u-boot/board/gateworks/gw_ventana/gw_ventana_spl.c
Tim Harvey 61cf225053 board: gateworks: gw_ventana: use comomn GSC driver
Use the common GSC driver.

This allows us to do some additional cleanup:
 - use the GSC driver functions
 - move waiting for the EEPROM to the SPL int (it will always be ready
   after this)
 - move eeprom functions into eeprom file and elimate GSC_I2C_BUS
 - eliminate some redundant EEPROM reads (the EEPROM must be read in
   SPL before relocation, in SPL after relocation, and in U-Boot init.
   All subsequent uses can use the global structure)
 - remove unnecessary header files and alphabatize includes

Signed-off-by: Tim Harvey <tharvey@gateworks.com>
2022-04-21 12:44:24 +02:00

1069 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2014 Gateworks Corporation
* Author: Tim Harvey <tharvey@gateworks.com>
*/
#include <common.h>
#include <env.h>
#include <gsc.h>
#include <hang.h>
#include <i2c.h>
#include <init.h>
#include <spl.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/mx6-ddr.h>
#include <asm/arch/mx6-pins.h>
#include <asm/arch/sys_proto.h>
#include <asm/mach-imx/mxc_i2c.h>
#include <linux/delay.h>
#include <power/mp5416.h>
#include <power/pmic.h>
#include <power/pfuze100_pmic.h>
#include <power/ltc3676_pmic.h>
#include "common.h"
#define RTT_NOM_120OHM /* use 120ohm Rtt_nom vs 60ohm (lower power) */
#define GSC_EEPROM_DDR_SIZE 0x2B /* enum (512,1024,2048) MB */
#define GSC_EEPROM_DDR_WIDTH 0x2D /* enum (32,64) bit */
/* configure MX6Q/DUAL mmdc DDR io registers */
struct mx6dq_iomux_ddr_regs mx6dq_ddr_ioregs = {
/* SDCLK[0:1], CAS, RAS, Reset: Differential input, 40ohm */
.dram_sdclk_0 = 0x00020030,
.dram_sdclk_1 = 0x00020030,
.dram_cas = 0x00020030,
.dram_ras = 0x00020030,
.dram_reset = 0x00020030,
/* SDCKE[0:1]: 100k pull-up */
.dram_sdcke0 = 0x00003000,
.dram_sdcke1 = 0x00003000,
/* SDBA2: pull-up disabled */
.dram_sdba2 = 0x00000000,
/* SDODT[0:1]: 100k pull-up, 40 ohm */
.dram_sdodt0 = 0x00003030,
.dram_sdodt1 = 0x00003030,
/* SDQS[0:7]: Differential input, 40 ohm */
.dram_sdqs0 = 0x00000030,
.dram_sdqs1 = 0x00000030,
.dram_sdqs2 = 0x00000030,
.dram_sdqs3 = 0x00000030,
.dram_sdqs4 = 0x00000030,
.dram_sdqs5 = 0x00000030,
.dram_sdqs6 = 0x00000030,
.dram_sdqs7 = 0x00000030,
/* DQM[0:7]: Differential input, 40 ohm */
.dram_dqm0 = 0x00020030,
.dram_dqm1 = 0x00020030,
.dram_dqm2 = 0x00020030,
.dram_dqm3 = 0x00020030,
.dram_dqm4 = 0x00020030,
.dram_dqm5 = 0x00020030,
.dram_dqm6 = 0x00020030,
.dram_dqm7 = 0x00020030,
};
/* configure MX6Q/DUAL mmdc GRP io registers */
struct mx6dq_iomux_grp_regs mx6dq_grp_ioregs = {
/* DDR3 */
.grp_ddr_type = 0x000c0000,
.grp_ddrmode_ctl = 0x00020000,
/* disable DDR pullups */
.grp_ddrpke = 0x00000000,
/* ADDR[00:16], SDBA[0:1]: 40 ohm */
.grp_addds = 0x00000030,
/* CS0/CS1/SDBA2/CKE0/CKE1/SDWE: 40 ohm */
.grp_ctlds = 0x00000030,
/* DATA[00:63]: Differential input, 40 ohm */
.grp_ddrmode = 0x00020000,
.grp_b0ds = 0x00000030,
.grp_b1ds = 0x00000030,
.grp_b2ds = 0x00000030,
.grp_b3ds = 0x00000030,
.grp_b4ds = 0x00000030,
.grp_b5ds = 0x00000030,
.grp_b6ds = 0x00000030,
.grp_b7ds = 0x00000030,
};
/* configure MX6SOLO/DUALLITE mmdc DDR io registers */
struct mx6sdl_iomux_ddr_regs mx6sdl_ddr_ioregs = {
/* SDCLK[0:1], CAS, RAS, Reset: Differential input, 40ohm */
.dram_sdclk_0 = 0x00020030,
.dram_sdclk_1 = 0x00020030,
.dram_cas = 0x00020030,
.dram_ras = 0x00020030,
.dram_reset = 0x00020030,
/* SDCKE[0:1]: 100k pull-up */
.dram_sdcke0 = 0x00003000,
.dram_sdcke1 = 0x00003000,
/* SDBA2: pull-up disabled */
.dram_sdba2 = 0x00000000,
/* SDODT[0:1]: 100k pull-up, 40 ohm */
