u-boot/board/Marvell/octeon_ebb7304/board.c
Marek Behún 3058e283b8 fdt_support: Add fdt_for_each_node_by_compatible() helper macro
Add macro fdt_for_each_node_by_compatible() to allow iterating over
fdt nodes by compatible string.

Convert various usages of
    off = fdt_node_offset_by_compatible(fdt, start, compat);
    while (off > 0) {
        code();
        off = fdt_node_offset_by_compatible(fdt, off, compat);
    }
and similar, to
    fdt_for_each_node_by_compatible(off, fdt, start, compat)
        code();

Signed-off-by: Marek Behún <marek.behun@nic.cz>
Reviewed-by: Stefan Roese <sr@denx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
2022-01-20 11:35:29 +01:00

750 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Stefan Roese <sr@denx.de>
*/
#include <dm.h>
#include <fdt_support.h>
#include <ram.h>
#include <asm/gpio.h>
#include <mach/octeon_ddr.h>
#include <mach/cvmx-qlm.h>
#include <mach/octeon_qlm.h>
#include <mach/octeon_fdt.h>
#include <mach/cvmx-helper.h>
#include <mach/cvmx-helper-cfg.h>
#include <mach/cvmx-helper-util.h>
#include <mach/cvmx-bgxx-defs.h>
#include "board_ddr.h"
#define MAX_MIX_ENV_VARS 4
#define EBB7304_DEF_DRAM_FREQ 800
static struct ddr_conf board_ddr_conf[] = {
OCTEON_EBB7304_DDR_CONFIGURATION
};
static int no_phy[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
struct ddr_conf *octeon_ddr_conf_table_get(int *count, int *def_ddr_freq)
{
*count = ARRAY_SIZE(board_ddr_conf);
*def_ddr_freq = EBB7304_DEF_DRAM_FREQ;
return board_ddr_conf;
}
/*
* parse_env_var: Parse the environment variable ("bgx_for_mix%d") to
* extract the lmac it is set to.
*
* index: Index of environment variable to parse.
* environment variable.
* env_bgx: Updated with the bgx of the lmac in the environment
* variable.
* env_lmac: Updated with the index of lmac in the environment
* variable.
*
* returns: Zero on success, error otherwise.
*/
static int parse_env_var(int index, int *env_bgx, int *env_lmac)
{
char env_var[20];
ulong xipd_port;
sprintf(env_var, "bgx_for_mix%d", index);
xipd_port = env_get_ulong(env_var, 0, 0xffff);
if (xipd_port != 0xffff) {
int xiface;
struct cvmx_xiface xi;
struct cvmx_xport xp;
/*
* The environemt variable is set to the xipd port. Convert the
* xipd port to numa node, bgx, and lmac.
*/
xiface = cvmx_helper_get_interface_num(xipd_port);
xi = cvmx_helper_xiface_to_node_interface(xiface);
xp = cvmx_helper_ipd_port_to_xport(xipd_port);
*env_bgx = xi.interface;
*env_lmac = cvmx_helper_get_interface_index_num(xp.port);
return 0;
}
return -1;
}
/*
* get_lmac_fdt_node: Search the device tree for the node corresponding to
* a given bgx lmac.
*
* fdt: Pointer to flat device tree
* search_node: Numa node of the lmac to search for.
* search_bgx: Bgx of the lmac to search for.
* search_lmac: Lmac index to search for.
* compat: Compatible string to search for.
* returns: The device tree node of the lmac if found,
* or -1 otherwise.
*/
static int get_lmac_fdt_node(const void *fdt, int search_node, int search_bgx, int search_lmac,
const char *compat)
{
int node;
const fdt32_t *reg;
u64 addr;
int fdt_node = -1;
int fdt_bgx = -1;
int fdt_lmac = -1;
int len;
int parent;
/* Iterate through all bgx ports */
fdt_for_each_node_by_compatible(node, (void *)fdt, -1, compat) {
/* Get the node and bgx from the physical address */
parent = fdt_parent_offset(fdt, node);
reg = fdt_getprop(fdt, parent, "reg", &len);
if (parent < 0 || !reg)
continue;
addr = fdt_translate_address((void *)fdt, parent, reg);
fdt_node = (addr >> 36) & 0x7;
fdt_bgx = (addr >> 24) & 0xf;
/* Get the lmac index from the reg property */
reg = fdt_getprop(fdt, node, "reg", &len);
if (reg)
fdt_lmac = *reg;
/* Check for a match */
if (search_node == fdt_node && search_bgx == fdt_bgx &&
search_lmac == fdt_lmac)
return node;
}
return -1;
}
/*
* get_mix_fdt_node: Search the device tree for the node corresponding to
* a given mix.
