u-boot/arch/arm/mach-k3/common.c
Lokesh Vutla 6e44aebdbb arm: mach-k3: Add a separate function for printing sysfw version
Add a separate function for printing sysfw version so that it can be
called independently of k3_sysfw_loader.

Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
2020-03-11 08:56:49 +05:30

408 lines
9.8 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* K3: Common Architecture initialization
*
* Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/
* Lokesh Vutla <lokeshvutla@ti.com>
*/
#include <common.h>
#include <cpu_func.h>
#include <spl.h>
#include "common.h"
#include <dm.h>
#include <remoteproc.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#include <fdt_support.h>
#include <asm/arch/sys_proto.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <fs_loader.h>
#include <fs.h>
#include <env.h>
#include <elf.h>
struct ti_sci_handle *get_ti_sci_handle(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_FIRMWARE,
DM_GET_DRIVER(ti_sci), &dev);
if (ret)
panic("Failed to get SYSFW (%d)\n", ret);
return (struct ti_sci_handle *)ti_sci_get_handle_from_sysfw(dev);
}
void k3_sysfw_print_ver(void)
{
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
char fw_desc[sizeof(ti_sci->version.firmware_description) + 1];
/*
* Output System Firmware version info. Note that since the
* 'firmware_description' field is not guaranteed to be zero-
* terminated we manually add a \0 terminator if needed. Further
* note that we intentionally no longer rely on the extended
* printf() formatter '%.*s' to not having to require a more
* full-featured printf() implementation.
*/
strncpy(fw_desc, ti_sci->version.firmware_description,
sizeof(ti_sci->version.firmware_description));
fw_desc[sizeof(fw_desc) - 1] = '\0';
printf("SYSFW ABI: %d.%d (firmware rev 0x%04x '%s')\n",
ti_sci->version.abi_major, ti_sci->version.abi_minor,
ti_sci->version.firmware_revision, fw_desc);
}
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_K3_EARLY_CONS
int early_console_init(void)
{
struct udevice *dev;
int ret;
gd->baudrate = CONFIG_BAUDRATE;
ret = uclass_get_device_by_seq(UCLASS_SERIAL, CONFIG_K3_EARLY_CONS_IDX,
&dev);
if (ret) {
printf("Error getting serial dev for early console! (%d)\n",
ret);
return ret;
}
gd->cur_serial_dev = dev;
gd->flags |= GD_FLG_SERIAL_READY;
gd->have_console = 1;
return 0;
}
#endif
#ifdef CONFIG_SYS_K3_SPL_ATF
void init_env(void)
{
#ifdef CONFIG_SPL_ENV_SUPPORT
char *part;
env_init();
env_relocate();
switch (spl_boot_device()) {
case BOOT_DEVICE_MMC2:
part = env_get("bootpart");
env_set("storage_interface", "mmc");
env_set("fw_dev_part", part);
break;
case BOOT_DEVICE_SPI:
env_set("storage_interface", "ubi");
env_set("fw_ubi_mtdpart", "UBI");
env_set("fw_ubi_volume", "UBI0");
break;
default:
printf("%s from device %u not supported!\n",
__func__, spl_boot_device());
return;
}
#endif
}
#ifdef CONFIG_FS_LOADER
int load_firmware(char *name_fw, char *name_loadaddr, u32 *loadaddr)
{
struct udevice *fsdev;
char *name = NULL;
int size = 0;
*loadaddr = 0;
#ifdef CONFIG_SPL_ENV_SUPPORT
switch (spl_boot_device()) {
case BOOT_DEVICE_MMC2:
name = env_get(name_fw);
*loadaddr = env_get_hex(name_loadaddr, *loadaddr);
break;
default:
printf("Loading rproc fw image from device %u not supported!\n",
spl_boot_device());
return 0;
}
#endif
if (!*loadaddr)
return 0;
if (!uclass_get_device(UCLASS_FS_FIRMWARE_LOADER, 0, &fsdev)) {
size = request_firmware_into_buf(fsdev, name, (void *)*loadaddr,
0, 0);
}
return size;
}
#else
int load_firmware(char *name_fw, char *name_loadaddr, u32 *loadaddr)
{
return 0;
}
#endif
__weak void start_non_linux_remote_cores(void)
{
}
void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image)
{
typedef void __noreturn (*image_entry_noargs_t)(void);
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
u32 loadaddr = 0;
int ret, size;
/* Release all the exclusive devices held by SPL before starting ATF */
ti_sci->ops.dev_ops.release_exclusive_devices(ti_sci);
ret = rproc_init();
if (ret)
panic("rproc failed to be initialized (%d)\n", ret);
init_env();
start_non_linux_remote_cores();
size = load_firmware("name_mcur5f0_0fw", "addr_mcur5f0_0load",
&loadaddr);
/*
* It is assumed that remoteproc device 1 is the corresponding
* Cortex-A core which runs ATF. Make sure DT reflects the same.