.dram_sdodt0 = 0x00003030,
.dram_sdodt1 = 0x00003030,
/* SDQS[0:7]: Differential input, 40 ohm */
.dram_sdqs0 = 0x00000030,
.dram_sdqs1 = 0x00000030,
.dram_sdqs2 = 0x00000030,
.dram_sdqs3 = 0x00000030,
.dram_sdqs4 = 0x00000030,
.dram_sdqs5 = 0x00000030,
.dram_sdqs6 = 0x00000030,
.dram_sdqs7 = 0x00000030,
/* DQM[0:7]: Differential input, 40 ohm */
.dram_dqm0 = 0x00020030,
.dram_dqm1 = 0x00020030,
.dram_dqm2 = 0x00020030,
.dram_dqm3 = 0x00020030,
.dram_dqm4 = 0x00020030,
.dram_dqm5 = 0x00020030,
.dram_dqm6 = 0x00020030,
.dram_dqm7 = 0x00020030,
};
/* configure MX6SOLO/DUALLITE mmdc GRP io registers */
struct mx6sdl_iomux_grp_regs mx6sdl_grp_ioregs = {
/* DDR3 */
.grp_ddr_type = 0x000c0000,
/* SDQS[0:7]: Differential input, 40 ohm */
.grp_ddrmode_ctl = 0x00020000,
/* disable DDR pullups */
.grp_ddrpke = 0x00000000,
/* ADDR[00:16], SDBA[0:1]: 40 ohm */
.grp_addds = 0x00000030,
/* CS0/CS1/SDBA2/CKE0/CKE1/SDWE: 40 ohm */
.grp_ctlds = 0x00000030,
/* DATA[00:63]: Differential input, 40 ohm */
.grp_ddrmode = 0x00020000,
.grp_b0ds = 0x00000030,
.grp_b1ds = 0x00000030,
.grp_b2ds = 0x00000030,
.grp_b3ds = 0x00000030,
.grp_b4ds = 0x00000030,
.grp_b5ds = 0x00000030,
.grp_b6ds = 0x00000030,
.grp_b7ds = 0x00000030,
};
/* MT41K64M16JT-125 (1Gb density) */
static struct mx6_ddr3_cfg mt41k64m16jt_125 = {
.mem_speed = 1600,
.density = 1,
.width = 16,
.banks = 8,
.rowaddr = 13,
.coladdr = 10,
.pagesz = 2,
.trcd = 1375,
.trcmin = 4875,
.trasmin = 3500,
};
/* MT41K128M16JT-125 (2Gb density) */
static struct mx6_ddr3_cfg mt41k128m16jt_125 = {
.mem_speed = 1600,
.density = 2,
.width = 16,
.banks = 8,
.rowaddr = 14,
.coladdr = 10,
.pagesz = 2,
.trcd = 1375,
.trcmin = 4875,
.trasmin = 3500,
};
/* MT41K256M16HA-125 (4Gb density) */
static struct mx6_ddr3_cfg mt41k256m16ha_125 = {
.mem_speed = 1600,
.density = 4,
.width = 16,
.banks = 8,
.rowaddr = 15,
.coladdr = 10,
.pagesz = 2,
.trcd = 1375,
.trcmin = 4875,
.trasmin = 3500,
};
/* MT41K512M16HA-125 (8Gb density) */
static struct mx6_ddr3_cfg mt41k512m16ha_125 = {
.mem_speed = 1600,
.density = 8,
.width = 16,
.banks = 8,
.rowaddr = 16,
.coladdr = 10,
.pagesz = 2,
.trcd = 1375,
.trcmin = 4875,
.trasmin = 3500,
};
/*
* calibration - these are the various CPU/DDR3 combinations we support
*/
static struct mx6_mmdc_calibration mx6sdl_64x16_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x004C004E,
.p0_mpwldectrl1 = 0x00440044,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x42440247,
.p0_mpdgctrl1 = 0x02310232,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x45424746,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x33382C31,
};
/* TODO: update with calibrated values */
static struct mx6_mmdc_calibration mx6dq_64x64_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x00190017,
.p0_mpwldectrl1 = 0x00140026,
.p1_mpwldectrl0 = 0x0021001C,
.p1_mpwldectrl1 = 0x0011001D,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x43380347,
.p0_mpdgctrl1 = 0x433C034D,
.p1_mpdgctrl0 = 0x032C0324,
.p1_mpdgctrl1 = 0x03310232,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x3C313539,
.p1_mprddlctl = 0x37343141,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x36393C39,
.p1_mpwrdlctl = 0x42344438,
};
/* TODO: update with calibrated values */
static struct mx6_mmdc_calibration mx6sdl_64x64_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x003C003C,
.p0_mpwldectrl1 = 0x001F002A,
.p1_mpwldectrl0 = 0x00330038,
.p1_mpwldectrl1 = 0x0022003F,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x42410244,
.p0_mpdgctrl1 = 0x4234023A,
.p1_mpdgctrl0 = 0x022D022D,