*
* fdt: Pointer to flat device tree
* search_node: Mix numa node to search for.
* search_index: Mix index to search for.
*
* returns: The device tree node of the lmac if found,
* or -1 otherwise.
*/
static int get_mix_fdt_node(const void *fdt, int search_node, int search_index)
{
int node;
/* Iterate through all the mix fdt nodes */
fdt_for_each_node_by_compatible(node, (void *)fdt, -1,
"cavium,octeon-7890-mix") {
int parent;
int len;
const char *name;
int mix_numa_node;
const fdt32_t *reg;
int mix_index = -1;
u64 addr;
/* Get the numa node of the mix from the parent node name */
parent = fdt_parent_offset(fdt, node);
if (parent < 0 ||
((name = fdt_get_name(fdt, parent, &len)) == NULL) ||
((name = strchr(name, '@')) == NULL))
continue;
name++;
mix_numa_node = simple_strtol(name, NULL, 0) ? 1 : 0;
/* Get the mix index from the reg property */
reg = fdt_getprop(fdt, node, "reg", &len);
if (reg) {
addr = fdt_translate_address((void *)fdt, parent, reg);
mix_index = (addr >> 11) & 1;
}
/* Check for a match */
if (mix_numa_node == search_node && mix_index == search_index)
return node;
}
return -1;
}
/*
* fdt_fix_mix: Fix the mix nodes in the device tree. Only the mix nodes
* configured by the user will be preserved. All other mix
* nodes will be trimmed.
*
* fdt: Pointer to flat device tree
*
* returns: Zero on success, error otherwise.
*/
static int fdt_fix_mix(const void *fdt)
{
int node;
int next_node;
int len;
int i;
/* Parse all the mix port environment variables */
for (i = 0; i < MAX_MIX_ENV_VARS; i++) {
int env_node = 0;
int env_bgx = -1;
int env_lmac = -1;
int lmac_fdt_node = -1;
int mix_fdt_node = -1;
unsigned int lmac_phandle;
char *compat;
/* Get the lmac for this environment variable */
if (parse_env_var(i, &env_bgx, &env_lmac))
continue;
/* Get the fdt node for this lmac and add a phandle to it */
compat = "cavium,octeon-7890-bgx-port";
lmac_fdt_node = get_lmac_fdt_node(fdt, env_node, env_bgx,
env_lmac, compat);
if (lmac_fdt_node < 0) {
/* Must check for the xcv compatible string too */
compat = "cavium,octeon-7360-xcv";
lmac_fdt_node = get_lmac_fdt_node(fdt, env_node,
env_bgx, env_lmac,
compat);
if (lmac_fdt_node < 0) {
printf("WARNING: Failed to get lmac fdt node for %d%d%d\n",
env_node, env_bgx, env_lmac);
continue;
}
}
lmac_phandle = fdt_create_phandle((void *)fdt, lmac_fdt_node);
/* Get the fdt mix node corresponding to this lmac */
mix_fdt_node = get_mix_fdt_node(fdt, env_node, env_lmac);
if (mix_fdt_node < 0)
continue;
/* Point the mix to the lmac */
fdt_getprop(fdt, mix_fdt_node, "cavium,mac-handle", &len);
fdt_setprop_inplace((void *)fdt, mix_fdt_node,
"cavium,mac-handle", &lmac_phandle, len);
}
/* Trim unused mix'es from the device tree */
for (node = fdt_next_node(fdt, -1, NULL); node >= 0; node = next_node) {
const char *compat;
const fdt32_t *reg;
next_node = fdt_next_node(fdt, node, NULL);
