u-boot/arch/blackfin/cpu/initcode.c
Sonic Zhang ab80b65957 blackfin: Correct early serial mess output in BYPASS boot mode.
The early serial should not be configured again in initcode() for BYPASS
boot mode and in start() for the other LDR boot modes.

In BYPASS boot mode, the start up code is located in Nor flash address other
than the DRAM address defined in link script. The code embedded string can't
be addressed by its compile time symbol. Calculate it according to the flash
offset.

Signed-off-by: Sonic Zhang <sonic.zhang@analog.com>
2013-05-13 15:47:24 +08:00

1025 lines
26 KiB
C

/*
* initcode.c - Initialize the processor. This is usually entails things
* like external memory, voltage regulators, etc... Note that this file
* cannot make any function calls as it may be executed all by itself by
* the Blackfin's bootrom in LDR format.
*
* Copyright (c) 2004-2011 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#define BFIN_IN_INITCODE
#include <config.h>
#include <asm/blackfin.h>
#include <asm/mach-common/bits/bootrom.h>
#include <asm/mach-common/bits/core.h>
#define BUG() while (1) { asm volatile("emuexcpt;"); }
#include "serial.h"
#ifndef __ADSPBF60x__
#include <asm/mach-common/bits/ebiu.h>
#include <asm/mach-common/bits/pll.h>
#else /* __ADSPBF60x__ */
#include <asm/mach-common/bits/cgu.h>
#define CONFIG_BFIN_GET_DCLK_M \
((CONFIG_CLKIN_HZ*CONFIG_VCO_MULT)/(CONFIG_DCLK_DIV*1000000))
#ifndef CONFIG_DMC_DDRCFG
#if ((CONFIG_BFIN_GET_DCLK_M != 125) && \
(CONFIG_BFIN_GET_DCLK_M != 133) && \
(CONFIG_BFIN_GET_DCLK_M != 150) && \
(CONFIG_BFIN_GET_DCLK_M != 166) && \
(CONFIG_BFIN_GET_DCLK_M != 200) && \
(CONFIG_BFIN_GET_DCLK_M != 225) && \
(CONFIG_BFIN_GET_DCLK_M != 250))
#error "DDR2 CLK must be in (125, 133, 150, 166, 200, 225, 250)MHz"
#endif
#endif
/* DMC control bits */
#define SRREQ 0x8
/* DMC status bits */
#define IDLE 0x1
#define MEMINITDONE 0x4
#define SRACK 0x8
#define PDACK 0x10
#define DPDACK 0x20
#define DLLCALDONE 0x2000
#define PENDREF 0xF0000
#define PHYRDPHASE 0xF00000
#define PHYRDPHASE_OFFSET 20
/* DMC DLL control bits */
#define DLLCALRDCNT 0xFF
#define DATACYC_OFFSET 8
struct ddr_config {
u32 ddr_clk;
u32 dmc_ddrctl;
u32 dmc_ddrcfg;
u32 dmc_ddrtr0;
u32 dmc_ddrtr1;
u32 dmc_ddrtr2;
u32 dmc_ddrmr;
u32 dmc_ddrmr1;
};
static struct ddr_config ddr_config_table[] = {
[0] = {
.ddr_clk = 125, /* 125MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20705212,
.dmc_ddrtr1 = 0x201003CF,
.dmc_ddrtr2 = 0x00320107,
.dmc_ddrmr = 0x00000422,
.dmc_ddrmr1 = 0x4,
},
[1] = {
.ddr_clk = 133, /* 133MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20806313,
.dmc_ddrtr1 = 0x2013040D,
.dmc_ddrtr2 = 0x00320108,
.dmc_ddrmr = 0x00000632,
.dmc_ddrmr1 = 0x4,
},
[2] = {
.ddr_clk = 150, /* 150MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20A07323,
.dmc_ddrtr1 = 0x20160492,
.dmc_ddrtr2 = 0x00320209,
.dmc_ddrmr = 0x00000632,
.dmc_ddrmr1 = 0x4,
},
[3] = {
.ddr_clk = 166, /* 166MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20A07323,
.dmc_ddrtr1 = 0x2016050E,
.dmc_ddrtr2 = 0x00320209,
.dmc_ddrmr = 0x00000632,
.dmc_ddrmr1 = 0x4,
},
[4] = {
.ddr_clk = 200, /* 200MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20a07323,
.dmc_ddrtr1 = 0x2016050f,
.dmc_ddrtr2 = 0x00320509,
.dmc_ddrmr = 0x00000632,
.dmc_ddrmr1 = 0x4,
},
[5] = {
.ddr_clk = 225, /* 225MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20E0A424,
.dmc_ddrtr1 = 0x302006DB,
.dmc_ddrtr2 = 0x0032020D,
.dmc_ddrmr = 0x00000842,
.dmc_ddrmr1 = 0x4,
},
[6] = {
.ddr_clk = 250, /* 250MHz */
.dmc_ddrctl = 0x00000904,
.dmc_ddrcfg = 0x00000422,
.dmc_ddrtr0 = 0x20E0A424,
.dmc_ddrtr1 = 0x3020079E,
.dmc_ddrtr2 = 0x0032050D,
.dmc_ddrmr = 0x00000842,
.dmc_ddrmr1 = 0x4,
},
};
#endif /* __ADSPBF60x__ */
__attribute__((always_inline))
static inline void serial_init(void)
{
uint32_t uart_base = UART_BASE;
#if defined(__ADSPBF54x__) || defined(__ADSPBF60x__)
# ifdef BFIN_BOOT_UART_USE_RTS
# define BFIN_UART_USE_RTS 1
# else
# define BFIN_UART_USE_RTS 0
# endif
if (BFIN_UART_USE_RTS && CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) {
size_t i;
/* force RTS rather than relying on auto RTS */
#if BFIN_UART_HW_VER < 4
bfin_write16(&pUART->mcr, bfin_read16(&pUART->mcr) | FCPOL);
#else
bfin_write32(&pUART->control, bfin_read32(&pUART->control) |
FCPOL);
#endif
/* Wait for the line to clear up. We cannot rely on UART
* registers as none of them reflect the status of the RSR.