.p1_mpdgctrl1 = 0x021C0228,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x484A4C4B,
.p1_mprddlctl = 0x4B4D4E4B,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x33342B32,
.p1_mpwrdlctl = 0x3933332B,
};
static struct mx6_mmdc_calibration mx6dq_256x16_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x001B0016,
.p0_mpwldectrl1 = 0x000C000E,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x4324033A,
.p0_mpdgctrl1 = 0x00000000,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x40403438,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x40403D36,
};
static struct mx6_mmdc_calibration mx6sdl_256x16_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x00420043,
.p0_mpwldectrl1 = 0x0016001A,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x4238023B,
.p0_mpdgctrl1 = 0x00000000,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x40404849,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x40402E2F,
};
static struct mx6_mmdc_calibration mx6dq_128x32_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x00190017,
.p0_mpwldectrl1 = 0x00140026,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x43380347,
.p0_mpdgctrl1 = 0x433C034D,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x3C313539,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x36393C39,
};
static struct mx6_mmdc_calibration mx6sdl_128x32_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x003C003C,
.p0_mpwldectrl1 = 0x001F002A,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x42410244,
.p0_mpdgctrl1 = 0x4234023A,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x484A4C4B,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x33342B32,
};
static struct mx6_mmdc_calibration mx6dq_128x64_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x00190017,
.p0_mpwldectrl1 = 0x00140026,
.p1_mpwldectrl0 = 0x0021001C,
.p1_mpwldectrl1 = 0x0011001D,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x43380347,
.p0_mpdgctrl1 = 0x433C034D,
.p1_mpdgctrl0 = 0x032C0324,
.p1_mpdgctrl1 = 0x03310232,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x3C313539,
.p1_mprddlctl = 0x37343141,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x36393C39,
.p1_mpwrdlctl = 0x42344438,
};
static struct mx6_mmdc_calibration mx6sdl_128x64_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x003C003C,
.p0_mpwldectrl1 = 0x001F002A,
.p1_mpwldectrl0 = 0x00330038,
.p1_mpwldectrl1 = 0x0022003F,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x42410244,
.p0_mpdgctrl1 = 0x4234023A,
.p1_mpdgctrl0 = 0x022D022D,
.p1_mpdgctrl1 = 0x021C0228,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x484A4C4B,
.p1_mprddlctl = 0x4B4D4E4B,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x33342B32,
.p1_mpwrdlctl = 0x3933332B,
};
static struct mx6_mmdc_calibration mx6dq_256x32_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x001E001A,
.p0_mpwldectrl1 = 0x0026001F,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x43370349,
.p0_mpdgctrl1 = 0x032D0327,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x3D303639,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x32363934,
};
static struct mx6_mmdc_calibration mx6sdl_256x32_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0X00480047,
.p0_mpwldectrl1 = 0X003D003F,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0X423E0241,
.p0_mpdgctrl1 = 0X022B022C,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0X49454A4A,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0X2E372C32,
};
static struct mx6_mmdc_calibration mx6dq_256x64_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0X00220021,
.p0_mpwldectrl1 = 0X00200030,
.p1_mpwldectrl0 = 0X002D0027,
