mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-25 22:20:45 +00:00
79c584e559
On VxWorks x86 its bootline address is at a pre-defined offset @ 0x1200. If 'bootaddr' is not passed via environment variable, we assign its value based on the kernel memory base address. Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
460 lines
12 KiB
C
460 lines
12 KiB
C
/*
|
|
* Copyright (c) 2001 William L. Pitts
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms are freely
|
|
* permitted provided that the above copyright notice and this
|
|
* paragraph and the following disclaimer are duplicated in all
|
|
* such forms.
|
|
*
|
|
* This software is provided "AS IS" and without any express or
|
|
* implied warranties, including, without limitation, the implied
|
|
* warranties of merchantability and fitness for a particular
|
|
* purpose.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <command.h>
|
|
#include <elf.h>
|
|
#include <environment.h>
|
|
#include <net.h>
|
|
#include <vxworks.h>
|
|
#ifdef CONFIG_X86
|
|
#include <vbe.h>
|
|
#include <asm/e820.h>
|
|
#include <linux/linkage.h>
|
|
#endif
|
|
|
|
/*
|
|
* A very simple ELF64 loader, assumes the image is valid, returns the
|
|
* entry point address.
|
|
*
|
|
* Note if U-Boot is 32-bit, the loader assumes the to segment's
|
|
* physical address and size is within the lower 32-bit address space.
|
|
*/
|
|
static unsigned long load_elf64_image_phdr(unsigned long addr)
|
|
{
|
|
Elf64_Ehdr *ehdr; /* Elf header structure pointer */
|
|
Elf64_Phdr *phdr; /* Program header structure pointer */
|
|
int i;
|
|
|
|
ehdr = (Elf64_Ehdr *)addr;
|
|
phdr = (Elf64_Phdr *)(addr + (ulong)ehdr->e_phoff);
|
|
|
|
/* Load each program header */
|
|
for (i = 0; i < ehdr->e_phnum; ++i) {
|
|
void *dst = (void *)(ulong)phdr->p_paddr;
|
|
void *src = (void *)addr + phdr->p_offset;
|
|
|
|
debug("Loading phdr %i to 0x%p (%lu bytes)\n",
|
|
i, dst, (ulong)phdr->p_filesz);
|
|
if (phdr->p_filesz)
|
|
memcpy(dst, src, phdr->p_filesz);
|
|
if (phdr->p_filesz != phdr->p_memsz)
|
|
memset(dst + phdr->p_filesz, 0x00,
|
|
phdr->p_memsz - phdr->p_filesz);
|
|
flush_cache((unsigned long)dst, phdr->p_filesz);
|
|
++phdr;
|
|
}
|
|
|
|
return ehdr->e_entry;
|
|
}
|
|
|
|
/*
|
|
* A very simple ELF loader, assumes the image is valid, returns the
|
|
* entry point address.
|
|
*
|
|
* The loader firstly reads the EFI class to see if it's a 64-bit image.
|
|
* If yes, call the ELF64 loader. Otherwise continue with the ELF32 loader.
|
|
*/
|
|
static unsigned long load_elf_image_phdr(unsigned long addr)
|
|
{
|
|
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
|
|
Elf32_Phdr *phdr; /* Program header structure pointer */
|
|
int i;
|
|
|
|
ehdr = (Elf32_Ehdr *)addr;
|
|
if (ehdr->e_ident[EI_CLASS] == ELFCLASS64)
|
|
return load_elf64_image_phdr(addr);
|
|
|
|
phdr = (Elf32_Phdr *)(addr + ehdr->e_phoff);
|
|
|
|
/* Load each program header */
|
|
for (i = 0; i < ehdr->e_phnum; ++i) {
|
|
void *dst = (void *)(uintptr_t)phdr->p_paddr;
|
|
void *src = (void *)addr + phdr->p_offset;
|
|
|
|
debug("Loading phdr %i to 0x%p (%i bytes)\n",
|
|
i, dst, phdr->p_filesz);
|
|
if (phdr->p_filesz)
|
|
memcpy(dst, src, phdr->p_filesz);
|
|
if (phdr->p_filesz != phdr->p_memsz)
|
|
memset(dst + phdr->p_filesz, 0x00,
|
|
phdr->p_memsz - phdr->p_filesz);
|
|
flush_cache((unsigned long)dst, phdr->p_filesz);
|
|
++phdr;
|
|
}
|
|
|
|
return ehdr->e_entry;
|
|
}
|
|
|
|
static unsigned long load_elf_image_shdr(unsigned long addr)
|
|
{
|
|
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
|
|
Elf32_Shdr *shdr; /* Section header structure pointer */
|
|
unsigned char *strtab = 0; /* String table pointer */
|
|
unsigned char *image; /* Binary image pointer */