* Instead, we'll sleep for ~10 bit times at 9600 baud.
* We can precalc things here by assuming boot values for
* PLL rather than loading registers and calculating.
* baud = SCLK / (16 ^ (1 - EDBO) * Divisor)
* EDB0 = 0
* Divisor = (SCLK / baud) / 16
* SCLK = baud * 16 * Divisor
* SCLK = (0x14 * CONFIG_CLKIN_HZ) / 5
* CCLK = (16 * Divisor * 5) * (9600 / 10)
* In reality, this will probably be just about 1 second delay,
* so assuming 9600 baud is OK (both as a very low and too high
* speed as this will buffer things enough).
*/
#define _NUMBITS (10) /* how many bits to delay */
#define _LOWBAUD (9600) /* low baud rate */
#define _SCLK ((0x14 * CONFIG_CLKIN_HZ) / 5) /* SCLK based on PLL */
#define _DIVISOR ((_SCLK / _LOWBAUD) / 16) /* UART DLL/DLH */
#define _NUMINS (3) /* how many instructions in loop */
#define _CCLK (((16 * _DIVISOR * 5) * (_LOWBAUD / _NUMBITS)) / _NUMINS)
i = _CCLK;
while (i--)
asm volatile("" : : : "memory");
}
#endif
#if CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS
if (BFIN_DEBUG_EARLY_SERIAL) {
serial_early_init(uart_base);
serial_early_set_baud(uart_base, CONFIG_BAUDRATE);
}
#endif
}
__attribute__((always_inline))
static inline void serial_deinit(void)
{
#if defined(__ADSPBF54x__) || defined(__ADSPBF60x__)
uint32_t uart_base = UART_BASE;
if (BFIN_UART_USE_RTS && CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) {
/* clear forced RTS rather than relying on auto RTS */
#if BFIN_UART_HW_VER < 4
bfin_write16(&pUART->mcr, bfin_read16(&pUART->mcr) & ~FCPOL);
#else
bfin_write32(&pUART->control, bfin_read32(&pUART->control) &
~FCPOL);
#endif
}
#endif
}
__attribute__((always_inline))
static inline void serial_putc(char c)
{
uint32_t uart_base = UART_BASE;
if (!BFIN_DEBUG_EARLY_SERIAL)
return;
if (c == '\n')
serial_putc('\r');
bfin_write(&pUART->thr, c);
while (!(_lsr_read(pUART) & TEMT))
continue;
}
#include "initcode.h"
__attribute__((always_inline)) static inline void
program_nmi_handler(void)
{
u32 tmp1, tmp2;
/* Older bootroms don't create a dummy NMI handler,
* so make one ourselves ASAP in case it fires.
*/
if (CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS && !ANOMALY_05000219)
return;
asm volatile (
"%0 = RETS;" /* Save current RETS */
"CALL 1f;" /* Figure out current PC */
"RTN;" /* The simple NMI handler */
"1:"
"%1 = RETS;" /* Load addr of NMI handler */
"RETS = %0;" /* Restore RETS */
"[%2] = %1;" /* Write NMI handler */
: "=d"(tmp1), "=d"(tmp2)
: "ab"(EVT2)
);
}
/* Max SCLK can be 133MHz ... dividing that by (2*4) gives
* us a freq of 16MHz for SPI which should generally be
* slow enough for the slow reads the bootrom uses.