.p1_mpwldectrl1 = 0X00150026,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x43330342,
.p0_mpdgctrl1 = 0x0339034A,
.p1_mpdgctrl0 = 0x032F0325,
.p1_mpdgctrl1 = 0x032F022E,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0X3A2E3437,
.p1_mprddlctl = 0X35312F3F,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0X33363B37,
.p1_mpwrdlctl = 0X40304239,
};
static struct mx6_mmdc_calibration mx6sdl_256x64_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x0048004A,
.p0_mpwldectrl1 = 0x003F004A,
.p1_mpwldectrl0 = 0x001E0028,
.p1_mpwldectrl1 = 0x002C0043,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x02250219,
.p0_mpdgctrl1 = 0x01790202,
.p1_mpdgctrl0 = 0x02080208,
.p1_mpdgctrl1 = 0x016C0175,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x4A4C4D4C,
.p1_mprddlctl = 0x494C4A48,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x403F3437,
.p1_mpwrdlctl = 0x383A3930,
};
static struct mx6_mmdc_calibration mx6sdl_256x64x2_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x001F003F,
.p0_mpwldectrl1 = 0x001F001F,
.p1_mpwldectrl0 = 0x001F004E,
.p1_mpwldectrl1 = 0x0059001F,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x42220225,
.p0_mpdgctrl1 = 0x0213021F,
.p1_mpdgctrl0 = 0x022C0242,
.p1_mpdgctrl1 = 0x022C0244,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x474A4C4A,
.p1_mprddlctl = 0x48494C45,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x3F3F3F36,
.p1_mpwrdlctl = 0x3F36363F,
};
static struct mx6_mmdc_calibration mx6sdl_128x64x2_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x001F003F,
.p0_mpwldectrl1 = 0x001F001F,
.p1_mpwldectrl0 = 0x001F004E,
.p1_mpwldectrl1 = 0x0059001F,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x42220225,
.p0_mpdgctrl1 = 0x0213021F,
.p1_mpdgctrl0 = 0x022C0242,
.p1_mpdgctrl1 = 0x022C0244,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x474A4C4A,
.p1_mprddlctl = 0x48494C45,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x3F3F3F36,
.p1_mpwrdlctl = 0x3F36363F,
};
static struct mx6_mmdc_calibration mx6dq_512x32_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x002A0025,
.p0_mpwldectrl1 = 0x003A002A,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x43430356,
.p0_mpdgctrl1 = 0x033C0335,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x4B373F42,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x303E3C36,
};
static struct mx6_mmdc_calibration mx6dq_512x64_mmdc_calib = {
/* write leveling calibration determine */
.p0_mpwldectrl0 = 0x00230020,
.p0_mpwldectrl1 = 0x002F002A,
.p1_mpwldectrl0 = 0x001D0027,
.p1_mpwldectrl1 = 0x00100023,
/* Read DQS Gating calibration */
.p0_mpdgctrl0 = 0x03250339,
.p0_mpdgctrl1 = 0x031C0316,
.p1_mpdgctrl0 = 0x03210331,
.p1_mpdgctrl1 = 0x031C025A,
/* Read Calibration: DQS delay relative to DQ read access */
.p0_mprddlctl = 0x40373C40,
.p1_mprddlctl = 0x3A373646,
/* Write Calibration: DQ/DM delay relative to DQS write access */
.p0_mpwrdlctl = 0x2E353933,
.p1_mpwrdlctl = 0x3C2F3F35,
};
static void spl_dram_init(int width, int size_mb, int board_model)
{
struct mx6_ddr3_cfg *mem = NULL;
struct mx6_mmdc_calibration *calib = NULL;
struct mx6_ddr_sysinfo sysinfo = {
/* width of data bus:0=16,1=32,2=64 */
.dsize = width/32,
/* config for full 4GB range so that get_mem_size() works */
.cs_density = 32, /* 32Gb per CS */
/* single chip select */
.ncs = 1,
.cs1_mirror = 0,
.rtt_wr = 1 /*DDR3_RTT_60_OHM*/, /* RTT_Wr = RZQ/4 */
#ifdef RTT_NOM_120OHM
.rtt_nom = 2 /*DDR3_RTT_120_OHM*/, /* RTT_Nom = RZQ/2 */
#else
.rtt_nom = 1 /*DDR3_RTT_60_OHM*/, /* RTT_Nom = RZQ/4 */
#endif
.walat = 1, /* Write additional latency */