compat = fdt_getprop(fdt, node, "compatible", &len);
if (compat) {
if (strcmp(compat, "cavium,octeon-7890-mix"))
continue;
reg = fdt_getprop(fdt, node, "cavium,mac-handle", &len);
if (reg) {
if (*reg == 0xffff)
fdt_nop_node((void *)fdt, node);
}
}
}
return 0;
}
static void kill_fdt_phy(void *fdt, int offset, void *arg)
{
int len, phy_offset;
const fdt32_t *php;
u32 phandle;
php = fdt_getprop(fdt, offset, "phy-handle", &len);
if (php && len == sizeof(*php)) {
phandle = fdt32_to_cpu(*php);
fdt_nop_property(fdt, offset, "phy-handle");
phy_offset = fdt_node_offset_by_phandle(fdt, phandle);
if (phy_offset > 0)
fdt_nop_node(fdt, phy_offset);
}
}
void __fixup_xcv(void)
{
unsigned long bgx = env_get_ulong("bgx_for_rgmii", 10,
(unsigned long)-1);
char fdt_key[16];
int i;
debug("%s: BGX %d\n", __func__, (int)bgx);
for (i = 0; i < 3; i++) {
snprintf(fdt_key, sizeof(fdt_key),
bgx == i ? "%d,xcv" : "%d,not-xcv", i);
debug("%s: trimming bgx %lu with key %s\n",
__func__, bgx, fdt_key);
octeon_fdt_patch_rename((void *)gd->fdt_blob, fdt_key,
"cavium,xcv-trim", true, NULL, NULL);
}
}
/* QLM0 - QLM6 */
void __fixup_fdt(void)
{
int qlm;
int speed = 0;
for (qlm = 0; qlm < 7; qlm++) {
enum cvmx_qlm_mode mode;
char fdt_key[16];
const char *type_str = "none";
mode = cvmx_qlm_get_mode(qlm);
switch (mode) {
case CVMX_QLM_MODE_SGMII:
case CVMX_QLM_MODE_RGMII_SGMII:
case CVMX_QLM_MODE_RGMII_SGMII_1X1:
type_str = "sgmii";
break;
case CVMX_QLM_MODE_XAUI:
case CVMX_QLM_MODE_RGMII_XAUI:
speed = (cvmx_qlm_get_gbaud_mhz(qlm) * 8 / 10) * 4;
if (speed == 10000)
type_str = "xaui";
else
type_str = "dxaui";
break;
case CVMX_QLM_MODE_RXAUI:
case CVMX_QLM_MODE_RGMII_RXAUI:
type_str = "rxaui";
break;
case CVMX_QLM_MODE_XLAUI:
case CVMX_QLM_MODE_RGMII_XLAUI:
type_str = "xlaui";
break;
case CVMX_QLM_MODE_XFI:
case CVMX_QLM_MODE_RGMII_XFI:
case CVMX_QLM_MODE_RGMII_XFI_1X1:
type_str = "10gbase-r";
break;
case CVMX_QLM_MODE_10G_KR:
case CVMX_QLM_MODE_RGMII_10G_KR:
type_str = "10G_KR";
break;
case CVMX_QLM_MODE_40G_KR4:
case CVMX_QLM_MODE_RGMII_40G_KR4:
type_str = "40G_KR4";
break;
case CVMX_QLM_MODE_SATA_2X1:
type_str = "sata";
break;
case CVMX_QLM_MODE_SGMII_2X1:
case CVMX_QLM_MODE_XFI_1X2:
case CVMX_QLM_MODE_10G_KR_1X2:
case CVMX_QLM_MODE_RXAUI_1X2:
case CVMX_QLM_MODE_MIXED: // special for DLM5 & DLM6
{
cvmx_bgxx_cmrx_config_t cmr_config;
cvmx_bgxx_spux_br_pmd_control_t pmd_control;
int mux = cvmx_qlm_mux_interface(2);
if (mux == 2) { // only dlm6
cmr_config.u64 = csr_rd(CVMX_BGXX_CMRX_CONFIG(2, 2));
pmd_control.u64 =
csr_rd(CVMX_BGXX_SPUX_BR_PMD_CONTROL(2, 2));
} else {
if (qlm == 5) {
cmr_config.u64 =
csr_rd(CVMX_BGXX_CMRX_CONFIG(0, 2));
pmd_control.u64 =
csr_rd(CVMX_BGXX_SPUX_BR_PMD_CONTROL(0, 2));
} else {
cmr_config.u64 =
csr_rd(CVMX_BGXX_CMRX_CONFIG(2, 2));
pmd_control.u64 =
csr_rd(CVMX_BGXX_SPUX_BR_PMD_CONTROL(2, 2));
