout = ARASAN_NAND_POLL_TIMEOUT;
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout)
puts("ERROR:arasan_nand_write_buf timedout:Xfer CMPLT\n");
writel(readl(&info->reg->intsts_enr) |
ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
writel(readl(&info->reg->intsts_reg) |
ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_reg);
}
static int arasan_nand_erase(struct arasan_nand_command_format *curr_cmd,
int column, int page_addr, struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 reg_val, page;
u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
u8 row_addr_cycles;
writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->cmd_reg);
reg_val &= ~ARASAN_NAND_CMD_CMD12_MASK;
reg_val |= curr_cmd->cmd1 |
(curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
row_addr_cycles = arasan_nand_get_addrcycle(mtd);
if (row_addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
return ERR_ADDR_CYCLE;
reg_val &= ~ARASAN_NAND_CMD_ADDR_CYCL_MASK;
reg_val |= (row_addr_cycles <<
ARASAN_NAND_CMD_ADDR_CYCL_SHIFT);
writel(reg_val, &info->reg->cmd_reg);
page = (page_addr >> ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT) &
ARASAN_NAND_MEM_ADDR1_COL_MASK;
column = page_addr & ARASAN_NAND_MEM_ADDR1_COL_MASK;
writel(column | (page << ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT),
&info->reg->memadr_reg1);
reg_val = readl(&info->reg->memadr_reg2);
reg_val &= ~ARASAN_NAND_MEM_ADDR2_PAGE_MASK;
reg_val |= (page_addr >> ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT);
writel(reg_val, &info->reg->memadr_reg2);
writel(curr_cmd->pgm, &info->reg->pgm_reg);
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout) {
printf("ERROR:%s timedout:Xfer CMPLT\n", __func__);
return -ETIMEDOUT;
}
reg_val = readl(&info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->intsts_reg);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_reg);
return 0;
}
static int arasan_nand_read_status(struct arasan_nand_command_format *curr_cmd,
int column, int page_addr, struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 reg_val;
u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
u8 addr_cycles;
writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->cmd_reg);
reg_val &= ~ARASAN_NAND_CMD_CMD12_MASK;
reg_val |= curr_cmd->cmd1 |
(curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
addr_cycles = arasan_nand_get_addrcycle(mtd);
if (addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
return ERR_ADDR_CYCLE;
reg_val &= ~ARASAN_NAND_CMD_ADDR_CYCL_MASK;
reg_val |= (addr_cycles <<
ARASAN_NAND_CMD_ADDR_CYCL_SHIFT);
writel(reg_val, &info->reg->cmd_reg);
reg_val = readl(&info->reg->pkt_reg);
reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
reg_val |= (1 << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) | 1;
writel(reg_val, &info->reg->pkt_reg);
writel(curr_cmd->pgm, &info->reg->pgm_reg);
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout) {
printf("ERROR:%s: timedout:Xfer CMPLT\n", __func__);
return -ETIMEDOUT;
}
reg_val = readl(&info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->intsts_reg);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_reg);
return 0;
}
static int arasan_nand_send_rdcmd(struct arasan_nand_command_format *curr_cmd,
int column, int page_addr, struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 reg_val, addr_cycles, page;