.ralat = 5, /* Read additional latency */
.mif3_mode = 3, /* Command prediction working mode */
.bi_on = 1, /* Bank interleaving enabled */
.sde_to_rst = 0x10, /* 14 cycles, 200us (JEDEC default) */
.rst_to_cke = 0x23, /* 33 cycles, 500us (JEDEC default) */
.pd_fast_exit = 1, /* enable precharge power-down fast exit */
.ddr_type = DDR_TYPE_DDR3,
.refsel = 1, /* Refresh cycles at 32KHz */
.refr = 7, /* 8 refresh commands per refresh cycle */
};
/*
* MMDC Calibration requires the following data:
* mx6_mmdc_calibration - board-specific calibration (routing delays)
* these calibration values depend on board routing, SoC, and DDR
* mx6_ddr_sysinfo - board-specific memory architecture (width/cs/etc)
* mx6_ddr_cfg - chip specific timing/layout details
*/
if (width == 16 && size_mb == 128) {
mem = &mt41k64m16jt_125;
if (is_cpu_type(MXC_CPU_MX6Q))
;
else
calib = &mx6sdl_64x16_mmdc_calib;
debug("1gB density\n");
} else if (width == 16 && size_mb == 256) {
/* 1x 2Gb density chip - same calib as 2x 2Gb */
mem = &mt41k128m16jt_125;
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_128x32_mmdc_calib;
else
calib = &mx6sdl_128x32_mmdc_calib;
debug("2gB density\n");
} else if (width == 16 && size_mb == 512) {
mem = &mt41k256m16ha_125;
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_256x16_mmdc_calib;
else
calib = &mx6sdl_256x16_mmdc_calib;
debug("4gB density\n");
} else if (width == 16 && size_mb == 1024) {
mem = &mt41k512m16ha_125;
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_512x32_mmdc_calib;
debug("8gB density\n");
} else if (width == 32 && size_mb == 256) {
/* Same calib as width==16, size==128 */
mem = &mt41k64m16jt_125;
if (is_cpu_type(MXC_CPU_MX6Q))
;
else
calib = &mx6sdl_64x16_mmdc_calib;
debug("1gB density\n");
} else if (width == 32 && size_mb == 512) {
mem = &mt41k128m16jt_125;
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_128x32_mmdc_calib;
else
calib = &mx6sdl_128x32_mmdc_calib;
debug("2gB density\n");
} else if (width == 32 && size_mb == 1024) {
mem = &mt41k256m16ha_125;
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_256x32_mmdc_calib;
else
calib = &mx6sdl_256x32_mmdc_calib;
debug("4gB density\n");
} else if (width == 32 && size_mb == 2048) {
mem = &mt41k512m16ha_125;
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_512x32_mmdc_calib;
debug("8gB density\n");
} else if (width == 64 && size_mb == 512) {
mem = &mt41k64m16jt_125;
debug("1gB density\n");
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_64x64_mmdc_calib;
else
calib = &mx6sdl_64x64_mmdc_calib;
} else if (width == 64 && size_mb == 1024) {
mem = &mt41k128m16jt_125;
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_128x64_mmdc_calib;
else
calib = &mx6sdl_128x64_mmdc_calib;
debug("2gB density\n");
} else if (width == 64 && size_mb == 2048) {
switch(board_model) {
case GW5905:
/* 8xMT41K128M16 (2GiB) fly-by mirrored 2-chipsels */
mem = &mt41k128m16jt_125;
debug("2gB density - 2 chipsel\n");
if (!is_cpu_type(MXC_CPU_MX6Q)) {
calib = &mx6sdl_128x64x2_mmdc_calib;
sysinfo.ncs = 2;
sysinfo.cs_density = 10; /* CS0_END=39 */
sysinfo.cs1_mirror = 1; /* mirror enabled */
}
break;
default:
mem = &mt41k256m16ha_125;
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_256x64_mmdc_calib;
else
calib = &mx6sdl_256x64_mmdc_calib;
debug("4gB density\n");
break;
}
} else if (width == 64 && size_mb == 4096) {
switch(board_model) {
case GW5903:
/* 8xMT41K256M16 (4GiB) fly-by mirrored 2-chipsels */
mem = &mt41k256m16ha_125;
debug("4gB density - 2 chipsel\n");
if (!is_cpu_type(MXC_CPU_MX6Q)) {
calib = &mx6sdl_256x64x2_mmdc_calib;
sysinfo.ncs = 2;