*/
#if !defined(CONFIG_SPI_FLASH_SLOW_READ) && \
((defined(__ADSPBF52x__) && __SILICON_REVISION__ >= 2) || \
(defined(__ADSPBF54x__) && __SILICON_REVISION__ >= 1))
# define BOOTROM_SUPPORTS_SPI_FAST_READ 1
#else
# define BOOTROM_SUPPORTS_SPI_FAST_READ 0
#endif
#ifndef CONFIG_SPI_BAUD_INITBLOCK
# define CONFIG_SPI_BAUD_INITBLOCK (BOOTROM_SUPPORTS_SPI_FAST_READ ? 2 : 4)
#endif
#ifdef SPI0_BAUD
# define bfin_write_SPI_BAUD bfin_write_SPI0_BAUD
#endif
#ifdef __ADSPBF60x__
#ifndef CONFIG_CGU_CTL_VAL
# define CONFIG_CGU_CTL_VAL ((CONFIG_VCO_MULT << 8) | CONFIG_CLKIN_HALF)
#endif
#ifndef CONFIG_CGU_DIV_VAL
# define CONFIG_CGU_DIV_VAL \
((CONFIG_CCLK_DIV << CSEL_P) | \
(CONFIG_SCLK0_DIV << S0SEL_P) | \
(CONFIG_SCLK_DIV << SYSSEL_P) | \
(CONFIG_SCLK1_DIV << S1SEL_P) | \
(CONFIG_DCLK_DIV << DSEL_P) | \
(CONFIG_OCLK_DIV << OSEL_P))
#endif
#else /* __ADSPBF60x__ */
/* PLL_DIV defines */
#ifndef CONFIG_PLL_DIV_VAL
# if (CONFIG_CCLK_DIV == 1)
# define CONFIG_CCLK_ACT_DIV CCLK_DIV1
# elif (CONFIG_CCLK_DIV == 2)
# define CONFIG_CCLK_ACT_DIV CCLK_DIV2
# elif (CONFIG_CCLK_DIV == 4)
# define CONFIG_CCLK_ACT_DIV CCLK_DIV4
# elif (CONFIG_CCLK_DIV == 8)
# define CONFIG_CCLK_ACT_DIV CCLK_DIV8
# else
# define CONFIG_CCLK_ACT_DIV CONFIG_CCLK_DIV_not_defined_properly
# endif
# define CONFIG_PLL_DIV_VAL (CONFIG_CCLK_ACT_DIV | CONFIG_SCLK_DIV)
#endif
#ifndef CONFIG_PLL_LOCKCNT_VAL
# define CONFIG_PLL_LOCKCNT_VAL 0x0300
#endif
#ifndef CONFIG_PLL_CTL_VAL
# define CONFIG_PLL_CTL_VAL (SPORT_HYST | (CONFIG_VCO_MULT << 9) | CONFIG_CLKIN_HALF)
#endif
/* Make sure our voltage value is sane so we don't blow up! */
#ifndef CONFIG_VR_CTL_VAL
# define BFIN_CCLK ((CONFIG_CLKIN_HZ * CONFIG_VCO_MULT) / CONFIG_CCLK_DIV)
# if defined(__ADSPBF533__) || defined(__ADSPBF532__) || defined(__ADSPBF531__)
# define CCLK_VLEV_120 400000000
# define CCLK_VLEV_125 533000000
# elif defined(__ADSPBF537__) || defined(__ADSPBF536__) || defined(__ADSPBF534__)
# define CCLK_VLEV_120 401000000
# define CCLK_VLEV_125 401000000
# elif defined(__ADSPBF561__)
# define CCLK_VLEV_120 300000000
# define CCLK_VLEV_125 501000000
# endif
# if BFIN_CCLK < CCLK_VLEV_120
# define CONFIG_VR_CTL_VLEV VLEV_120
# elif BFIN_CCLK < CCLK_VLEV_125
# define CONFIG_VR_CTL_VLEV VLEV_125
# else
# define CONFIG_VR_CTL_VLEV VLEV_130
# endif
# if defined(__ADSPBF52x__) /* TBD; use default */
# undef CONFIG_VR_CTL_VLEV
# define CONFIG_VR_CTL_VLEV VLEV_110
# elif defined(__ADSPBF54x__) /* TBD; use default */
# undef CONFIG_VR_CTL_VLEV
# define CONFIG_VR_CTL_VLEV VLEV_120
# elif defined(__ADSPBF538__) || defined(__ADSPBF539__) /* TBD; use default */
# undef CONFIG_VR_CTL_VLEV
# define CONFIG_VR_CTL_VLEV VLEV_125
# endif
# ifdef CONFIG_BFIN_MAC
# define CONFIG_VR_CTL_CLKBUF CLKBUFOE
# else
# define CONFIG_VR_CTL_CLKBUF 0
# endif
# if defined(__ADSPBF52x__)
# define CONFIG_VR_CTL_FREQ FREQ_1000
# else
# define CONFIG_VR_CTL_FREQ (GAIN_20 | FREQ_1000)
# endif
# define CONFIG_VR_CTL_VAL (CONFIG_VR_CTL_CLKBUF | CONFIG_VR_CTL_VLEV | CONFIG_VR_CTL_FREQ)
#endif
/* some parts do not have an on-chip voltage regulator */
#if defined(__ADSPBF51x__)
# define CONFIG_HAS_VR 0
# undef CONFIG_VR_CTL_VAL
# define CONFIG_VR_CTL_VAL 0
#else