*/
ret = rproc_load(1, spl_image->entry_point, 0x200);
if (ret)
panic("%s: ATF failed to load on rproc (%d)\n", __func__, ret);
/* Add an extra newline to differentiate the ATF logs from SPL */
printf("Starting ATF on ARM64 core...\n\n");
ret = rproc_start(1);
if (ret)
panic("%s: ATF failed to start on rproc (%d)\n", __func__, ret);
if (!(size > 0 && valid_elf_image(loadaddr))) {
debug("Shutting down...\n");
release_resources_for_core_shutdown();
while (1)
asm volatile("wfe");
}
image_entry_noargs_t image_entry =
(image_entry_noargs_t)load_elf_image_phdr(loadaddr);
image_entry();
}
#endif
#if defined(CONFIG_OF_LIBFDT)
int fdt_fixup_msmc_ram(void *blob, char *parent_path, char *node_name)
{
u64 msmc_start = 0, msmc_end = 0, msmc_size, reg[2];
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
int ret, node, subnode, len, prev_node;
u32 range[4], addr, size;
const fdt32_t *sub_reg;
ti_sci->ops.core_ops.query_msmc(ti_sci, &msmc_start, &msmc_end);
msmc_size = msmc_end - msmc_start + 1;
debug("%s: msmc_start = 0x%llx, msmc_size = 0x%llx\n", __func__,
msmc_start, msmc_size);
/* find or create "msmc_sram node */
ret = fdt_path_offset(blob, parent_path);
if (ret < 0)
return ret;
node = fdt_find_or_add_subnode(blob, ret, node_name);
if (node < 0)
return node;
ret = fdt_setprop_string(blob, node, "compatible", "mmio-sram");
if (ret < 0)
return ret;
reg[0] = cpu_to_fdt64(msmc_start);
reg[1] = cpu_to_fdt64(msmc_size);
ret = fdt_setprop(blob, node, "reg", reg, sizeof(reg));
if (ret < 0)
return ret;
fdt_setprop_cell(blob, node, "#address-cells", 1);
fdt_setprop_cell(blob, node, "#size-cells", 1);
range[0] = 0;
range[1] = cpu_to_fdt32(msmc_start >> 32);
range[2] = cpu_to_fdt32(msmc_start & 0xffffffff);
range[3] = cpu_to_fdt32(msmc_size);
ret = fdt_setprop(blob, node, "ranges", range, sizeof(range));
if (ret < 0)
return ret;
subnode = fdt_first_subnode(blob, node);
prev_node = 0;
/* Look for invalid subnodes and delete them */
while (subnode >= 0) {
sub_reg = fdt_getprop(blob, subnode, "reg", &len);
addr = fdt_read_number(sub_reg, 1);
sub_reg++;
size = fdt_read_number(sub_reg, 1);
debug("%s: subnode = %d, addr = 0x%x. size = 0x%x\n", __func__,
subnode, addr, size);
if (addr + size > msmc_size ||
!strncmp(fdt_get_name(blob, subnode, &len), "sysfw", 5) ||
!strncmp(fdt_get_name(blob, subnode, &len), "l3cache", 7)) {
fdt_del_node(blob, subnode);
debug("%s: deleting subnode %d\n", __func__, subnode);
if (!prev_node)
subnode = fdt_first_subnode(blob, node);
else
subnode = fdt_next_subnode(blob, prev_node);
} else {
prev_node = subnode;
subnode = fdt_next_subnode(blob, prev_node);
}
}
return 0;
}
int fdt_disable_node(void *blob, char *node_path)
{
int offs;
int ret;
offs = fdt_path_offset(blob, node_path);
if (offs < 0) {