|
|
int i; /* Loop counter */
|
|
|
|
ehdr = (Elf32_Ehdr *)addr;
|
|
|
|
/* Find the section header string table for output info */
|
|
shdr = (Elf32_Shdr *)(addr + ehdr->e_shoff +
|
|
(ehdr->e_shstrndx * sizeof(Elf32_Shdr)));
|
|
|
|
if (shdr->sh_type == SHT_STRTAB)
|
|
strtab = (unsigned char *)(addr + shdr->sh_offset);
|
|
|
|
/* Load each appropriate section */
|
|
for (i = 0; i < ehdr->e_shnum; ++i) {
|
|
shdr = (Elf32_Shdr *)(addr + ehdr->e_shoff +
|
|
(i * sizeof(Elf32_Shdr)));
|
|
|
|
if (!(shdr->sh_flags & SHF_ALLOC) ||
|
|
shdr->sh_addr == 0 || shdr->sh_size == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (strtab) {
|
|
debug("%sing %s @ 0x%08lx (%ld bytes)\n",
|
|
(shdr->sh_type == SHT_NOBITS) ? "Clear" : "Load",
|
|
&strtab[shdr->sh_name],
|
|
(unsigned long)shdr->sh_addr,
|
|
(long)shdr->sh_size);
|
|
}
|
|
|
|
if (shdr->sh_type == SHT_NOBITS) {
|
|
memset((void *)(uintptr_t)shdr->sh_addr, 0,
|
|
shdr->sh_size);
|
|
} else {
|
|
image = (unsigned char *)addr + shdr->sh_offset;
|
|
memcpy((void *)(uintptr_t)shdr->sh_addr,
|
|
(const void *)image, shdr->sh_size);
|
|
}
|
|
flush_cache(shdr->sh_addr, shdr->sh_size);
|
|
}
|
|
|
|
return ehdr->e_entry;
|
|
}
|
|
|
|
/* Allow ports to override the default behavior */
|
|
static unsigned long do_bootelf_exec(ulong (*entry)(int, char * const[]),
|
|
int argc, char * const argv[])
|
|
{
|
|
unsigned long ret;
|
|
|
|
/*
|
|
* pass address parameter as argv[0] (aka command name),
|
|
* and all remaining args
|
|
*/
|
|
ret = entry(argc, argv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Determine if a valid ELF image exists at the given memory location.
|
|
* First look at the ELF header magic field, then make sure that it is
|
|
* executable.
|
|
*/
|
|
int valid_elf_image(unsigned long addr)
|
|
{
|
|
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
|
|
|
|
ehdr = (Elf32_Ehdr *)addr;
|
|
|
|
if (!IS_ELF(*ehdr)) {
|
|
printf("## No elf image at address 0x%08lx\n", addr);
|
|
return 0;
|
|
}
|
|
|
|
if (ehdr->e_type != ET_EXEC) {
|
|
printf("## Not a 32-bit elf image at address 0x%08lx\n", addr);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Interpreter command to boot an arbitrary ELF image from memory */
|
|
int do_bootelf(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
|
|
{
|
|
unsigned long addr; /* Address of the ELF image */
|
|
unsigned long rc; /* Return value from user code */
|
|
char *sload = NULL;
|
|
const char *ep = env_get("autostart");
|
|
int rcode = 0;
|
|
|
|
/* Consume 'bootelf' */
|
|
argc--; argv++;
|
|
|
|
/* Check for flag. */
|
|
if (argc >= 1 && (argv[0][0] == '-' && \
|
|
(argv[0][1] == 'p' || argv[0][1] == 's'))) {
|
|
sload = argv[0];
|
|
/* Consume flag. */
|
|
argc--; argv++;
|
|
}
|
|
/* Check for address. */
|
|
if (argc >= 1 && strict_strtoul(argv[0], 16, &addr) != -EINVAL) {
|
|
/* Consume address */
|
|
argc--; argv++;
|
|
} else
|
|
addr = load_addr;
|
|
|
|
if (!valid_elf_image(addr))
|
|
return 1;
|
|
|
|
if (sload && sload[1] == 'p')
|
|
addr = load_elf_image_phdr(addr);
|
|
else
|
|
addr = load_elf_image_shdr(addr);
|
|
|
|
if (ep && !strcmp(ep, "no"))
|
|
return rcode;
|
|
|
|
printf("## Starting application at 0x%08lx ...\n", addr);
|
|
|
|
/*
|
|
* pass address parameter as argv[0] (aka command name),
|
|
* and all remaining args
|
|
*/
|
|
rc = do_bootelf_exec((void *)addr, argc, argv);
|
|
if (rc != 0)
|
|
rcode = 1;
|
|
|
|
printf("## Application terminated, rc = 0x%lx\n", rc);
|
|
|
|
return rcode;
|
|
}
|
|
|
|
/*
|
|
* Interpreter command to boot VxWorks from a memory image. The image can
|
|
* be either an ELF image or a raw binary. Will attempt to setup the
|
|
* bootline and other parameters correctly.