# define CONFIG_HAS_VR 1
#endif
#if CONFIG_MEM_SIZE
#ifndef EBIU_RSTCTL
/* Blackfin with SDRAM */
#ifndef CONFIG_EBIU_SDBCTL_VAL
# if CONFIG_MEM_SIZE == 16
# define CONFIG_EBSZ_VAL EBSZ_16
# elif CONFIG_MEM_SIZE == 32
# define CONFIG_EBSZ_VAL EBSZ_32
# elif CONFIG_MEM_SIZE == 64
# define CONFIG_EBSZ_VAL EBSZ_64
# elif CONFIG_MEM_SIZE == 128
# define CONFIG_EBSZ_VAL EBSZ_128
# elif CONFIG_MEM_SIZE == 256
# define CONFIG_EBSZ_VAL EBSZ_256
# elif CONFIG_MEM_SIZE == 512
# define CONFIG_EBSZ_VAL EBSZ_512
# else
# error You need to define CONFIG_EBIU_SDBCTL_VAL or CONFIG_MEM_SIZE
# endif
# if CONFIG_MEM_ADD_WDTH == 8
# define CONFIG_EBCAW_VAL EBCAW_8
# elif CONFIG_MEM_ADD_WDTH == 9
# define CONFIG_EBCAW_VAL EBCAW_9
# elif CONFIG_MEM_ADD_WDTH == 10
# define CONFIG_EBCAW_VAL EBCAW_10
# elif CONFIG_MEM_ADD_WDTH == 11
# define CONFIG_EBCAW_VAL EBCAW_11
# else
# error You need to define CONFIG_EBIU_SDBCTL_VAL or CONFIG_MEM_ADD_WDTH
# endif
# define CONFIG_EBIU_SDBCTL_VAL (CONFIG_EBCAW_VAL | CONFIG_EBSZ_VAL | EBE)
#endif
#endif
#endif
/* Conflicting Column Address Widths Causes SDRAM Errors:
* EB2CAW and EB3CAW must be the same
*/
#if ANOMALY_05000362
# if ((CONFIG_EBIU_SDBCTL_VAL & 0x30000000) >> 8) != (CONFIG_EBIU_SDBCTL_VAL & 0x00300000)
# error "Anomaly 05000362: EB2CAW and EB3CAW must be the same"
# endif
#endif
#endif /* __ADSPBF60x__ */
__attribute__((always_inline)) static inline void
program_early_devices(ADI_BOOT_DATA *bs, uint *sdivB, uint *divB, uint *vcoB)
{
serial_putc('a');
/* Save the clock pieces that are used in baud rate calculation */
if (BFIN_DEBUG_EARLY_SERIAL || CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) {
serial_putc('b');
#ifdef __ADSPBF60x__
*sdivB = bfin_read_CGU_DIV();
*sdivB = ((*sdivB >> 8) & 0x1f) * ((*sdivB >> 5) & 0x7);
*vcoB = (bfin_read_CGU_CTL() >> 8) & 0x7f;
#else
*sdivB = bfin_read_PLL_DIV() & 0xf;
*vcoB = (bfin_read_PLL_CTL() >> 9) & 0x3f;
#endif
*divB = serial_early_get_div();
serial_putc('c');
}
serial_putc('d');
#ifdef CONFIG_HW_WATCHDOG
# ifndef CONFIG_HW_WATCHDOG_TIMEOUT_INITCODE
# define CONFIG_HW_WATCHDOG_TIMEOUT_INITCODE 20000
# endif
/* Program the watchdog with an initial timeout of ~20 seconds.
* Hopefully that should be long enough to load the u-boot LDR
* (from wherever) and then the common u-boot code can take over.
* In bypass mode, the start.S would have already set a much lower
* timeout, so don't clobber that.
*/
if (CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS) {
serial_putc('e');
#ifdef __ADSPBF60x__
bfin_write_SEC_GCTL(0x2);
SSYNC();
bfin_write_SEC_FCTL(0xc1);
bfin_write_SEC_SCTL(2, bfin_read_SEC_SCTL(2) | 0x6);
bfin_write_SEC_CCTL(0x2);
SSYNC();
bfin_write_SEC_GCTL(0x1);
bfin_write_SEC_CCTL(0x1);
#endif
bfin_write_WDOG_CNT(MSEC_TO_SCLK(CONFIG_HW_WATCHDOG_TIMEOUT_INITCODE));
#if CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_UART
bfin_write_WDOG_CTL(0);
#endif
serial_putc('f');
}
#endif
serial_putc('g');
/* Blackfin bootroms use the SPI slow read opcode instead of the SPI
* fast read, so we need to slow down the SPI clock a lot more during
* boot. Once we switch over to u-boot's SPI flash driver, we'll
* increase the speed appropriately.