u8 page_val;
reg_val = readl(&info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->cmd_reg);
reg_val &= ~ARASAN_NAND_CMD_CMD12_MASK;
reg_val |= curr_cmd->cmd1 |
(curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
if (curr_cmd->cmd1 == NAND_CMD_RNDOUT ||
curr_cmd->cmd1 == NAND_CMD_READ0) {
reg_val &= ~ARASAN_NAND_CMD_PG_SIZE_MASK;
page_val = arasan_nand_page(mtd);
reg_val |= (page_val << ARASAN_NAND_CMD_PG_SIZE_SHIFT);
}
reg_val &= ~ARASAN_NAND_CMD_ECC_ON_MASK;
reg_val &= ~ARASAN_NAND_CMD_ADDR_CYCL_MASK;
addr_cycles = arasan_nand_get_addrcycle(mtd);
if (addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
return ERR_ADDR_CYCLE;
reg_val |= (addr_cycles << 28);
writel(reg_val, &info->reg->cmd_reg);
if (page_addr == -1)
page_addr = 0;
page = (page_addr << ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT) &
ARASAN_NAND_MEM_ADDR1_PAGE_MASK;
column &= ARASAN_NAND_MEM_ADDR1_COL_MASK;
writel(page | column, &info->reg->memadr_reg1);
reg_val = readl(&info->reg->memadr_reg2);
reg_val &= ~ARASAN_NAND_MEM_ADDR2_PAGE_MASK;
reg_val |= (page_addr >> ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT);
writel(reg_val, &info->reg->memadr_reg2);
buf_index = 0;
return 0;
}
static void arasan_nand_read_buf(struct mtd_info *mtd, u8 *buf, int size)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 reg_val, i;
u32 *bufptr = (u32 *)buf;
u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
reg_val = readl(&info->reg->pkt_reg);
reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
reg_val |= (1 << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) | size;
writel(reg_val, &info->reg->pkt_reg);
writel(curr_cmd->pgm, &info->reg->pgm_reg);
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout)
puts("ERROR:arasan_nand_read_buf timedout:Buff RDY\n");
reg_val = readl(&info->reg->intsts_enr);
reg_val |= ARASAN_NAND_INT_STS_XFR_CMPLT_MASK;
writel(reg_val, &info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->intsts_reg);
writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
&info->reg->intsts_reg);
buf_index = 0;
for (i = 0; i < size / 4; i++)
bufptr[i] = readl(&info->reg->buf_dataport);
if (size & 0x03)
bufptr[i] = readl(&info->reg->buf_dataport);
timeout = ARASAN_NAND_POLL_TIMEOUT;
while (!(readl(&info->reg->intsts_reg) &
ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
udelay(1);
timeout--;
}
if (!timeout)
puts("ERROR:arasan_nand_read_buf timedout:Xfer CMPLT\n");
reg_val = readl(&info->reg->intsts_enr);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
reg_val = readl(&info->reg->intsts_reg);
writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_reg);
}
static u8 arasan_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
u32 size;
u8 val;
struct nand_onfi_params *p;
if (buf_index == 0) {
p = &chip->onfi_params;
if (curr_cmd->cmd1 == NAND_CMD_READID)
size = 4;
else if (curr_cmd->cmd1 == NAND_CMD_PARAM)
size = sizeof(struct nand_onfi_params);
else if (curr_cmd->cmd1 == NAND_CMD_RNDOUT)
size = le16_to_cpu(p->ext_param_page_length) * 16;
else if (curr_cmd->cmd1 == NAND_CMD_GET_FEATURES)
size = 4;
else if (curr_cmd->cmd1 == NAND_CMD_STATUS)
return readb(&info->reg->flash_sts_reg);
else
size = 8;
chip->read_buf(mtd, &buf_data[0], size);
}
val = *(&buf_data[0] + buf_index);
buf_index++;
return val;
}