sysinfo.cs_density = 18; /* CS0_END=71 */
sysinfo.cs1_mirror = 1; /* mirror enabled */
}
break;
default:
mem = &mt41k512m16ha_125;
if (is_cpu_type(MXC_CPU_MX6Q))
calib = &mx6dq_512x64_mmdc_calib;
debug("8gB density\n");
break;
}
}
if (!(mem && calib)) {
puts("Error: Invalid Calibration/Board Configuration\n");
printf("MEM : %s\n", mem ? "OKAY" : "NULL");
printf("CALIB : %s\n", calib ? "OKAY" : "NULL");
printf("CPUTYPE: %s\n",
is_cpu_type(MXC_CPU_MX6Q) ? "IMX6Q" : "IMX6DL");
printf("SIZE_MB: %d\n", size_mb);
printf("WIDTH : %d\n", width);
hang();
}
if (is_cpu_type(MXC_CPU_MX6Q))
mx6dq_dram_iocfg(width, &mx6dq_ddr_ioregs,
&mx6dq_grp_ioregs);
else
mx6sdl_dram_iocfg(width, &mx6sdl_ddr_ioregs,
&mx6sdl_grp_ioregs);
mx6_dram_cfg(&sysinfo, calib, mem);
}
static void ccgr_init(void)
{
struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
writel(0x00C03F3F, &ccm->CCGR0);
writel(0x0030FC03, &ccm->CCGR1);
writel(0x0FFFC000, &ccm->CCGR2);
writel(0x3FF00000, &ccm->CCGR3);
writel(0xFFFFF300, &ccm->CCGR4); /* enable NAND/GPMI/BCH clks */
writel(0x0F0000C3, &ccm->CCGR5);
writel(0x000003FF, &ccm->CCGR6);
}
/* UART2: Serial Console */
static const iomux_v3_cfg_t uart2_pads[] = {
IOMUX_PADS(PAD_SD4_DAT7__UART2_TX_DATA | MUX_PAD_CTRL(UART_PAD_CTRL)),
IOMUX_PADS(PAD_SD4_DAT4__UART2_RX_DATA | MUX_PAD_CTRL(UART_PAD_CTRL)),
};
void setup_iomux_uart(void)
{
SETUP_IOMUX_PADS(uart2_pads);
}
/*
* I2C pad configs:
* I2C1: GSC
* I2C2: PMIC,PCIe Switch,Clock,Mezz
* I2C3: Multimedia/Expansion
*/
static struct i2c_pads_info mx6q_i2c_pad_info[] = {
{
.scl = {
.i2c_mode = MX6Q_PAD_EIM_D21__I2C1_SCL | PC,
.gpio_mode = MX6Q_PAD_EIM_D21__GPIO3_IO21 | PC,
.gp = IMX_GPIO_NR(3, 21)
},
.sda = {
.i2c_mode = MX6Q_PAD_EIM_D28__I2C1_SDA | PC,
.gpio_mode = MX6Q_PAD_EIM_D28__GPIO3_IO28 | PC,
.gp = IMX_GPIO_NR(3, 28)
}
}, {
.scl = {
.i2c_mode = MX6Q_PAD_KEY_COL3__I2C2_SCL | PC,
.gpio_mode = MX6Q_PAD_KEY_COL3__GPIO4_IO12 | PC,
.gp = IMX_GPIO_NR(4, 12)
},
.sda = {
.i2c_mode = MX6Q_PAD_KEY_ROW3__I2C2_SDA | PC,
.gpio_mode = MX6Q_PAD_KEY_ROW3__GPIO4_IO13 | PC,
.gp = IMX_GPIO_NR(4, 13)
}
}, {
.scl = {
.i2c_mode = MX6Q_PAD_GPIO_3__I2C3_SCL | PC,
.gpio_mode = MX6Q_PAD_GPIO_3__GPIO1_IO03 | PC,
.gp = IMX_GPIO_NR(1, 3)
},
.sda = {
.i2c_mode = MX6Q_PAD_GPIO_6__I2C3_SDA | PC,
.gpio_mode = MX6Q_PAD_GPIO_6__GPIO1_IO06 | PC,
.gp = IMX_GPIO_NR(1, 6)
}
}
};
static struct i2c_pads_info mx6dl_i2c_pad_info[] = {
{
.scl = {
.i2c_mode = MX6DL_PAD_EIM_D21__I2C1_SCL | PC,
.gpio_mode = MX6DL_PAD_EIM_D21__GPIO3_IO21 | PC,
.gp = IMX_GPIO_NR(3, 21)
},
.sda = {
.i2c_mode = MX6DL_PAD_EIM_D28__I2C1_SDA | PC,
.gpio_mode = MX6DL_PAD_EIM_D28__GPIO3_IO28 | PC,
.gp = IMX_GPIO_NR(3, 28)
}
}, {
.scl = {
.i2c_mode = MX6DL_PAD_KEY_COL3__I2C2_SCL | PC,
.gpio_mode = MX6DL_PAD_KEY_COL3__GPIO4_IO12 | PC,
.gp = IMX_GPIO_NR(4, 12)
},
.sda = {
.i2c_mode = MX6DL_PAD_KEY_ROW3__I2C2_SDA | PC,
.gpio_mode = MX6DL_PAD_KEY_ROW3__GPIO4_IO13 | PC,
.gp = IMX_GPIO_NR(4, 13)
}
}, {
.scl = {
.i2c_mode = MX6DL_PAD_GPIO_3__I2C3_SCL | PC,
.gpio_mode = MX6DL_PAD_GPIO_3__GPIO1_IO03 | PC,
.gp = IMX_GPIO_NR(1, 3)
},
.sda = {
.i2c_mode = MX6DL_PAD_GPIO_6__I2C3_SDA | PC,
.gpio_mode = MX6DL_PAD_GPIO_6__GPIO1_IO06 | PC,
.gp = IMX_GPIO_NR(1, 6)
}
}
};
static void setup_ventana_i2c(int i2c)
{
struct i2c_pads_info *p;
if (is_cpu_type(MXC_CPU_MX6Q))
p = &mx6q_i2c_pad_info[i2c];
else
p = &mx6dl_i2c_pad_info[i2c];
setup_i2c(i2c, CONFIG_SYS_I2C_SPEED, 0x7f, p);
}
/* setup board specific PMIC */
void setup_pmic(void)
{
struct pmic *p;
const int i2c_pmic = 1;
u32 reg;
char rev;
int i;
/* determine board revision */
rev = 'A';