*/
#ifdef SPI_BAUD
if (CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_SPI_MASTER) {
serial_putc('h');
if (BOOTROM_SUPPORTS_SPI_FAST_READ && CONFIG_SPI_BAUD_INITBLOCK < 4)
bs->dFlags |= BFLAG_FASTREAD;
bfin_write_SPI_BAUD(CONFIG_SPI_BAUD_INITBLOCK);
serial_putc('i');
}
#endif
serial_putc('j');
}
__attribute__((always_inline)) static inline bool
maybe_self_refresh(ADI_BOOT_DATA *bs)
{
serial_putc('a');
if (!CONFIG_MEM_SIZE)
return false;
#ifdef __ADSPBF60x__
/* resume from hibernate, return false let ddr initialize */
if ((bfin_read32(DPM0_STAT) & 0xF0) == 0x50) {
serial_putc('b');
return false;
}
#else /* __ADSPBF60x__ */
/* If external memory is enabled, put it into self refresh first. */
#if defined(EBIU_RSTCTL)
if (bfin_read_EBIU_RSTCTL() & DDR_SRESET) {
serial_putc('b');
bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() | SRREQ);
return true;
}
#elif defined(EBIU_SDGCTL)
if (bfin_read_EBIU_SDBCTL() & EBE) {
serial_putc('b');
bfin_write_EBIU_SDGCTL(bfin_read_EBIU_SDGCTL() | SRFS);
return true;
}
#endif
#endif /* __ADSPBF60x__ */
serial_putc('c');
return false;
}
__attribute__((always_inline)) static inline u16
program_clocks(ADI_BOOT_DATA *bs, bool put_into_srfs)
{
u16 vr_ctl;
serial_putc('a');
#ifdef __ADSPBF60x__
if (bfin_read_DMC0_STAT() & MEMINITDONE) {
bfin_write_DMC0_CTL(bfin_read_DMC0_CTL() | SRREQ);
SSYNC();
while (!(bfin_read_DMC0_STAT() & SRACK))
continue;
}
/* Don't set the same value of MSEL and DF to CGU_CTL */
if ((bfin_read_CGU_CTL() & (MSEL_MASK | DF_MASK))
!= CONFIG_CGU_CTL_VAL) {
bfin_write_CGU_DIV(CONFIG_CGU_DIV_VAL);
bfin_write_CGU_CTL(CONFIG_CGU_CTL_VAL);
while ((bfin_read_CGU_STAT() & (CLKSALGN | PLLBP)) ||
!(bfin_read_CGU_STAT() & PLLLK))
continue;
}
bfin_write_CGU_DIV(CONFIG_CGU_DIV_VAL | UPDT);
while (bfin_read_CGU_STAT() & CLKSALGN)
continue;
if (bfin_read_DMC0_STAT() & MEMINITDONE) {
bfin_write_DMC0_CTL(bfin_read_DMC0_CTL() & ~SRREQ);
SSYNC();
while (bfin_read_DMC0_STAT() & SRACK)
continue;
}
#else /* __ADSPBF60x__ */
vr_ctl = bfin_read_VR_CTL();
serial_putc('b');
/* If we're entering self refresh, make sure it has happened. */
if (put_into_srfs)
#if defined(EBIU_RSTCTL)
while (!(bfin_read_EBIU_RSTCTL() & SRACK))
continue;
#elif defined(EBIU_SDGCTL)
while (!(bfin_read_EBIU_SDSTAT() & SDSRA))
continue;
#else
;
#endif
serial_putc('c');
/* With newer bootroms, we use the helper function to set up
* the memory controller. Older bootroms lacks such helpers
* so we do it ourselves.