|
|
*/
|
|
int do_bootvx(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
|
|
{
|
|
unsigned long addr; /* Address of image */
|
|
unsigned long bootaddr = 0; /* Address to put the bootline */
|
|
char *bootline; /* Text of the bootline */
|
|
char *tmp; /* Temporary char pointer */
|
|
char build_buf[128]; /* Buffer for building the bootline */
|
|
int ptr = 0;
|
|
#ifdef CONFIG_X86
|
|
ulong base;
|
|
struct e820_info *info;
|
|
struct e820_entry *data;
|
|
struct efi_gop_info *gop;
|
|
struct vesa_mode_info *vesa = &mode_info.vesa;
|
|
#endif
|
|
|
|
/*
|
|
* Check the loadaddr variable.
|
|
* If we don't know where the image is then we're done.
|
|
*/
|
|
if (argc < 2)
|
|
addr = load_addr;
|
|
else
|
|
addr = simple_strtoul(argv[1], NULL, 16);
|
|
|
|
#if defined(CONFIG_CMD_NET)
|
|
/*
|
|
* Check to see if we need to tftp the image ourselves
|
|
* before starting
|
|
*/
|
|
if ((argc == 2) && (strcmp(argv[1], "tftp") == 0)) {
|
|
if (net_loop(TFTPGET) <= 0)
|
|
return 1;
|
|
printf("Automatic boot of VxWorks image at address 0x%08lx ...\n",
|
|
addr);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This should equate to
|
|
* NV_RAM_ADRS + NV_BOOT_OFFSET + NV_ENET_OFFSET
|
|
* from the VxWorks BSP header files.
|
|
* This will vary from board to board
|
|
*/
|
|
#if defined(CONFIG_SYS_VXWORKS_MAC_PTR)
|
|
tmp = (char *)CONFIG_SYS_VXWORKS_MAC_PTR;
|
|
eth_env_get_enetaddr("ethaddr", (uchar *)build_buf);
|
|
memcpy(tmp, build_buf, 6);
|
|
#else
|
|
puts("## Ethernet MAC address not copied to NV RAM\n");
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86
|
|
/*
|
|
* Get VxWorks's physical memory base address from environment,
|
|
* if we don't specify it in the environment, use a default one.
|
|
*/
|
|
base = env_get_hex("vx_phys_mem_base", VXWORKS_PHYS_MEM_BASE);
|
|
data = (struct e820_entry *)(base + E820_DATA_OFFSET);
|
|
info = (struct e820_info *)(base + E820_INFO_OFFSET);
|
|
|
|
memset(info, 0, sizeof(struct e820_info));
|
|
info->sign = E820_SIGNATURE;
|
|
info->entries = install_e820_map(E820MAX, data);
|
|
info->addr = (info->entries - 1) * sizeof(struct e820_entry) +
|
|
E820_DATA_OFFSET;
|
|
|
|
/*
|
|
* Explicitly clear the bootloader image size otherwise if memory
|
|
* at this offset happens to contain some garbage data, the final
|
|
* available memory size for the kernel is insane.
|
|
*/
|
|
*(u32 *)(base + BOOT_IMAGE_SIZE_OFFSET) = 0;
|
|
|
|
/*
|
|
* Prepare compatible framebuffer information block.
|
|
* The VESA mode has to be 32-bit RGBA.
|
|
*/
|
|
if (vesa->x_resolution && vesa->y_resolution) {
|
|
gop = (struct efi_gop_info *)(base + EFI_GOP_INFO_OFFSET);
|
|
gop->magic = EFI_GOP_INFO_MAGIC;
|
|
gop->info.version = 0;
|
|
gop->info.width = vesa->x_resolution;
|
|
gop->info.height = vesa->y_resolution;
|
|
gop->info.pixel_format = EFI_GOT_RGBA8;
|
|
gop->info.pixels_per_scanline = vesa->bytes_per_scanline / 4;
|
|
gop->fb_base = vesa->phys_base_ptr;
|
|
gop->fb_size = vesa->bytes_per_scanline * vesa->y_resolution;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Use bootaddr to find the location in memory that VxWorks
|
|
* will look for the bootline string. The default value is
|
|
* (LOCAL_MEM_LOCAL_ADRS + BOOT_LINE_OFFSET) as defined by
|
|
* VxWorks BSP. For example, on PowerPC it defaults to 0x4200.