static void arasan_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(chip);
struct nand_config *nand = &info->config;
u32 i, ret = 0;
curr_cmd = NULL;
writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
&info->reg->intsts_enr);
if ((command == NAND_CMD_READOOB) &&
(mtd->writesize > 512)) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* Get the command format */
for (i = 0; (arasan_nand_commands[i].cmd1 != NAND_CMD_NONE ||
arasan_nand_commands[i].cmd2 != NAND_CMD_NONE); i++) {
if (command == arasan_nand_commands[i].cmd1) {
curr_cmd = &arasan_nand_commands[i];
break;
}
}
if (curr_cmd == NULL) {
printf("Unsupported Command; 0x%x\n", command);
return;
}
if (curr_cmd->cmd1 == NAND_CMD_RESET)
ret = arasan_nand_reset(mtd, curr_cmd);
if ((curr_cmd->cmd1 == NAND_CMD_READID) ||
(curr_cmd->cmd1 == NAND_CMD_PARAM) ||
(curr_cmd->cmd1 == NAND_CMD_RNDOUT) ||
(curr_cmd->cmd1 == NAND_CMD_GET_FEATURES) ||
(curr_cmd->cmd1 == NAND_CMD_READ0))
ret = arasan_nand_send_rdcmd(curr_cmd, column, page_addr, mtd);
if ((curr_cmd->cmd1 == NAND_CMD_SET_FEATURES) ||
(curr_cmd->cmd1 == NAND_CMD_SEQIN)) {
nand->page = page_addr;
ret = arasan_nand_send_wrcmd(curr_cmd, column, page_addr, mtd);
}
if (curr_cmd->cmd1 == NAND_CMD_ERASE1)
ret = arasan_nand_erase(curr_cmd, column, page_addr, mtd);
if (curr_cmd->cmd1 == NAND_CMD_STATUS)
ret = arasan_nand_read_status(curr_cmd, column, page_addr, mtd);
if (ret != 0)
printf("ERROR:%s:command:0x%x\n", __func__, curr_cmd->cmd1);
}
static void arasan_check_ondie(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(nand_chip);
struct nand_config *nand = &info->config;
u8 maf_id, dev_id;
u8 get_feature[4];
u8 set_feature[4] = {ENABLE_ONDIE_ECC, 0x00, 0x00, 0x00};
u32 i;
nand_chip->select_chip(mtd, 0);
/* Send the command for reading device ID */
nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0, -1);
/* Read manufacturer and device IDs */
maf_id = nand_chip->read_byte(mtd);
dev_id = nand_chip->read_byte(mtd);
if ((maf_id == NAND_MFR_MICRON) &&
((dev_id == 0xf1) || (dev_id == 0xa1) || (dev_id == 0xb1) ||
(dev_id == 0xaa) || (dev_id == 0xba) || (dev_id == 0xda) ||
(dev_id == 0xca) || (dev_id == 0xac) || (dev_id == 0xbc) ||
(dev_id == 0xdc) || (dev_id == 0xcc) || (dev_id == 0xa3) ||
(dev_id == 0xb3) || (dev_id == 0xd3) || (dev_id == 0xc3))) {
nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,
ONDIE_ECC_FEATURE_ADDR, -1);
nand_chip->write_buf(mtd, &set_feature[0], 4);
nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
ONDIE_ECC_FEATURE_ADDR, -1);
for (i = 0; i < 4; i++)
get_feature[i] = nand_chip->read_byte(mtd);
if (get_feature[0] & ENABLE_ONDIE_ECC) {
nand->on_die_ecc_enabled = true;
printf("On-DIE ECC Enabled\n");
} else {
printf("%s: Unable to enable OnDie ECC\n", __func__);
}
/* Use the BBT pattern descriptors */
nand_chip->bbt_td = &bbt_main_descr;
nand_chip->bbt_md = &bbt_mirror_descr;
}
}
static int arasan_nand_ecc_init(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *info = nand_get_controller_data(nand_chip);
int found = -1;
u32 regval, eccpos_start, i, eccaddr;
for (i = 0; i < ARRAY_SIZE(ecc_matrix); i++) {
if ((ecc_matrix[i].pagesize == mtd->writesize) &&
(ecc_matrix[i].ecc_codeword_size >=
nand_chip->ecc_step_ds)) {
if (ecc_matrix[i].eccbits >=
nand_chip->ecc_strength_ds) {
found = i;
break;
}
found = i;
}
}
if (found < 0)
return 1;
eccaddr = mtd->writesize + mtd->oobsize -