*/
if (!ANOMALY_05000386) {
serial_putc('d');
/* Always programming PLL_LOCKCNT avoids Anomaly 05000430 */
ADI_SYSCTRL_VALUES memory_settings;
uint32_t actions = SYSCTRL_WRITE | SYSCTRL_PLLCTL | SYSCTRL_LOCKCNT;
if (!ANOMALY_05000440)
actions |= SYSCTRL_PLLDIV;
if (CONFIG_HAS_VR) {
actions |= SYSCTRL_VRCTL;
if (CONFIG_VR_CTL_VAL & FREQ_MASK)
actions |= SYSCTRL_INTVOLTAGE;
else
actions |= SYSCTRL_EXTVOLTAGE;
memory_settings.uwVrCtl = CONFIG_VR_CTL_VAL;
} else
actions |= SYSCTRL_EXTVOLTAGE;
memory_settings.uwPllCtl = CONFIG_PLL_CTL_VAL;
memory_settings.uwPllDiv = CONFIG_PLL_DIV_VAL;
memory_settings.uwPllLockCnt = CONFIG_PLL_LOCKCNT_VAL;
#if ANOMALY_05000432
bfin_write_SIC_IWR1(0);
#endif
serial_putc('e');
bfrom_SysControl(actions, &memory_settings, NULL);
serial_putc('f');
if (ANOMALY_05000440)
bfin_write_PLL_DIV(CONFIG_PLL_DIV_VAL);
#if ANOMALY_05000432
bfin_write_SIC_IWR1(-1);
#endif
#if ANOMALY_05000171
bfin_write_SICA_IWR0(-1);
bfin_write_SICA_IWR1(-1);
#endif
serial_putc('g');
} else {
serial_putc('h');
/* Disable all peripheral wakeups except for the PLL event. */
#ifdef SIC_IWR0
bfin_write_SIC_IWR0(1);
bfin_write_SIC_IWR1(0);
# ifdef SIC_IWR2
bfin_write_SIC_IWR2(0);
# endif
#elif defined(SICA_IWR0)
bfin_write_SICA_IWR0(1);
bfin_write_SICA_IWR1(0);
#elif defined(SIC_IWR)
bfin_write_SIC_IWR(1);
#endif
serial_putc('i');
/* Always programming PLL_LOCKCNT avoids Anomaly 05000430 */
bfin_write_PLL_LOCKCNT(CONFIG_PLL_LOCKCNT_VAL);
serial_putc('j');
/* Only reprogram when needed to avoid triggering unnecessary
* PLL relock sequences.
*/
if (vr_ctl != CONFIG_VR_CTL_VAL) {
serial_putc('?');
bfin_write_VR_CTL(CONFIG_VR_CTL_VAL);
asm("idle;");
serial_putc('!');
}
serial_putc('k');
bfin_write_PLL_DIV(CONFIG_PLL_DIV_VAL);
serial_putc('l');
/* Only reprogram when needed to avoid triggering unnecessary
* PLL relock sequences.
*/
if (ANOMALY_05000242 || bfin_read_PLL_CTL() != CONFIG_PLL_CTL_VAL) {
serial_putc('?');
bfin_write_PLL_CTL(CONFIG_PLL_CTL_VAL);
asm("idle;");
serial_putc('!');
}
serial_putc('m');
/* Restore all peripheral wakeups. */
#ifdef SIC_IWR0
bfin_write_SIC_IWR0(-1);
bfin_write_SIC_IWR1(-1);
# ifdef SIC_IWR2
bfin_write_SIC_IWR2(-1);
# endif
#elif defined(SICA_IWR0)
bfin_write_SICA_IWR0(-1);
bfin_write_SICA_IWR1(-1);
#elif defined(SIC_IWR)
bfin_write_SIC_IWR(-1);
#endif
serial_putc('n');
}
#endif /* __ADSPBF60x__ */
serial_putc('o');
return vr_ctl;
}
__attribute__((always_inline)) static inline void
update_serial_clocks(ADI_BOOT_DATA *bs, uint sdivB, uint divB, uint vcoB)
{
/* Since we've changed the SCLK above, we may need to update
* the UART divisors (UART baud rates are based on SCLK).
* Do the division by hand as there are no native instructions
* for dividing which means we'd generate a libgcc reference.