}
}
switch (cmr_config.s.lmac_type) {
case 0:
type_str = "sgmii";
break;
case 1:
type_str = "xaui";
break;
case 2:
type_str = "rxaui";
break;
case 3:
if (pmd_control.s.train_en)
type_str = "10G_KR";
else
type_str = "10gbase-r";
break;
case 4:
if (pmd_control.s.train_en)
type_str = "40G_KR4";
else
type_str = "xlaui";
break;
default:
type_str = "none";
break;
}
break;
}
default:
type_str = "none";
break;
}
sprintf(fdt_key, "%d,%s", qlm, type_str);
debug("Patching qlm %d for %s for mode %d%s\n", qlm, fdt_key, mode,
no_phy[qlm] ? ", removing PHY" : "");
octeon_fdt_patch_rename((void *)gd->fdt_blob, fdt_key, NULL, true,
no_phy[qlm] ? kill_fdt_phy : NULL, NULL);
}
}
int board_fix_fdt(void)
{
__fixup_fdt();
__fixup_xcv();
/* Fix the mix ports */
fdt_fix_mix(gd->fdt_blob);
return 0;
}
/*
* Here is the description of the parameters that are passed to QLM
* configuration:
*
* param0 : The QLM to configure
* param1 : Speed to configure the QLM at
* param2 : Mode the QLM to configure
* param3 : 1 = RC, 0 = EP
* param4 : 0 = GEN1, 1 = GEN2, 2 = GEN3
* param5 : ref clock select, 0 = 100Mhz, 1 = 125MHz, 2 = 156MHz
* param6 : ref clock input to use:
* 0 - external reference (QLMx_REF_CLK)
* 1 = common clock 0 (QLMC_REF_CLK0)
* 2 = common_clock 1 (QLMC_REF_CLK1)
*/
static void board_configure_qlms(void)
{
int speed[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
int mode[8] = { -1, -1, -1, -1, -1, -1, -1, -1 };
int pcie_rc[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
int pcie_gen[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
int ref_clock_sel[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
int ref_clock_input[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
struct gpio_desc desc;
int rbgx, rqlm;
char env_var[16];
int qlm;
int ret;
/* RGMII PHY reset GPIO */
ret = dm_gpio_lookup_name("gpio-controllerA27", &desc);
if (ret)
debug("gpio ret=%d\n", ret);
ret = dm_gpio_request(&desc, "rgmii_phy_reset");
if (ret)
debug("gpio_request ret=%d\n", ret);
ret = dm_gpio_set_dir_flags(&desc, GPIOD_IS_OUT);
if (ret)
debug("gpio dir ret=%d\n", ret);
/* Put RGMII PHY in reset */
dm_gpio_set_value(&desc, 0);
octeon_init_qlm(0);
rbgx = env_get_ulong("bgx_for_rgmii", 10, (unsigned long)-1);
switch (rbgx) {
case 0:
rqlm = 2;
break;
case 1:
rqlm = 3;
break;
case 2:
rqlm = 5;
break;
default:
rqlm = -1;
break;
}
for (qlm = 0; qlm < 7; qlm++) {
const char *mode_str;
char spd_env[16];
mode[qlm] = CVMX_QLM_MODE_DISABLED;
sprintf(env_var, "qlm%d_mode", qlm);
mode_str = env_get(env_var);
if (!mode_str)
continue;
if (qlm == 4 && mode[4] != -1 &&
mode[4] != CVMX_QLM_MODE_SATA_2X1) {
printf("Error: DLM 4 can only be configured for SATA\n");
continue;
}
if (strstr(mode_str, ",no_phy"))
no_phy[qlm] = 1;
if (!strncmp(mode_str, "sgmii", 5)) {
bool rgmii = false;
speed[qlm] = 1250;
if (rqlm == qlm && qlm < 5) {