for (i = sizeof(ventana_info.model) - 1; i > 0; i--) {
if (ventana_info.model[i] >= 'A') {
rev = ventana_info.model[i];
break;
}
}
i2c_set_bus_num(i2c_pmic);
/* configure PFUZE100 PMIC */
if (!i2c_probe(CONFIG_POWER_PFUZE100_I2C_ADDR)) {
debug("probed PFUZE100@0x%x\n", CONFIG_POWER_PFUZE100_I2C_ADDR);
power_pfuze100_init(i2c_pmic);
p = pmic_get("PFUZE100");
if (p && !pmic_probe(p)) {
pmic_reg_read(p, PFUZE100_DEVICEID, &reg);
printf("PMIC: PFUZE100 ID=0x%02x\n", reg);
/* Set VGEN1 to 1.5V and enable */
pmic_reg_read(p, PFUZE100_VGEN1VOL, &reg);
reg &= ~(LDO_VOL_MASK);
reg |= (LDOA_1_50V | LDO_EN);
pmic_reg_write(p, PFUZE100_VGEN1VOL, reg);
/* Set SWBST to 5.0V and enable */
pmic_reg_read(p, PFUZE100_SWBSTCON1, &reg);
reg &= ~(SWBST_MODE_MASK | SWBST_VOL_MASK);
reg |= (SWBST_5_00V | (SWBST_MODE_AUTO << SWBST_MODE_SHIFT));
pmic_reg_write(p, PFUZE100_SWBSTCON1, reg);
if (board_type == GW54xx && (rev == 'G')) {
/* Disable VGEN5 */
pmic_reg_write(p, PFUZE100_VGEN5VOL, 0);
/* Set VGEN6 to 2.5V and enable */
pmic_reg_read(p, PFUZE100_VGEN6VOL, &reg);
reg &= ~(LDO_VOL_MASK);
reg |= (LDOB_2_50V | LDO_EN);
pmic_reg_write(p, PFUZE100_VGEN6VOL, reg);
}
}
/* put all switchers in continuous mode */
pmic_reg_read(p, PFUZE100_SW1ABMODE, &reg);
reg &= ~(SW_MODE_MASK);
reg |= PWM_PWM;
pmic_reg_write(p, PFUZE100_SW1ABMODE, reg);
pmic_reg_read(p, PFUZE100_SW2MODE, &reg);
reg &= ~(SW_MODE_MASK);
reg |= PWM_PWM;
pmic_reg_write(p, PFUZE100_SW2MODE, reg);
pmic_reg_read(p, PFUZE100_SW3AMODE, &reg);
reg &= ~(SW_MODE_MASK);
reg |= PWM_PWM;
pmic_reg_write(p, PFUZE100_SW3AMODE, reg);
pmic_reg_read(p, PFUZE100_SW3BMODE, &reg);
reg &= ~(SW_MODE_MASK);
reg |= PWM_PWM;
pmic_reg_write(p, PFUZE100_SW3BMODE, reg);
pmic_reg_read(p, PFUZE100_SW4MODE, &reg);
reg &= ~(SW_MODE_MASK);
reg |= PWM_PWM;
pmic_reg_write(p, PFUZE100_SW4MODE, reg);
}
/* configure LTC3676 PMIC */
else if (!i2c_probe(CONFIG_POWER_LTC3676_I2C_ADDR)) {
debug("probed LTC3676@0x%x\n", CONFIG_POWER_LTC3676_I2C_ADDR);
power_ltc3676_init(i2c_pmic);
p = pmic_get("LTC3676_PMIC");
if (!p || pmic_probe(p))
return;
puts("PMIC: LTC3676\n");
/*
* set board-specific scalar for max CPU frequency
* per CPU based on the LDO enabled Operating Ranges
* defined in the respective IMX6DQ and IMX6SDL
* datasheets. The voltage resulting from the R1/R2
* feedback inputs on Ventana is 1308mV. Note that this
* is a bit shy of the Vmin of 1350mV in the datasheet
* for LDO enabled mode but is as high as we can go.
*/
switch (board_type) {
case GW560x:
/* mask PGOOD during SW3 transition */
pmic_reg_write(p, LTC3676_DVB3B,
0x1f | LTC3676_PGOOD_MASK);
/* set SW3 (VDD_ARM) */
pmic_reg_write(p, LTC3676_DVB3A, 0x1f);
break;
case GW5903:
/* mask PGOOD during SW3 transition */
pmic_reg_write(p, LTC3676_DVB3B,
0x1f | LTC3676_PGOOD_MASK);
/* set SW3 (VDD_ARM) */
pmic_reg_write(p, LTC3676_DVB3A, 0x1f);
/* mask PGOOD during SW4 transition */
pmic_reg_write(p, LTC3676_DVB4B,
0x1f | LTC3676_PGOOD_MASK);
/* set SW4 (VDD_SOC) */
pmic_reg_write(p, LTC3676_DVB4A, 0x1f);
break;
case GW5905:
/* mask PGOOD during SW1 transition */
pmic_reg_write(p, LTC3676_DVB1B,
0x1f | LTC3676_PGOOD_MASK);
/* set SW1 (VDD_ARM) */
pmic_reg_write(p, LTC3676_DVB1A, 0x1f);
/* mask PGOOD during SW3 transition */
pmic_reg_write(p, LTC3676_DVB3B,
0x1f | LTC3676_PGOOD_MASK);
/* set SW3 (VDD_SOC) */
pmic_reg_write(p, LTC3676_DVB3A, 0x1f);
break;
default:
/* mask PGOOD during SW1 transition */
pmic_reg_write(p, LTC3676_DVB1B,
0x1f | LTC3676_PGOOD_MASK);
/* set SW1 (VDD_SOC) */
pmic_reg_write(p, LTC3676_DVB1A, 0x1f);
/* mask PGOOD during SW3 transition */
pmic_reg_write(p, LTC3676_DVB3B,