printf("Node %s not found.\n", node_path);
return offs;
}
ret = fdt_setprop_string(blob, offs, "status", "disabled");
if (ret < 0) {
printf("Could not add status property to node %s: %s\n",
node_path, fdt_strerror(ret));
return ret;
}
return 0;
}
#endif
#ifndef CONFIG_SYSRESET
void reset_cpu(ulong ignored)
{
}
#endif
#if defined(CONFIG_DISPLAY_CPUINFO)
int print_cpuinfo(void)
{
u32 soc, rev;
char *name;
soc = (readl(CTRLMMR_WKUP_JTAG_DEVICE_ID) &
DEVICE_ID_FAMILY_MASK) >> DEVICE_ID_FAMILY_SHIFT;
rev = (readl(CTRLMMR_WKUP_JTAG_ID) &
JTAG_ID_VARIANT_MASK) >> JTAG_ID_VARIANT_SHIFT;
printf("SoC: ");
switch (soc) {
case AM654:
name = "AM654";
break;
case J721E:
name = "J721E";
break;
default:
name = "Unknown Silicon";
};
printf("%s SR ", name);
switch (rev) {
case REV_PG1_0:
name = "1.0";
break;
case REV_PG2_0:
name = "2.0";
break;
default:
name = "Unknown Revision";
};
printf("%s\n", name);
return 0;
}
#endif
#ifdef CONFIG_ARM64
void board_prep_linux(bootm_headers_t *images)
{
debug("Linux kernel Image start = 0x%lx end = 0x%lx\n",
images->os.start, images->os.end);
__asm_flush_dcache_range(images->os.start,
ROUND(images->os.end,
CONFIG_SYS_CACHELINE_SIZE));
}
#endif
#ifdef CONFIG_CPU_V7R
void disable_linefill_optimization(void)
{
u32 actlr;
/*
* On K3 devices there are 2 conditions where R5F can deadlock:
* 1.When software is performing series of store operations to
* cacheable write back/write allocate memory region and later
* on software execute barrier operation (DSB or DMB). R5F may
* hang at the barrier instruction.
* 2.When software is performing a mix of load and store operations
* within a tight loop and store operations are all writing to
* cacheable write back/write allocates memory regions, R5F may
* hang at one of the load instruction.
*
* To avoid the above two conditions disable linefill optimization
* inside Cortex R5F.
*/
asm("mrc p15, 0, %0, c1, c0, 1" : "=r" (actlr));
actlr |= (1 << 13); /* Set DLFO bit */
asm("mcr p15, 0, %0, c1, c0, 1" : : "r" (actlr));
}
#endif
void remove_fwl_configs(struct fwl_data *fwl_data, size_t fwl_data_size)
{
struct ti_sci_msg_fwl_region region;
struct ti_sci_fwl_ops *fwl_ops;
struct ti_sci_handle *ti_sci;
size_t i, j;
ti_sci = get_ti_sci_handle();
fwl_ops = &ti_sci->ops.fwl_ops;
for (i = 0; i < fwl_data_size; i++) {
for (j = 0; j < fwl_data[i].regions; j++) {
region.fwl_id = fwl_data[i].fwl_id;
region.region = j;
region.n_permission_regs = 3;
fwl_ops->get_fwl_region(ti_sci, &region);
if (region.control != 0) {
pr_debug("Attempting to disable firewall %5d (%25s)\n",
region.fwl_id, fwl_data[i].name);
region.control = 0;
if (fwl_ops->set_fwl_region(ti_sci, &region))
pr_err("Could not disable firewall %5d (%25s)\n",
region.fwl_id, fwl_data[i].name);
}
}
}
}