*/
unsigned int sdivR, vcoR;
unsigned int dividend = sdivB * divB * vcoR;
unsigned int divisor = vcoB * sdivR;
unsigned int quotient;
serial_putc('a');
#ifdef __ADSPBF60x__
sdivR = bfin_read_CGU_DIV();
sdivR = ((sdivR >> 8) & 0x1f) * ((sdivR >> 5) & 0x7);
vcoR = (bfin_read_CGU_CTL() >> 8) & 0x7f;
#else
sdivR = bfin_read_PLL_DIV() & 0xf;
vcoR = (bfin_read_PLL_CTL() >> 9) & 0x3f;
#endif
quotient = early_division(dividend, divisor);
serial_early_put_div(quotient - ANOMALY_05000230);
serial_putc('c');
}
__attribute__((always_inline)) static inline void
program_memory_controller(ADI_BOOT_DATA *bs, bool put_into_srfs)
{
serial_putc('a');
if (!CONFIG_MEM_SIZE)
return;
serial_putc('b');
#ifdef __ADSPBF60x__
int dlldatacycle;
int dll_ctl;
int i = 0;
if (CONFIG_BFIN_GET_DCLK_M == 125)
i = 0;
else if (CONFIG_BFIN_GET_DCLK_M == 133)
i = 1;
else if (CONFIG_BFIN_GET_DCLK_M == 150)
i = 2;
else if (CONFIG_BFIN_GET_DCLK_M == 166)
i = 3;
else if (CONFIG_BFIN_GET_DCLK_M == 200)
i = 4;
else if (CONFIG_BFIN_GET_DCLK_M == 225)
i = 5;
else if (CONFIG_BFIN_GET_DCLK_M == 250)
i = 6;
#if 0
for (i = 0; i < ARRAY_SIZE(ddr_config_table); i++)
if (CONFIG_BFIN_GET_DCLK_M == ddr_config_table[i].ddr_clk)
break;
#endif
#ifndef CONFIG_DMC_DDRCFG
bfin_write_DMC0_CFG(ddr_config_table[i].dmc_ddrcfg);
#else
bfin_write_DMC0_CFG(CONFIG_DMC_DDRCFG);
#endif
#ifndef CONFIG_DMC_DDRTR0
bfin_write_DMC0_TR0(ddr_config_table[i].dmc_ddrtr0);
#else
bfin_write_DMC0_TR0(CONFIG_DMC_DDRTR0);
#endif
#ifndef CONFIG_DMC_DDRTR1
bfin_write_DMC0_TR1(ddr_config_table[i].dmc_ddrtr1);
#else
bfin_write_DMC0_TR1(CONFIG_DMC_DDRTR1);
#endif
#ifndef CONFIG_DMC_DDRTR2
bfin_write_DMC0_TR2(ddr_config_table[i].dmc_ddrtr2);
#else
bfin_write_DMC0_TR2(CONFIG_DMC_DDRTR2);
#endif
#ifndef CONFIG_DMC_DDRMR
bfin_write_DMC0_MR(ddr_config_table[i].dmc_ddrmr);
#else
bfin_write_DMC0_MR(CONFIG_DMC_DDRMR);
#endif
#ifndef CONFIG_DMC_DDREMR1
bfin_write_DMC0_EMR1(ddr_config_table[i].dmc_ddrmr1);
#else
bfin_write_DMC0_EMR1(CONFIG_DMC_DDREMR1);
#endif
#ifndef CONFIG_DMC_DDRCTL
bfin_write_DMC0_CTL(ddr_config_table[i].dmc_ddrctl);
#else
bfin_write_DMC0_CTL(CONFIG_DMC_DDRCTL);
#endif
SSYNC();
while (!(bfin_read_DMC0_STAT() & MEMINITDONE))
continue;
dlldatacycle = (bfin_read_DMC0_STAT() & PHYRDPHASE) >>
PHYRDPHASE_OFFSET;
dll_ctl = bfin_read_DMC0_DLLCTL();
dll_ctl &= 0x0ff;
bfin_write_DMC0_DLLCTL(dll_ctl | (dlldatacycle << DATACYC_OFFSET));
SSYNC();
while (!(bfin_read_DMC0_STAT() & DLLCALDONE))
continue;
serial_putc('!');
#else /* __ADSPBF60x__ */
/* Program the external memory controller before we come out of
* self-refresh. This only works with our SDRAM controller.
*/
#ifdef EBIU_SDGCTL
# ifdef CONFIG_EBIU_SDRRC_VAL
bfin_write_EBIU_SDRRC(CONFIG_EBIU_SDRRC_VAL);
# endif
# ifdef CONFIG_EBIU_SDBCTL_VAL
bfin_write_EBIU_SDBCTL(CONFIG_EBIU_SDBCTL_VAL);
# endif
# ifdef CONFIG_EBIU_SDGCTL_VAL
bfin_write_EBIU_SDGCTL(CONFIG_EBIU_SDGCTL_VAL);
# endif
#endif
serial_putc('c');
/* Now that we've reprogrammed, take things out of self refresh. */
if (put_into_srfs)
#if defined(EBIU_RSTCTL)
bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() & ~(SRREQ));
#elif defined(EBIU_SDGCTL)
bfin_write_EBIU_SDGCTL(bfin_read_EBIU_SDGCTL() & ~(SRFS));
#endif
serial_putc('d');
/* Our DDR controller sucks and cannot be programmed while in
* self-refresh. So we have to pull it out before programming.