|
|
*/
|
|
tmp = env_get("bootaddr");
|
|
if (!tmp) {
|
|
#ifdef CONFIG_X86
|
|
bootaddr = base + X86_BOOT_LINE_OFFSET;
|
|
#else
|
|
printf("## VxWorks bootline address not specified\n");
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
if (!bootaddr)
|
|
bootaddr = simple_strtoul(tmp, NULL, 16);
|
|
|
|
/*
|
|
* Check to see if the bootline is defined in the 'bootargs' parameter.
|
|
* If it is not defined, we may be able to construct the info.
|
|
*/
|
|
bootline = env_get("bootargs");
|
|
if (!bootline) {
|
|
tmp = env_get("bootdev");
|
|
if (tmp) {
|
|
strcpy(build_buf, tmp);
|
|
ptr = strlen(tmp);
|
|
} else {
|
|
printf("## VxWorks boot device not specified\n");
|
|
}
|
|
|
|
tmp = env_get("bootfile");
|
|
if (tmp)
|
|
ptr += sprintf(build_buf + ptr, "host:%s ", tmp);
|
|
else
|
|
ptr += sprintf(build_buf + ptr, "host:vxWorks ");
|
|
|
|
/*
|
|
* The following parameters are only needed if 'bootdev'
|
|
* is an ethernet device, otherwise they are optional.
|
|
*/
|
|
tmp = env_get("ipaddr");
|
|
if (tmp) {
|
|
ptr += sprintf(build_buf + ptr, "e=%s", tmp);
|
|
tmp = env_get("netmask");
|
|
if (tmp) {
|
|
u32 mask = env_get_ip("netmask").s_addr;
|
|
ptr += sprintf(build_buf + ptr,
|
|
":%08x ", ntohl(mask));
|
|
} else {
|
|
ptr += sprintf(build_buf + ptr, " ");
|
|
}
|
|
}
|
|
|
|
tmp = env_get("serverip");
|
|
if (tmp)
|
|
ptr += sprintf(build_buf + ptr, "h=%s ", tmp);
|
|
|
|
tmp = env_get("gatewayip");
|
|
if (tmp)
|
|
ptr += sprintf(build_buf + ptr, "g=%s ", tmp);
|
|
|
|
tmp = env_get("hostname");
|
|
if (tmp)
|
|
ptr += sprintf(build_buf + ptr, "tn=%s ", tmp);
|
|
|
|
tmp = env_get("othbootargs");
|
|
if (tmp) {
|
|
strcpy(build_buf + ptr, tmp);
|
|
ptr += strlen(tmp);
|
|
}
|
|
|
|
bootline = build_buf;
|
|
}
|
|
|
|
memcpy((void *)bootaddr, bootline, max(strlen(bootline), (size_t)255));
|
|
flush_cache(bootaddr, max(strlen(bootline), (size_t)255));
|
|
printf("## Using bootline (@ 0x%lx): %s\n", bootaddr, (char *)bootaddr);
|
|
|
|
/*
|
|
* If the data at the load address is an elf image, then
|
|
* treat it like an elf image. Otherwise, assume that it is a
|
|
* binary image.
|
|
*/
|
|
if (valid_elf_image(addr))
|
|
addr = load_elf_image_phdr(addr);
|
|
else
|
|
puts("## Not an ELF image, assuming binary\n");
|
|
|
|
printf("## Starting vxWorks at 0x%08lx ...\n", addr);
|
|
|
|
dcache_disable();
|
|
#if defined(CONFIG_ARM64) && defined(CONFIG_ARMV8_PSCI)
|
|
armv8_setup_psci();
|
|
smp_kick_all_cpus();
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86
|
|
/* VxWorks on x86 uses stack to pass parameters */
|
|
((asmlinkage void (*)(int))addr)(0);
|
|
#else
|
|
((void (*)(int))addr)(0);
|
|
#endif
|
|
|
|
puts("## vxWorks terminated\n");
|
|
|
|
return 1;
|
|
}
|
|
|
|
U_BOOT_CMD(
|
|
bootelf, CONFIG_SYS_MAXARGS, 0, do_bootelf,
|
|
"Boot from an ELF image in memory",
|
|
"[-p|-s] [address]\n"
|
|
"\t- load ELF image at [address] via program headers (-p)\n"
|
|
"\t or via section headers (-s)"
|
|
);
|
|
|
|
U_BOOT_CMD(
|
|
bootvx, 2, 0, do_bootvx,
|
|
"Boot vxWorks from an ELF image",
|
|
" [address] - load address of vxWorks ELF image."
|
|
);
|