0x1f | LTC3676_PGOOD_MASK);
/* set SW3 (VDD_ARM) */
pmic_reg_write(p, LTC3676_DVB3A, 0x1f);
}
/* put all switchers in continuous mode */
pmic_reg_write(p, LTC3676_BUCK1, 0xc0);
pmic_reg_write(p, LTC3676_BUCK2, 0xc0);
pmic_reg_write(p, LTC3676_BUCK3, 0xc0);
pmic_reg_write(p, LTC3676_BUCK4, 0xc0);
}
/* configure MP5416 PMIC */
else if (!i2c_probe(0x69)) {
puts("PMIC: MP5416\n");
switch (board_type) {
case GW5910:
/* SW1: VDD_ARM 1.2V -> (1.275 to 1.475) */
reg = MP5416_VSET_EN | MP5416_VSET_SW1_SVAL(1475000);
i2c_write(0x69, MP5416_VSET_SW1, 1, (uint8_t *)&reg, 1);
/* SW4: VDD_SOC 1.2V -> (1.350 to 1.475) */
reg = MP5416_VSET_EN | MP5416_VSET_SW4_SVAL(1475000);
i2c_write(0x69, MP5416_VSET_SW4, 1, (uint8_t *)&reg, 1);
break;
}
}
}
/*
* called from C runtime startup code (arch/arm/lib/crt0.S:_main)
* - we have a stack and a place to store GD, both in SRAM
* - no variable global data is available
*/
void board_init_f(ulong dummy)
{
struct ventana_board_info ventana_info;
int board_model;
/* setup clock gating */
ccgr_init();
/* setup AIPS and disable watchdog */
arch_cpu_init();
/* setup AXI */
gpr_init();
/* iomux and setup of uart/i2c */
setup_iomux_uart();
setup_ventana_i2c(0);
setup_ventana_i2c(1);
/* setup GP timer */
timer_init();
/* UART clocks enabled and gd valid - init serial console */
preloader_console_init();
/*
* On a board with a missing/depleted backup battery for GSC, the
* board may be ready to probe the GSC before its firmware is
* running. We will wait here indefinately for the GSC/EEPROM.
*/
while (1) {
if (!i2c_set_bus_num(BOARD_EEPROM_BUSNO) &&
!i2c_probe(BOARD_EEPROM_ADDR))
break;
mdelay(1);
}
/* read/validate EEPROM info to determine board model and SDRAM cfg */
board_model = read_eeprom(&ventana_info);
/* configure model-specific gpio */
setup_iomux_gpio(board_model);
/* provide some some default: 32bit 128MB */
if (GW_UNKNOWN == board_model)
hang();
/* configure MMDC for SDRAM width/size and per-model calibration */
spl_dram_init(8 << ventana_info.sdram_width,
16 << ventana_info.sdram_size,
board_model);
}
void board_boot_order(u32 *spl_boot_list)
{
spl_boot_list[0] = spl_boot_device();
switch (spl_boot_list[0]) {
case BOOT_DEVICE_NAND:
spl_boot_list[1] = BOOT_DEVICE_MMC1;
spl_boot_list[2] = BOOT_DEVICE_UART;
break;
case BOOT_DEVICE_MMC1:
spl_boot_list[1] = BOOT_DEVICE_UART;
break;
}
}
/* called from board_init_r after gd setup if CONFIG_SPL_BOARD_INIT defined */
/* its our chance to print info about boot device */
void spl_board_init(void)
{
u32 boot_device;
/* determine boot device from SRC_SBMR1 (BOOT_CFG[4:1]) or SRC_GPR9 */
boot_device = spl_boot_device();
/* read eeprom again now that we have gd */
board_type = read_eeprom(&ventana_info);
if (board_type == GW_UNKNOWN)
hang();
switch (boot_device) {
case BOOT_DEVICE_MMC1:
puts("Booting from MMC\n");
break;
case BOOT_DEVICE_NAND:
puts("Booting from NAND\n");
break;
case BOOT_DEVICE_SATA:
puts("Booting from SATA\n");
break;
default:
puts("Unknown boot device\n");
}
/* PMIC init */
setup_pmic();
}
#ifdef CONFIG_SPL_OS_BOOT
/* return 1 if we wish to boot to uboot vs os (falcon mode) */
int spl_start_uboot(void)
{
unsigned char ret = 1;
debug("%s\n", __func__);
#ifdef CONFIG_SPL_ENV_SUPPORT
env_init();
env_load();
debug("boot_os=%s\n", env_get("boot_os"));
if (env_get_yesno("boot_os") == 1)
ret = 0;
#else
/* use i2c-0:0x50:0x00 for falcon boot mode (0=linux, else uboot) */
i2c_set_bus_num(0);
gsc_i2c_read(0x50, 0x0, 1, &ret, 1);
#endif
if (!ret)
gsc_boot_wd_disable();
debug("%s booting %s\n", __func__, ret ? "uboot" : "linux");
return ret;
}
#endif