ecc_matrix[found].eccsize;
regval = eccaddr |
(ecc_matrix[found].eccsize << ARASAN_NAND_ECC_SIZE_SHIFT) |
(ecc_matrix[found].bch << ARASAN_NAND_ECC_BCH_SHIFT);
writel(regval, &info->reg->ecc_reg);
if (ecc_matrix[found].bch) {
regval = readl(&info->reg->memadr_reg2);
regval &= ~ARASAN_NAND_MEM_ADDR2_BCH_MASK;
regval |= (ecc_matrix[found].bchval <<
ARASAN_NAND_MEM_ADDR2_BCH_SHIFT);
writel(regval, &info->reg->memadr_reg2);
}
nand_oob.eccbytes = ecc_matrix[found].eccsize;
eccpos_start = mtd->oobsize - nand_oob.eccbytes;
for (i = 0; i < nand_oob.eccbytes; i++)
nand_oob.eccpos[i] = eccpos_start + i;
nand_oob.oobfree[0].offset = 2;
nand_oob.oobfree[0].length = eccpos_start - 2;
nand_chip->ecc.size = ecc_matrix[found].ecc_codeword_size;
nand_chip->ecc.strength = ecc_matrix[found].eccbits;
nand_chip->ecc.bytes = ecc_matrix[found].eccsize;
nand_chip->ecc.layout = &nand_oob;
return 0;
}
static int arasan_probe(struct udevice *dev)
{
struct arasan_nand_info *arasan = dev_get_priv(dev);
struct nand_chip *nand_chip = &arasan->nand_chip;
struct nand_drv *info = &arasan->nand_ctrl;
struct nand_config *nand = &info->config;
struct mtd_info *mtd;
ofnode child;
int err = -1;
info->reg = dev_read_addr_ptr(dev);
mtd = nand_to_mtd(nand_chip);
nand_set_controller_data(nand_chip, &arasan->nand_ctrl);
ofnode_for_each_subnode(child, dev_ofnode(dev))
nand_set_flash_node(nand_chip, child);
#ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
#endif
/* Set the driver entry points for MTD */
nand_chip->cmdfunc = arasan_nand_cmd_function;
nand_chip->select_chip = arasan_nand_select_chip;
nand_chip->read_byte = arasan_nand_read_byte;
/* Buffer read/write routines */
nand_chip->read_buf = arasan_nand_read_buf;
nand_chip->write_buf = arasan_nand_write_buf;
writel(0x0, &info->reg->cmd_reg);
writel(0x0, &info->reg->pgm_reg);
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL)) {
printf("%s: nand_scan_ident failed\n", __func__);
goto fail;
}
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.hwctl = NULL;
nand_chip->ecc.read_page = arasan_nand_read_page_hwecc;
nand_chip->ecc.write_page = arasan_nand_write_page_hwecc;
nand_chip->ecc.read_oob = arasan_nand_read_oob;
nand_chip->ecc.write_oob = arasan_nand_write_oob;
arasan_check_ondie(mtd);
/*
* If on die supported, then give priority to on-die ecc and use
* it instead of controller ecc.
*/
if (nand->on_die_ecc_enabled) {
nand_chip->ecc.strength = 1;
nand_chip->ecc.size = mtd->writesize;
nand_chip->ecc.bytes = 0;
nand_chip->ecc.layout = &ondie_nand_oob_64;
} else {
if (arasan_nand_ecc_init(mtd)) {
printf("%s: nand_ecc_init failed\n", __func__);
goto fail;
}
}
if (nand_scan_tail(mtd)) {
printf("%s: nand_scan_tail failed\n", __func__);
goto fail;
}
if (nand_register(0, mtd)) {
printf("Nand Register Fail\n");
goto fail;
}
return 0;
fail:
free(nand);
return err;
}
static const struct udevice_id arasan_nand_dt_ids[] = {
{.compatible = "arasan,nfc-v3p10",},
{ /* sentinel */ }
};
U_BOOT_DRIVER(arasan_nand) = {
.name = "arasan_nand",
.id = UCLASS_MTD,
.of_match = arasan_nand_dt_ids,
.probe = arasan_probe,
.priv_auto = sizeof(struct arasan_nand_info),
};
void board_nand_init(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
DM_DRIVER_GET(arasan_nand), &dev);
if (ret && ret != -ENODEV)
pr_err("Failed to initialize %s. (error %d)\n", dev->name, ret);
}