mode[qlm] = CVMX_QLM_MODE_RGMII_SGMII;
rgmii = true;
} else if (qlm == 6 || qlm == 5) {
if (rqlm == qlm && qlm == 5) {
mode[qlm] = CVMX_QLM_MODE_RGMII_SGMII_1X1;
rgmii = true;
} else if (rqlm == 5 && qlm == 6 &&
mode[5] != CVMX_QLM_MODE_RGMII_SGMII_1X1) {
mode[qlm] = CVMX_QLM_MODE_RGMII_SGMII_2X1;
rgmii = true;
} else {
mode[qlm] = CVMX_QLM_MODE_SGMII_2X1;
}
} else {
mode[qlm] = CVMX_QLM_MODE_SGMII;
}
ref_clock_sel[qlm] = 2;
if (qlm == 5 || qlm == 6)
ref_clock_input[qlm] = 2; // use QLMC_REF_CLK1
if (no_phy[qlm]) {
int i;
int start = 0, stop = 2;
rbgx = 0;
switch (qlm) {
case 3:
rbgx = 1;
case 2:
for (i = 0; i < 4; i++) {
printf("Ignoring PHY for interface: %d, port: %d\n",
rbgx, i);
cvmx_helper_set_port_force_link_up(rbgx, i, true);
}
break;
case 6:
start = 2;
stop = 4;
case 5:
for (i = start; i < stop; i++) {
printf("Ignoring PHY for interface: %d, port: %d\n",
2, i);
cvmx_helper_set_port_force_link_up(2, i, true);
}
break;
default:
printf("SGMII not supported for QLM/DLM %d\n",
qlm);
break;
}
}
printf("QLM %d: SGMII%s\n",
qlm, rgmii ? ", RGMII" : "");
} else if (!strncmp(mode_str, "xaui", 4)) {
speed[qlm] = 3125;
mode[qlm] = CVMX_QLM_MODE_XAUI;
ref_clock_sel[qlm] = 2;
if (qlm == 5 || qlm == 6)
ref_clock_input[qlm] = 2; // use QLMC_REF_CLK1
printf("QLM %d: XAUI\n", qlm);
} else if (!strncmp(mode_str, "dxaui", 5)) {
speed[qlm] = 6250;
mode[qlm] = CVMX_QLM_MODE_XAUI;
ref_clock_sel[qlm] = 2;
if (qlm == 5 || qlm == 6)
ref_clock_input[qlm] = 2; // use QLMC_REF_CLK1
printf("QLM %d: DXAUI\n", qlm);
} else if (!strncmp(mode_str, "rxaui", 5)) {
bool rgmii = false;
speed[qlm] = 6250;
if (qlm == 5 || qlm == 6) {
if (rqlm == qlm && qlm == 5) {
mode[qlm] = CVMX_QLM_MODE_RGMII_RXAUI;
rgmii = true;
} else {
mode[qlm] = CVMX_QLM_MODE_RXAUI_1X2;
}
} else {
mode[qlm] = CVMX_QLM_MODE_RXAUI;
}
ref_clock_sel[qlm] = 2;
if (qlm == 5 || qlm == 6)
ref_clock_input[qlm] = 2; // use QLMC_REF_CLK1
printf("QLM %d: RXAUI%s\n",
qlm, rgmii ? ", rgmii" : "");
} else if (!strncmp(mode_str, "xlaui", 5)) {
speed[qlm] = 103125;
mode[qlm] = CVMX_QLM_MODE_XLAUI;
ref_clock_sel[qlm] = 2;
if (qlm == 5 || qlm == 6)
ref_clock_input[qlm] = 2; // use QLMC_REF_CLK1
sprintf(spd_env, "qlm%d_speed", qlm);
if (env_get(spd_env)) {
int spd = env_get_ulong(spd_env, 0, 8);
if (spd)
speed[qlm] = spd;
else
speed[qlm] = 103125;
}
printf("QLM %d: XLAUI\n", qlm);
} else if (!strncmp(mode_str, "10gbase-r", 3)) {
bool rgmii = false;
speed[qlm] = 103125;
if (rqlm == qlm) {
mode[qlm] = CVMX_QLM_MODE_RGMII_XFI;
rgmii = true;
} else if (qlm == 5 || qlm == 6) {
mode[qlm] = CVMX_QLM_MODE_XFI_1X2;
} else {
mode[qlm] = CVMX_QLM_MODE_XFI;
}
ref_clock_sel[qlm] = 2;
if (qlm == 5 || qlm == 6)
ref_clock_input[qlm] = 2; // use QLMC_REF_CLK1
printf("QLM %d: XFI%s\n", qlm, rgmii ? ", RGMII" : "");
} else if (!strncmp(mode_str, "10G_KR", 6)) {
speed[qlm] = 103125;