*/
#ifdef EBIU_RSTCTL
# ifdef CONFIG_EBIU_RSTCTL_VAL
bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() | 0x1 /*DDRSRESET*/ | CONFIG_EBIU_RSTCTL_VAL);
# endif
# ifdef CONFIG_EBIU_DDRCTL0_VAL
bfin_write_EBIU_DDRCTL0(CONFIG_EBIU_DDRCTL0_VAL);
# endif
# ifdef CONFIG_EBIU_DDRCTL1_VAL
bfin_write_EBIU_DDRCTL1(CONFIG_EBIU_DDRCTL1_VAL);
# endif
# ifdef CONFIG_EBIU_DDRCTL2_VAL
bfin_write_EBIU_DDRCTL2(CONFIG_EBIU_DDRCTL2_VAL);
# endif
# ifdef CONFIG_EBIU_DDRCTL3_VAL
/* default is disable, so don't need to force this */
bfin_write_EBIU_DDRCTL3(CONFIG_EBIU_DDRCTL3_VAL);
# endif
# ifdef CONFIG_EBIU_DDRQUE_VAL
bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE() | CONFIG_EBIU_DDRQUE_VAL);
# endif
#endif
#endif /* __ADSPBF60x__ */
serial_putc('e');
}
__attribute__((always_inline)) static inline void
check_hibernation(ADI_BOOT_DATA *bs, u16 vr_ctl, bool put_into_srfs)
{
serial_putc('a');
if (!CONFIG_MEM_SIZE)
return;
serial_putc('b');
#ifdef __ADSPBF60x__
if (bfin_read32(DPM0_RESTORE0) != 0) {
uint32_t reg = bfin_read_DMC0_CTL();
reg &= ~0x8;
bfin_write_DMC0_CTL(reg);
while ((bfin_read_DMC0_STAT() & 0x8))
continue;
while (!(bfin_read_DMC0_STAT() & 0x1))
continue;
serial_putc('z');
uint32_t *hibernate_magic = bfin_read32(DPM0_RESTORE4);
SSYNC(); /* make sure memory controller is done */
if (hibernate_magic[0] == 0xDEADBEEF) {
serial_putc('c');
SSYNC();
bfin_write_EVT15(hibernate_magic[1]);
bfin_write_IMASK(EVT_IVG15);
__asm__ __volatile__ (
/* load reti early to avoid anomaly 281 */
"reti = %2;"
/* clear hibernate magic */
"[%0] = %1;"
/* load stack pointer */
"SP = [%0 + 8];"
/* lower ourselves from reset ivg to ivg15 */
"raise 15;"
"nop;nop;nop;"
"rti;"
:
: "p"(hibernate_magic),
"d"(0x2000 /* jump.s 0 */),
"d"(0xffa00000)
);
}
}
#else
/* Are we coming out of hibernate (suspend to memory) ?
* The memory layout is:
* 0x0: hibernate magic for anomaly 307 (0xDEADBEEF)
* 0x4: return address
* 0x8: stack pointer
*
* SCKELOW is unreliable on older parts (anomaly 307)
*/
if (ANOMALY_05000307 || vr_ctl & 0x8000) {
uint32_t *hibernate_magic = 0;
SSYNC();
if (hibernate_magic[0] == 0xDEADBEEF) {
serial_putc('c');
bfin_write_EVT15(hibernate_magic[1]);
bfin_write_IMASK(EVT_IVG15);
__asm__ __volatile__ (
/* load reti early to avoid anomaly 281 */
"reti = %0;"
/* clear hibernate magic */
"[%0] = %1;"
/* load stack pointer */
"SP = [%0 + 8];"
/* lower ourselves from reset ivg to ivg15 */
"raise 15;"
"rti;"
:
: "p"(hibernate_magic), "d"(0x2000 /* jump.s 0 */)
);
}
serial_putc('d');
}
#endif
serial_putc('e');
}
BOOTROM_CALLED_FUNC_ATTR
void initcode(ADI_BOOT_DATA *bs)
{
ADI_BOOT_DATA bootstruct_scratch;
/* Setup NMI handler before anything else */
program_nmi_handler();
serial_init();
serial_putc('A');
/* If the bootstruct is NULL, then it's because we're loading
* dynamically and not via LDR (bootrom). So set the struct to
* some scratch space.
*/
if (!bs)
bs = &bootstruct_scratch;
serial_putc('B');
bool put_into_srfs = maybe_self_refresh(bs);
serial_putc('C');
uint sdivB, divB, vcoB;
program_early_devices(bs, &sdivB, &divB, &vcoB);
serial_putc('D');
u16 vr_ctl = program_clocks(bs, put_into_srfs);
serial_putc('E');
update_serial_clocks(bs, sdivB, divB, vcoB);
serial_putc('F');
program_memory_controller(bs, put_into_srfs);
serial_putc('G');
check_hibernation(bs, vr_ctl, put_into_srfs);
serial_putc('H');
program_async_controller(bs);
#ifdef CONFIG_BFIN_BOOTROM_USES_EVT1
serial_putc('I');
/* Tell the bootrom where our entry point is so that it knows
* where to jump to when finishing processing the LDR. This
* allows us to avoid small jump blocks in the LDR, and also
* works around anomaly 05000389 (init address in external
* memory causes bootrom to trigger external addressing IVHW).
*/
if (CONFIG_BFIN_BOOT_MODE != BFIN_BOOT_BYPASS)
bfin_write_EVT1(CONFIG_SYS_MONITOR_BASE);
#endif
serial_putc('>');
serial_putc('\n');
serial_deinit();
}