if (rqlm == qlm && qlm == 5)
mode[qlm] = CVMX_QLM_MODE_RGMII_10G_KR;
else if (qlm == 5 || qlm == 6)
mode[qlm] = CVMX_QLM_MODE_10G_KR_1X2;
else
mode[qlm] = CVMX_QLM_MODE_10G_KR;
ref_clock_sel[qlm] = 2;
if (qlm == 5 || qlm == 6)
ref_clock_input[qlm] = 2; // use QLMC_REF_CLK1
printf("QLM %d: 10G_KR\n", qlm);
} else if (!strncmp(mode_str, "40G_KR4", 7)) {
speed[qlm] = 103125;
mode[qlm] = CVMX_QLM_MODE_40G_KR4;
ref_clock_sel[qlm] = 2;
if (qlm == 5 || qlm == 6)
ref_clock_input[qlm] = 2; // use QLMC_REF_CLK1
printf("QLM %d: 40G_KR4\n", qlm);
} else if (!strcmp(mode_str, "pcie")) {
char *pmode;
int lanes = 0;
sprintf(env_var, "pcie%d_mode", qlm);
pmode = env_get(env_var);
if (pmode && !strcmp(pmode, "ep"))
pcie_rc[qlm] = 0;
else
pcie_rc[qlm] = 1;
sprintf(env_var, "pcie%d_gen", qlm);
pcie_gen[qlm] = env_get_ulong(env_var, 0, 3);
sprintf(env_var, "pcie%d_lanes", qlm);
lanes = env_get_ulong(env_var, 0, 8);
if (lanes == 8) {
mode[qlm] = CVMX_QLM_MODE_PCIE_1X8;
} else if (qlm == 5 || qlm == 6) {
if (lanes != 2) {
printf("QLM%d: Invalid lanes selected, defaulting to 2 lanes\n",
qlm);
}
mode[qlm] = CVMX_QLM_MODE_PCIE_1X2;
ref_clock_input[qlm] = 1; // use QLMC_REF_CLK0
} else {
mode[qlm] = CVMX_QLM_MODE_PCIE;
}
ref_clock_sel[qlm] = 0;
printf("QLM %d: PCIe gen%d %s, x%d lanes\n",
qlm, pcie_gen[qlm] + 1,
pcie_rc[qlm] ? "root complex" : "endpoint",
lanes);
} else if (!strcmp(mode_str, "sata")) {
mode[qlm] = CVMX_QLM_MODE_SATA_2X1;
ref_clock_sel[qlm] = 0;
ref_clock_input[qlm] = 1;
sprintf(spd_env, "qlm%d_speed", qlm);
if (env_get(spd_env)) {
int spd = env_get_ulong(spd_env, 0, 8);
if (spd == 1500 || spd == 3000 || spd == 3000)
speed[qlm] = spd;
else
speed[qlm] = 6000;
} else {
speed[qlm] = 6000;
}
} else {
printf("QLM %d: disabled\n", qlm);
}
}
for (qlm = 0; qlm < 7; qlm++) {
int rc;
if (mode[qlm] == -1)
continue;
debug("Configuring qlm%d with speed(%d), mode(%d), RC(%d), Gen(%d), REF_CLK(%d), CLK_SOURCE(%d)\n",
qlm, speed[qlm], mode[qlm], pcie_rc[qlm],
pcie_gen[qlm] + 1,
ref_clock_sel[qlm], ref_clock_input[qlm]);
rc = octeon_configure_qlm(qlm, speed[qlm], mode[qlm],
pcie_rc[qlm], pcie_gen[qlm],
ref_clock_sel[qlm],
ref_clock_input[qlm]);
if (speed[qlm] == 6250) {
if (mode[qlm] == CVMX_QLM_MODE_RXAUI) {
octeon_qlm_tune_v3(0, qlm, speed[qlm], 0x12,
0xa0, -1, -1);
} else {
octeon_qlm_tune_v3(0, qlm, speed[qlm], 0xa,
0xa0, -1, -1);
}
} else if (speed[qlm] == 103125) {
octeon_qlm_tune_v3(0, qlm, speed[qlm], 0xd, 0xd0,
-1, -1);
}
if (qlm == 4 && rc != 0)
/*
* There is a bug with SATA with 73xx. Until it's
* fixed we need to strip it from the device tree.
*/
octeon_fdt_patch_rename((void *)gd->fdt_blob, "4,none",
NULL, true, NULL, NULL);
}
dm_gpio_set_value(&desc, 0); /* Put RGMII PHY in reset */
mdelay(10);
dm_gpio_set_value(&desc, 1); /* Take RGMII PHY out of reset */
}
int board_late_init(void)
{
board_configure_qlms();
return 0;
}